-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathinception_test.py
134 lines (121 loc) · 5.39 KB
/
inception_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.inception."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from camelyon16.inception.slim import inception_model as inception
class InceptionTest(tf.test.TestCase):
def testBuildLogits(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = inception.inception_v3(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
def testBuildEndPoints(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_v3(inputs, num_classes)
self.assertTrue('logits' in end_points)
logits = end_points['logits']
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertTrue('aux_logits' in end_points)
aux_logits = end_points['aux_logits']
self.assertListEqual(aux_logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['mixed_8x8x2048b']
self.assertListEqual(pre_pool.get_shape().as_list(),
[batch_size, 8, 8, 2048])
def testVariablesSetDevice(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
# Force all Variables to reside on the device.
with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
inception.inception_v3(inputs, num_classes)
with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
inception.inception_v3(inputs, num_classes)
for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
self.assertDeviceEqual(v.device, '/cpu:0')
for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
self.assertDeviceEqual(v.device, '/gpu:0')
def testHalfSizeImages(self):
batch_size = 5
height, width = 150, 150
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, end_points = inception.inception_v3(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['mixed_8x8x2048b']
self.assertListEqual(pre_pool.get_shape().as_list(),
[batch_size, 3, 3, 2048])
def testUnknowBatchSize(self):
batch_size = 1
height, width = 299, 299
num_classes = 1000
with self.test_session() as sess:
inputs = tf.placeholder(tf.float32, (None, height, width, 3))
logits, _ = inception.inception_v3(inputs, num_classes)
self.assertTrue(logits.op.name.startswith('logits'))
self.assertListEqual(logits.get_shape().as_list(),
[None, num_classes])
images = tf.random_uniform((batch_size, height, width, 3))
sess.run(tf.initialize_all_variables())
output = sess.run(logits, {inputs: images.eval()})
self.assertEquals(output.shape, (batch_size, num_classes))
def testEvaluation(self):
batch_size = 2
height, width = 299, 299
num_classes = 1000
with self.test_session() as sess:
eval_inputs = tf.random_uniform((batch_size, height, width, 3))
logits, _ = inception.inception_v3(eval_inputs, num_classes,
is_training=False)
predictions = tf.argmax(logits, 1)
sess.run(tf.initialize_all_variables())
output = sess.run(predictions)
self.assertEquals(output.shape, (batch_size,))
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
with self.test_session() as sess:
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_v3(train_inputs, num_classes)
tf.get_variable_scope().reuse_variables()
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_v3(eval_inputs, num_classes,
is_training=False)
predictions = tf.argmax(logits, 1)
sess.run(tf.initialize_all_variables())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
if __name__ == '__main__':
tf.test.main()