forked from LostRuins/koboldcpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_state_dict_checkpoint.py
129 lines (108 loc) · 3.81 KB
/
export_state_dict_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# this specific file adapted from https://github.com/tloen/alpaca-lora/blob/main/export_state_dict_checkpoint.py
# under Apache 2.0 license https://raw.githubusercontent.com/tloen/alpaca-lora/main/LICENSE
# todo: adapt to revert HF formats back to original PTH formats so ggml can convert them.
import json
import os
import torch
import transformers
from peft import PeftModel
from transformers import LlamaForCausalLM, LlamaTokenizer # noqa: E402
BASE_MODEL = os.environ.get("BASE_MODEL", None)
assert (
BASE_MODEL
), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=decapoda-research/llama-7b-hf`" # noqa: E501
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
base_model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map={"": "cpu"},
)
lora_model = PeftModel.from_pretrained(
base_model,
"tloen/alpaca-lora-7b",
device_map={"": "cpu"},
torch_dtype=torch.float16,
)
# merge weights
for layer in lora_model.base_model.model.model.layers:
layer.self_attn.q_proj.merge_weights = True
layer.self_attn.v_proj.merge_weights = True
lora_model.train(False)
lora_model_sd = lora_model.state_dict()
params = {
"dim": 4096,
"multiple_of": 256,
"n_heads": 32,
"n_layers": 32,
"norm_eps": 1e-06,
"vocab_size": -1,
}
n_layers = params["n_layers"]
n_heads = params["n_heads"]
dim = params["dim"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (
base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)
)
def permute(w):
return (
w.view(n_heads, dim // n_heads // 2, 2, dim)
.transpose(1, 2)
.reshape(dim, dim)
)
def unpermute(w):
return (
w.view(n_heads, 2, dim // n_heads // 2, dim)
.transpose(1, 2)
.reshape(dim, dim)
)
def translate_state_dict_key(k): # noqa: C901
k = k.replace("base_model.model.", "")
if k == "model.embed_tokens.weight":
return "tok_embeddings.weight"
elif k == "model.norm.weight":
return "norm.weight"
elif k == "lm_head.weight":
return "output.weight"
elif k.startswith("model.layers."):
layer = k.split(".")[2]
if k.endswith(".self_attn.q_proj.weight"):
return f"layers.{layer}.attention.wq.weight"
elif k.endswith(".self_attn.k_proj.weight"):
return f"layers.{layer}.attention.wk.weight"
elif k.endswith(".self_attn.v_proj.weight"):
return f"layers.{layer}.attention.wv.weight"
elif k.endswith(".self_attn.o_proj.weight"):
return f"layers.{layer}.attention.wo.weight"
elif k.endswith(".mlp.gate_proj.weight"):
return f"layers.{layer}.feed_forward.w1.weight"
elif k.endswith(".mlp.down_proj.weight"):
return f"layers.{layer}.feed_forward.w2.weight"
elif k.endswith(".mlp.up_proj.weight"):
return f"layers.{layer}.feed_forward.w3.weight"
elif k.endswith(".input_layernorm.weight"):
return f"layers.{layer}.attention_norm.weight"
elif k.endswith(".post_attention_layernorm.weight"):
return f"layers.{layer}.ffn_norm.weight"
elif k.endswith("rotary_emb.inv_freq") or "lora" in k:
return None
else:
print(layer, k)
raise NotImplementedError
else:
print(k)
raise NotImplementedError
new_state_dict = {}
for k, v in lora_model_sd.items():
new_k = translate_state_dict_key(k)
if new_k is not None:
if "wq" in new_k or "wk" in new_k:
new_state_dict[new_k] = unpermute(v)
else:
new_state_dict[new_k] = v
os.makedirs("./ckpt", exist_ok=True)
torch.save(new_state_dict, "./ckpt/consolidated.00.pth")
with open("./ckpt/params.json", "w") as f:
json.dump(params, f)