-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathlosses_test.py
177 lines (153 loc) · 6.27 KB
/
losses_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for slim.losses."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from camelyon16.inception.slim import losses
class LossesTest(tf.test.TestCase):
def testL1Loss(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
weights = tf.constant(1.0, shape=shape)
wd = 0.01
loss = losses.l1_loss(weights, wd)
self.assertEquals(loss.op.name, 'L1Loss/value')
self.assertAlmostEqual(loss.eval(), num_elem * wd, 5)
def testL2Loss(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
weights = tf.constant(1.0, shape=shape)
wd = 0.01
loss = losses.l2_loss(weights, wd)
self.assertEquals(loss.op.name, 'L2Loss/value')
self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5)
class RegularizersTest(tf.test.TestCase):
def testL1Regularizer(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
loss = losses.l1_regularizer()(tensor)
self.assertEquals(loss.op.name, 'L1Regularizer/value')
self.assertAlmostEqual(loss.eval(), num_elem, 5)
def testL1RegularizerWithScope(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
loss = losses.l1_regularizer(scope='L1')(tensor)
self.assertEquals(loss.op.name, 'L1/value')
self.assertAlmostEqual(loss.eval(), num_elem, 5)
def testL1RegularizerWithWeight(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
weight = 0.01
loss = losses.l1_regularizer(weight)(tensor)
self.assertEquals(loss.op.name, 'L1Regularizer/value')
self.assertAlmostEqual(loss.eval(), num_elem * weight, 5)
def testL2Regularizer(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
loss = losses.l2_regularizer()(tensor)
self.assertEquals(loss.op.name, 'L2Regularizer/value')
self.assertAlmostEqual(loss.eval(), num_elem / 2, 5)
def testL2RegularizerWithScope(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
loss = losses.l2_regularizer(scope='L2')(tensor)
self.assertEquals(loss.op.name, 'L2/value')
self.assertAlmostEqual(loss.eval(), num_elem / 2, 5)
def testL2RegularizerWithWeight(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
weight = 0.01
loss = losses.l2_regularizer(weight)(tensor)
self.assertEquals(loss.op.name, 'L2Regularizer/value')
self.assertAlmostEqual(loss.eval(), num_elem * weight / 2, 5)
def testL1L2Regularizer(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
loss = losses.l1_l2_regularizer()(tensor)
self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5)
def testL1L2RegularizerWithScope(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
loss = losses.l1_l2_regularizer(scope='L1L2')(tensor)
self.assertEquals(loss.op.name, 'L1L2/value')
self.assertAlmostEqual(loss.eval(), num_elem + num_elem / 2, 5)
def testL1L2RegularizerWithWeights(self):
with self.test_session():
shape = [5, 5, 5]
num_elem = 5 * 5 * 5
tensor = tf.constant(1.0, shape=shape)
weight_l1 = 0.01
weight_l2 = 0.05
loss = losses.l1_l2_regularizer(weight_l1, weight_l2)(tensor)
self.assertEquals(loss.op.name, 'L1L2Regularizer/value')
self.assertAlmostEqual(loss.eval(),
num_elem * weight_l1 + num_elem * weight_l2 / 2, 5)
class CrossEntropyLossTest(tf.test.TestCase):
def testCrossEntropyLossAllCorrect(self):
with self.test_session():
logits = tf.constant([[10.0, 0.0, 0.0],
[0.0, 10.0, 0.0],
[0.0, 0.0, 10.0]])
labels = tf.constant([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
loss = losses.cross_entropy_loss(logits, labels)
self.assertEquals(loss.op.name, 'CrossEntropyLoss/value')
self.assertAlmostEqual(loss.eval(), 0.0, 3)
def testCrossEntropyLossAllWrong(self):
with self.test_session():
logits = tf.constant([[10.0, 0.0, 0.0],
[0.0, 10.0, 0.0],
[0.0, 0.0, 10.0]])
labels = tf.constant([[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
loss = losses.cross_entropy_loss(logits, labels)
self.assertEquals(loss.op.name, 'CrossEntropyLoss/value')
self.assertAlmostEqual(loss.eval(), 10.0, 3)
def testCrossEntropyLossAllWrongWithWeight(self):
with self.test_session():
logits = tf.constant([[10.0, 0.0, 0.0],
[0.0, 10.0, 0.0],
[0.0, 0.0, 10.0]])
labels = tf.constant([[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
loss = losses.cross_entropy_loss(logits, labels, weight=0.5)
self.assertEquals(loss.op.name, 'CrossEntropyLoss/value')
self.assertAlmostEqual(loss.eval(), 5.0, 3)
if __name__ == '__main__':
tf.test.main()