-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocess_ds.py
279 lines (244 loc) · 8.74 KB
/
preprocess_ds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import argparse
import datetime
import os
import pickle
import time
import typing as t
from functools import partial
from shutil import rmtree
import numpy as np
import pandas as pd
from tqdm import tqdm
from tqdm.contrib import concurrent
from timebase.data import filter_data, preprocessing, spreadsheet, utils
from timebase.data.static import *
from timebase.utils import h5
from timebase.utils.utils import set_random_seed
def get_session_label(clinical_info: pd.DataFrame, session_id: int):
session = clinical_info[clinical_info.Session_Code == session_id]
return None if session.empty else session.values[0].astype(np.float32)
def preprocess_session(args, session_id: int, clinical_info: pd.DataFrame):
recording_dir = utils.unzip_session(args.data_dir, session_id=session_id)
session_label = get_session_label(clinical_info, session_id=session_id)
if session_label is None:
raise ValueError(f"Cannot find session {session_id} in spreadsheet.")
session_data, session_info = preprocessing.preprocess_dir(
args, recording_dir=recording_dir, session_id=session_id
)
session_data, num_segments = preprocessing.segmentation(
args,
session_data=session_data,
channel_freq=session_info["channel_freq"],
unix_t0=session_info["unix_t0"],
)
if not num_segments:
raise ValueError(f"Session {session_id} has no valid segments.")
preprocessing.extract_features(
args,
session_data=session_data,
num_segments=num_segments,
unix_t0=session_info["unix_t0"],
)
session_output_dir = os.path.join(args.output_dir, str(session_id))
if not os.path.isdir(session_output_dir):
os.makedirs(session_output_dir)
del session_data["IBI"]
unix_t0_segments = (session_data["unix_time"][:, 0]).astype("uint32")
del session_data["unix_time"]
session_paths = []
for n in range(num_segments):
filename = os.path.join(session_output_dir, f"{n}.h5")
segment = {k: v[n] for k, v in session_data.items()}
h5.write(filename=filename, content=segment, overwrite=True)
session_paths.append(filename)
session_paths = np.array(session_paths, dtype=str)
session_labels = np.concatenate(
(
np.tile(session_label, reps=(num_segments, 1)),
unix_t0_segments[..., np.newaxis],
),
axis=1,
)
return {"paths": session_paths, "labels": session_labels, "info": session_info}
def preprocess_wrapper(session_id: int, args, clinical_info: pd.DataFrame):
try:
results = preprocess_session(
args, session_id=session_id, clinical_info=clinical_info
)
except ValueError as e:
print(e)
return None
return results
def main(args):
starting_time = time.time()
if not os.path.isdir(args.data_dir):
raise FileNotFoundError(f"data_dir {args.data_dir} not found.")
if os.path.isdir(args.output_dir):
if args.overwrite:
rmtree(args.output_dir)
else:
raise FileExistsError(
f"output_dir {args.output_dir} already exists. Add --overwrite "
f" flag to overwrite the existing preprocessed data."
)
os.makedirs(args.output_dir)
set_random_seed(args.seed)
clinical_info = spreadsheet.read(args)
args.session_codes = list(clinical_info["Session_Code"])
print(f"\nPreprocessing data from {args.data_dir}...")
