-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathseveral_experiments.py
210 lines (199 loc) · 5.99 KB
/
several_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
from argparse import ArgumentParser
import pandas as pd
import torch
from tqdm import tqdm
from data_utils import (_cut_special, create_stocks_df,
create_synthetic_future_df, cut_df, filter_assets,
get_total_df_from_candles, read_all_candles)
from deepdow.callbacks import EarlyStoppingCallback, MLFlowCallback
from opt_nets import (EconomistNet, MyNetwork, ResampleNetwork, SoftMaxNetwork,
build_external_dataloaders, get_dataloaders,
get_predictions, get_test_dataloader,
get_variables_for_training, get_weights_submission,
train_model)
from submission_utils import (_convert_daily_submission, _weights_to_dict,
general_weights_fixer, get_submission_markowitz,
test_submission)
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
def create_optimizer(network, opt_type, lr):
if opt_type == "adam":
return torch.optim.Adam(network.parameters(), lr)
else:
return None
params = {
"lookback": [24, 15, 30],
"horizon": [24, 15, 30],
"lr": [1e-4, 1e-3, 1e-2],
"epochs": [10, 20],
}
assets_0 = [
'YAX',
'OOS',
'USX',
'FSK',
'TMF',
'TDD',
'YEC',
'ZAB',
'MUF',
'PUL',
'LWE',
'REU',
'ACY',
'MMY',
'ZXW',
'WFJ',
'PEW',
'LWK',
'ULI',
'AUX',
'HCC',
'JNE',
'JTL',
'UEI',
'THA',
'TKT',
'SKN',
'YFC',
'GGR',
'NYP',
'MET',
'SYO',
'BZC',
'OXR',
'BSX',
'PME',
'FNM',
'EEY',
'WWT',
'TXR',
'RAT',
'RWJ'
]
assets_0_1 = [
'ZVQ',
'NCT',
'OOS',
'CSB',
'UYZ',
'TRO',
'ERO',
'AWW',
'ACY',
'MMY',
'LUG',
'LWK',
'ZCD',
'LHB',
'NYD',
'BFS',
'SKN',
'GGR',
'TER',
'NYP',
'EOP',
'PME',
'FNM',
'EEY',
'ERQ',
'AZG',
'OJG',
'WWT',
'BOT',
'TXR',
'DIG',
'PHI'
]
def save_network(experiment_name, run):
network = run.models["main"]
torch.save(network.state_dict(), f"models_2203/{experiment_name}.pt")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--lookback", type=int, required=False, default=24, help="Number of timesteps to look back")
parser.add_argument("--gap", default=1, type=int, required=False, help="Number of timesteps to leave before predicting")
parser.add_argument("--horizon", default=24, type=int, required=False, help="Number of timesteps to predict ahead.")
parser.add_argument("--optimizer", required=False, default="adam", type=str, help="Optimizer to use")
parser.add_argument("--lr", required=False, default=0.0001, type=float, help="Learning rate to use.")
parser.add_argument("--run_name", required=False, default="nconet", type=str, help="The number to put to the run.")
parser.add_argument("--epochs", required=False, default=10, type=int)
parser.add_argument("--save_name", default="submission_2103.csv", type=str, required=False, help="Name to put to submission")
args = parser.parse_args()
os.makedirs("mlflow_runs", exist_ok=True)
os.makedirs("models_2203", exist_ok=True)
candles = read_all_candles()
candles1 = {k: v for k, v in candles.items() if k not in assets_0_1}
candles2 = {k: v for k, v in candles.items() if k not in assets_0}
df = get_total_df_from_candles(candles1, add_random=False)
df2 = get_total_df_from_candles(candles2, add_random=False)
df2 = _cut_special(df2, first="2020-02-01")
n_timesteps, n_channels, n_assets, asset_names = get_variables_for_training(df2)
train_dataloader, val_dataloaders, dataset = get_dataloaders(df, args.lookback, args.gap, args.horizon)
train_dataloader2, val_dataloaders2, dataset2 = get_dataloaders(df2, args.lookback, args.gap, args.horizon)
experiments = [
# {
# "network": MyNetwork(
# n_assets,
# max_weight=0.2,
# force_symmetric=True,
# n_clusters=5,
# n_init=100,
# init="k-means++",
# random_state=None),
# "train_data": train_dataloader,
# "val_data": val_dataloaders,
# "name": "mynet_data1"
# },
{
"network": MyNetwork(
n_assets,
max_weight=0.2,
force_symmetric=True,
n_clusters=5,
n_init=100,
init="k-means++",
random_state=None),
"train_data": train_dataloader2,
"val_data": val_dataloaders2,
"name": "mynet_data2"
},
# {
# "network": SoftMaxNetwork(
# n_assets,
# max_weight=0.2,
# force_symmetric=True
# ),
# "train_data": train_dataloader,
# "val_data": val_dataloaders,
# "name": "softmaxnet1"
# },
# {
# "network": SoftMaxNetwork(
# n_assets,
# max_weight=0.2,
# force_symmetric=True
# ),
# "train_data": train_dataloader2,
# "val_data": val_dataloaders2,
# "name": "softmaxnet2"
# },
]
for experiment in tqdm(experiments, desc="performing experiments..."):
network = experiment["network"]
run = train_model(
network,
experiment["train_data"],
experiment["val_data"],
create_optimizer(network, args.optimizer, args.lr),
callbacks=[
MLFlowCallback(
args.run_name,
mlflow_path="./mlflow_runs",
experiment_name=experiment["name"],
log_benchmarks=True
),
EarlyStoppingCallback("val", "loss")
],
epochs=args.epochs
)
save_network(experiment["name"], run)