-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_stacking.py
207 lines (188 loc) · 6.26 KB
/
train_stacking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
##########################################
### AUTHOR: ALEJANDRO VACA SERRANO #######
##########################################
from models import *
import pickle
from model_trainer_refactor import *
import argparse
from category_encoders.one_hot import OneHotEncoder
import json
from urllib.parse import unquote
from sklearn.metrics import confusion_matrix
import sys
import os
SAVE_DIR = "stacking_models"
if SAVE_DIR not in os.listdir():
os.mkdir(SAVE_DIR)
def save_obj(obj, name):
print(f"### SAVING {name} ###")
with open(f"./{SAVE_DIR}/{name}.pkl", "wb") as f:
pickle.dump(obj, f)
def load_obj(name):
print(f"### LOADING {name} ###")
with open(f"./{SAVE_DIR}/{name}.pkl", "rb") as f:
obj = pickle.load(f)
return obj
def transform_types_X(X):
cols_cat = ["ruido", "CODIGO_POSTAL", "ZONA_METROPOLITANA", "CALIDAD_AIRE"]
cols_float = [col for col in X.columns if col not in cols_cat]
X[cols_float] = X[cols_float].astype("float64")
return X
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--models",
dest="models",
required=False,
help="The models to use; see models.py for available models",
type=str,
)
parser.add_argument(
"--model",
dest="model",
required=True,
default=None,
help="when training a individual model, the name of the model",
type=str,
)
parser.add_argument(
"-n",
"--name",
dest="name",
required=True,
help="The name to put to the experiment",
type=str,
)
parser.add_argument(
"-fm",
"--final_model",
dest="final_model",
default="LogisticRegression",
required=False,
help="The final model to use in the stacking",
type=str,
)
parser.add_argument(
"-fmp",
"--final_model_parameters",
dest="final_model_parameters",
required=False,
help="The parameters for the final estimator",
)
parser.add_argument(
"-cv",
"--cv",
dest="cv",
required=False,
default=3,
help="the cross validation splits",
type=int,
)
parser.add_argument(
"-pt",
"--passthrough",
dest="passthrough",
default=False,
required=False,
help="whether or not to pass the X_train also to the final estimator",
type=bool,
)
parser.add_argument(
"-enc",
"--encoder",
dest="encoder",
default="CatBoost",
required=False,
type=str,
help="The category encoder to use",
)
parser.add_argument(
"-ut",
"--under_test",
help="Whether or not to undersample the test",
required=False,
default=True,
type=bool,
)
parser.add_argument(
"-pret", "--pretrained", required=False, default=True, type=bool,
)
print("parse args")
args = parser.parse_args()
mlflow.start_run(run_name=args.name)
if not args.pretrained:
print("to str")
jsonString = unquote(args.final_model_parameters)
print("getting dict of params")
params = dict(json.loads(jsonString))
print(params)
params.update(
{
"n_estimators": int(params["n_estimators"]),
"n_leaves": int(params["n_leaves"]),
"n_jobs": -1,
"reg_lambda": float(params["reg_lambda"]),
"colsample_bytree": float(params["colsample_bytree"]),
}
)
print(params)
args.models = args.models.split(",")
print(args)
stacking = build_stacking(
models=args.models,
base_model=args.final_model,
base_model_params=params,
cv=args.cv,
passthrough=args.passthrough,
)
print(stacking)
else:
stacking = FINAL_MODELS[args.model]["model"]
print("LOADING FILES AND TRANSFORMING TYPES")
X_train, X_test = load_obj("X_train"), load_obj("X_test")
if "Oeste" in X_train.columns:
X_train = X_train.drop("Oeste", axis=1)
X_test = X_test.drop("Oeste", axis=1)
X_train = transform_types_X(X_train)
X_test = transform_types_X(X_test)
y_train, y_test = load_obj("y_train"), load_obj("y_test")
encoder = load_obj("label_encoder")
print("CHANGING COLUMN NAMES")
X_train.columns = [
"".join(c if c.isalnum() else "_" for c in str(x)) for x in X_train.columns
]
X_test.columns = [
"".join(c if c.isalnum() else "_" for c in str(x)) for x in X_test.columns
]
if args.encoder == "CatBoost":
cat_encoder = CatBoostEncoder()
elif args.encoder == "OneHot":
cat_encoder = OneHotEncoder()
print("HACIENDO CATEGORICAL ENCODER")
X_train = cat_encoder.fit_transform(X_train, y_train)
X_test = cat_encoder.transform(X_test)
print("FITTING STACKING")
stacking.fit(X_train, y_train)
save_obj(stacking, f"{args.name}")
X_test, y_test = RandomUnderSampler(
sampling_strategy={5: int(0.11 * 13526)}
).fit_resample(X_test, y_test)
preds = stacking.predict(X_test)
save_obj(preds, f"{args.name}_preds")
print(
f"F1 SCORE {f1_score(y_test, preds , average='macro')}, F2 SCORE {fbeta_score(y_test, preds, average='macro', beta=2)},F05 SCORE {fbeta_score(y_test, preds, average='macro', beta=0.5)}, PRECISION IS {precision_score(y_test, preds, average='macro')},RECALL IS {recall_score(y_test, preds, average='macro')}, ACCURACY IS {accuracy_score(y_test, preds)}"
)
cm = confusion_matrix(y_test, preds, normalize="true")
fig = print_confusion_matrix(cm, class_names=encoder.classes_) # , figsize=(10, 8))
fig.savefig(f"./{SAVE_DIR}/{args.name}_CONFUSION_MATRIX.png")
mlflow.log_metrics(
metrics={
"f1": f1_score(y_test, preds, average="macro"),
"precision": precision_score(y_test, preds, average="macro"),
"recall": recall_score(y_test, preds, average="macro"),
"accuracy": accuracy_score(y_test, preds),
"f05": fbeta_score(y_test, preds, beta=0.5, average="macro"),
"f2": fbeta_score(y_test, preds, beta=2, average="macro"),
}
)