-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
194 lines (166 loc) · 5.54 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# contains code for the machine learing model to predict brain tumours
import sys
import os
import tensorflow as tf
import numpy as np
import scipy
import cv2
import keras
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
from keras.callbacks import CSVLogger, EarlyStopping, ReduceLROnPlateau
from sklearn.model_selection import train_test_split
import sklearn
from display import plotAccuracyLoss
from display import displayActivations
import PIL
from PIL import Image, UnidentifiedImageError
from preprocess import crop_image
#crop images to only contain brain section - YES
if 'preprocess' in sys.argv:
x = 1
print("---- Cropping Training Images ----")
for filename in os.listdir('data/train/yes'):
img = cv2.imread(os.path.join('original_data2/train/yes', filename))
if img is None:
print('err - cant read img')
continue
processed_img = crop_image(img)
save_filename = 'processed/train/yes/Y' + str(x) + '.jpg'
x +=1
cv2.imwrite(save_filename, processed_img)
#crop images to only contain brain section - NO
x = 1
for filename in os.listdir('data/train/no'):
img = cv2.imread(os.path.join('original_data2/train/no', filename))
if img is None:
print('err - cant read img')
continue
processed_img = crop_image(img)
save_filename = 'processed/train/no/N' + str(x) + '.jpg'
x +=1
cv2.imwrite(save_filename, processed_img)
print("---- Loading Training/Testing Data ----")
img_shape = (200, 200)
# load train images
processed_train_path = "./processed/train"
train_data = []
train_labels = []
test_data = []
test_labels = []
# load test images and make a dataframe
for filename in os.listdir('processed/train/no'):
img = cv2.imread(os.path.join('processed/train/no', filename))
if img is None:
print('err - cant read img')
continue
rs_img = cv2.resize(img,(200,200), interpolation = cv2.INTER_AREA)
train_data.append(rs_img)
train_labels.append(0)
for filename in os.listdir('processed/train/yes'):
img = cv2.imread(os.path.join('processed/train/yes', filename))
if img is None:
print('err - cant read img')
continue
rs_img = cv2.resize(img,(200,200), interpolation = cv2.INTER_AREA)
train_data.append(rs_img)
train_labels.append(1)
for filename in os.listdir('processed/test/no'):
img = cv2.imread(os.path.join('processed/test/no', filename))
if img is None:
print('err - cant read img')
continue
rs_img = cv2.resize(img,(200,200), interpolation = cv2.INTER_AREA)
test_data.append(rs_img)
test_labels.append(0)
for filename in os.listdir('processed/test/yes'):
img = cv2.imread(os.path.join('processed/test/yes', filename))
if img is None:
print('err - cant read img')
continue
rs_img = cv2.resize(img,(200,200), interpolation = cv2.INTER_AREA)
test_data.append(rs_img)
test_labels.append(1)
# shuffle the data
train_data, train_labels = sklearn.utils.shuffle(train_data, train_labels)
print("---- Creating Callback Functions ----")
#create a logger for our epochs
csv_logger = CSVLogger("history_log.csv", append=False)
# Save the weights of the model if it is best
bestFilePath = 'best_weights'
checkpoint = tf.keras.callbacks.ModelCheckpoint(
filepath=bestFilePath,
monitor='loss',
verbose=1,
mode="auto",
save_best_only=True,
save_weights_only=True,
)
# stop the model early if the model is overfitting for 10 epochs.
#earlyStop = EarlyStopping(patience=10)
# reduce the learning rate when accuracy is not increasing.
learningRateReduction = ReduceLROnPlateau(
monitor='val_accuracy',
patience=2,
verbose=1,
factor=0.5,
min_lr=0.00001
)
callbacks = [csv_logger, checkpoint, learningRateReduction]
print("---- Building Model ----")
# build model
model = tf.keras.Sequential([ # sequence of layers of neurons
tf.keras.layers.Input(shape=(200, 200, 3)), # define the input shape
tf.keras.layers.experimental.preprocessing.Rescaling(1./255), # prescale all values to 0-1 instead of 0-255
tf.keras.layers.experimental.preprocessing.RandomRotation((-0.2, 0.3)), # Add a random ration to the image
tf.keras.layers.experimental.preprocessing.RandomFlip(), # Add a random flip to the image
tf.keras.layers.Conv2D(filters=16, kernel_size=3, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv2D(filters=64, kernel_size=3, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(1, activation='sigmoid')
])
# compile model
model.compile(
optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy']
)
history = None
num_epochs = 25
if 'new' in sys.argv:
print("---- Fitting Model ----")
history = model.fit(
x=np.array(train_data),
y=np.array(train_labels),
validation_split=0.25,
batch_size=8,
shuffle=True,
epochs=num_epochs,
callbacks=callbacks)
else:
model.load_weights(bestFilePath)
if 'display' in sys.argv:
if history:
plotAccuracyLoss(history)
img = cv2.imread("data/test/yes/image(4).jpg")
img = cv2.resize(img,(200,200), interpolation = cv2.INTER_AREA)
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img /= 255
displayActivations(model, img)
model.summary()
results = np.rint(model.predict(np.array(test_data)))
print("Final Accuracy:")
print(np.mean(results == test_labels))