comments | edit_url |
---|---|
true |
给定一个二叉树的 根节点 root
,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
示例 1:
输入: [1,2,3,null,5,null,4] 输出: [1,3,4]
示例 2:
输入: [1,null,3] 输出: [1,3]
示例 3:
输入: [] 输出: []
提示:
- 二叉树的节点个数的范围是
[0,100]
-100 <= Node.val <= 100
注意:本题与主站 199 题相同:https://leetcode.cn/problems/binary-tree-right-side-view/
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rightSideView(self, root: TreeNode) -> List[int]:
ans = []
if not root:
return ans
d = deque([root])
while d:
n = len(d)
ans.append(d[0].val)
for i in range(n):
node = d.popleft()
if node.right:
d.append(node.right)
if node.left:
d.append(node.left)
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> rightSideView(TreeNode root) {
List<Integer> ans = new ArrayList<>();
if (root == null) {
return ans;
}
Deque<TreeNode> q = new ArrayDeque<>();
q.offer(root);
while (!q.isEmpty()) {
ans.add(q.peekFirst().val);
for (int i = q.size(); i > 0; --i) {
TreeNode node = q.poll();
if (node.right != null) {
q.offer(node.right);
}
if (node.left != null) {
q.offer(node.left);
}
}
}
return ans;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> ans;
if (!root) return ans;
queue<TreeNode*> q;
q.push(root);
while (!q.empty()) {
ans.push_back(q.front()->val);
for (int i = q.size(); i > 0; --i) {
auto node = q.front();
q.pop();
if (node->right) q.push(node->right);
if (node->left) q.push(node->left);
}
}
return ans;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func rightSideView(root *TreeNode) []int {
var ans []int
if root == nil {
return ans
}
q := []*TreeNode{root}
for len(q) > 0 {
ans = append(ans, q[0].Val)
for i := len(q); i > 0; i-- {
node := q[0]
q = q[1:]
if node.Right != nil {
q = append(q, node.Right)
}
if node.Left != nil {
q = append(q, node.Left)
}
}
}
return ans
}
/* class TreeNode {
* var val: Int
* var left: TreeNode?
* var right: TreeNode?
* init() {
* self.val = 0
* self.left = nil
* self.right = nil
* }
* init(_ val: Int) {
* self.val = val
* self.left = nil
* self.right = nil
* }
* init(_ val: Int, _ left: TreeNode?, _ right: TreeNode?) {
* self.val = val
* self.left = left
* self.right = right
* }
* }
*/
class Solution {
func rightSideView(_ root: TreeNode?) -> [Int] {
var ans = [Int]()
guard let root = root else {
return ans
}
var q = [TreeNode]()
q.append(root)
while !q.isEmpty {
ans.append(q[0].val)
for _ in 0..<q.count {
let node = q.removeFirst()
if let right = node.right {
q.append(right)
}
if let left = node.left {
q.append(left)
}
}
}
return ans
}
}