clinical_info.replace({"status": DICT_STATE}, inplace=True)
clinical_info.replace({"time": DICT_TIME}, inplace=True)
ds_info = {
"time_alignment": args.time_alignment,
"downsampling": args.downsampling,
"padding_mode": args.padding_mode,
"qc_mode": args.qc_mode,
"ibi_interpolation": args.ibi_interpolation,
"hrv_features": args.hrv_features,
"hrv_length": args.hrv_length,
"segment_length": args.segment_length,
}
results = concurrent.process_map(
partial(preprocess_wrapper, args=args, clinical_info=clinical_info),
args.session_codes,
max_workers=args.num_workers,
desc="Preprocessing",
)
sessions_paths, sessions_labels, invalid_sessions = [], [], []
sessions_info = {}
for i, session_id in enumerate(args.session_codes):
result = results[i]
# result = preprocess_session(
# args, session_id=session_id, clinical_info=clinical_info
# )
if result is None:
invalid_sessions.append(session_id)
continue
sessions_paths.append(result["paths"])
sessions_labels.append(result["labels"])
for info_name in ["channel_names", "channel_freq", "sampling_rates"]:
if info_name not in ds_info:
ds_info[info_name] = result["info"][info_name]
del result["info"][info_name]
sessions_info[session_id] = result["info"]
# joint features and labels from all sessions
sessions_paths = np.concatenate(sessions_paths, axis=0)
sessions_labels = np.concatenate(sessions_labels, axis=0)
# define recording IDs in sessions with multiple recordings
filter_data.set_unique_recording_id(sessions_labels)
ds_info["sessions_info"] = sessions_info
if hasattr(args, "extracted_features_names"):
ds_info["extracted_features_names"] = args.extracted_features_names
with open(os.path.join(args.output_dir, "info.pkl"), "wb") as file:
pickle.dump(
{
"data_paths": sessions_paths,
"labels": sessions_labels,
"ds_info": ds_info,
"clinical_info": clinical_info,
"invalid_sessions": invalid_sessions,
},
file,
)
print(f"Saved processed data to {args.output_dir}")
runtime = round(
datetime.timedelta(seconds=time.time() - starting_time).total_seconds()
)
print(f"Runtime: {runtime} seconds")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_dir",
type=str,
default="data/raw_data",
help="path to directory with raw data in zip files",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="path to directory to store dataset",
)
parser.add_argument("--seed", type=int, default=1234)
parser.add_argument(
"--overwrite",
action="store_true",
help="overwrite existing preprocessed directory",
)
parser.add_argument("--verbose", type=int, default=1, choices=[1, 2])
# preprocessing configuration
parser.add_argument(
"--downsampling",
type=str,
default="average",
choices=["average", "max"],
help="downsampling method to use",
)
parser.add_argument(
"--time_alignment",
type=int,
required=True,
choices=[0, 1, 2, 4, 8, 16, 32, 64],
help="number of samples per second (Hz) for time-alignment, "
"set 0 to train embedding layers instead.",
)
parser.add_argument(
"--padding_mode",
type=str,
default="average",
choices=["zero", "last", "average", "median"],
help="padding mode for channels samples at a lower frequency",
)
parser.add_argument(
"--qc_mode",
type=int,
default=1,
choices=[0, 1],
help="quality control mode:"
"0 - no QC"
"1 - Kleckner et al. 2018 - https://pubmed.ncbi.nlm.nih.gov/28976309/",
)
parser.add_argument(
"--ibi_interpolation",
type=str,
default="quadratic",
choices=["linear", "quadratic"],
help="interpolation method to use in IBI channel",
)
parser.add_argument(
"--hrv_features",
nargs="+",
default=[],
help="choose which HRV features should be extracted from IBI",
)
parser.add_argument(
"--hrv_length",
type=int,
default=60 * 5,
help="window length for computing HRV from IBI",
)
parser.add_argument(
"--from_bvp2ibi_mode",
type=int,
default=0,
choices=[0, 1],
help=""
"0) Use Empatica IBI (provided as part of the E4 output and "
"derived through a propriety algorithm. "
"1) Compute IBI from BVP with bioppsy open-source package",
)
parser.add_argument(
"--segment_length",
type=int,
default=2**9,
help="segmentation window length in seconds",
)
parser.add_argument(
"--downsample_mode",
type=int,
default=1,
choices=[0, 1],
help="0) no downsampling, 1) downsample segments from majority class",
)
parser.add_argument("--num_workers", type=int, default=6)
main(parser.parse_args())