-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlpips_2dir_allpairs.py
71 lines (52 loc) · 2.05 KB
/
lpips_2dir_allpairs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import os
import lpips
import numpy as np
from tqdm import tqdm
'''
Script Adapted from PerceptualSimilarity Repo
<https://github.com/richzhang/PerceptualSimilarity/blob/master/lpips_1dir_allpairs.py>
to compute all pairwise LPIPS distances between images in two directories
Example Usage
-------------
> python lpips_2dir_allpairs.py -d0 data/CelebA_sample_resized/ -d1 data/few_shot/100-shot-obama/0/ -o celebA_obama_pairwise_dist.txt
'''
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-d0','--dir0', type=str, default='./imgs/ex_dir0')
parser.add_argument('-d1','--dir1', type=str, default='./imgs/ex_dir1')
parser.add_argument('-o','--out', type=str, default='./imgs/example_dists.txt')
parser.add_argument('-v','--version', type=str, default='0.1')
parser.add_argument('-N', type=int, default=None)
parser.add_argument('--use_gpu', action='store_true', help='turn on flag to use GPU')
opt = parser.parse_args()
## Initializing the model
loss_fn = lpips.LPIPS(net='alex',version=opt.version)
if(opt.use_gpu):
loss_fn.cuda()
# crawl directories
f = open(opt.out,'w')
files_0 = os.listdir(opt.dir0)
files_1 = os.listdir(opt.dir1)
if(opt.N is not None):
files_0 = files_0[:opt.N]
files_1 = files_1[:opt.N]
F = len(files_0)
dists = []
for (ff,file) in enumerate(tqdm(files_0, desc = 'Computing pairwise LPIPS distances...')):
img0 = lpips.im2tensor(lpips.load_image(os.path.join(opt.dir0,file))) # RGB image from [-1,1]
if(opt.use_gpu):
img0 = img0.cuda()
for file1 in files_1:
img1 = lpips.im2tensor(lpips.load_image(os.path.join(opt.dir1,file1)))
if(opt.use_gpu):
img1 = img1.cuda()
# Compute distance
dist01 = loss_fn.forward(img0,img1)
# print('(%s,%s): %.3f'%(file,file1,dist01))
f.writelines('(%s,%s): %.6f\n'%(file,file1,dist01))
dists.append(dist01.item())
avg_dist = np.mean(np.array(dists))
stderr_dist = np.std(np.array(dists))/np.sqrt(len(dists))
print('Avg: %.5f +/- %.5f'%(avg_dist,stderr_dist))
f.writelines('Avg: %.6f +/- %.6f'%(avg_dist,stderr_dist))
f.close()