-
Notifications
You must be signed in to change notification settings - Fork 256
/
Copy pathhills.Rmd
152 lines (132 loc) · 4.57 KB
/
hills.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
title: "Regression and Other Stories: Elections Economy"
author: "Andrew Gelman, Jennifer Hill, Aki Vehtari"
date: "`r format(Sys.Date())`"
output:
html_document:
theme: readable
toc: true
toc_depth: 2
toc_float: true
code_download: true
---
Present uncertainty in parameter estimates. See Chapter 7 in
Regression and Other Stories.
-------------
```{r setup, include=FALSE}
knitr::opts_chunk$set(message=FALSE, error=FALSE, warning=FALSE, comment=NA)
# switch this to TRUE to save figures in separate files
savefigs <- FALSE
```
#### Load packages
```{r }
library("rprojroot")
root<-has_file(".ROS-Examples-root")$make_fix_file()
library("arm")
library("rstanarm")
```
#### Load data
```{r }
hibbs <- read.table(root("ElectionsEconomy/data","hibbs.dat"), header=TRUE)
head(hibbs)
```
## Likelihood for 2 parameters
```{r }
M1 <- lm(vote ~ growth, data = hibbs)
display(M1)
summ <- summary(M1)
```
#### Plot likelihood (a, b| y)
```{r eval=FALSE, include=FALSE}
if (savefigs) pdf(root("ElectionsEconomy/figs","hill_2a.pdf"), height=4, width=5)
```
```{r }
# Contour plots etc of simple likelihoods
trans3d <- function(x,y,z, pmat) {
tr <- cbind(x,y,z,1) %*% pmat
list(x = tr[,1]/tr[,4], y= tr[,2]/tr[,4])
}
dmvnorm <- function (y, mu, Sigma, log=FALSE){
# multivariate normal density
n <- nrow(Sigma)
logdens <- -(n/2)*log(2*pi*det(Sigma)) - t(y-mu)%*%solve(Sigma)%*%(y-mu)/2
return (logdens)
# return (ifelse (log, logdens, exp(logdens)))
}
#
rng.x <- summ$coef[1,1] + summ$coef[1,2]*c(-4,4)
rng.y <- summ$coef[2,1] + summ$coef[2,2]*c(-4,4)
x <- seq(rng.x[1], rng.x[2], length=30)
y <- seq(rng.y[1], rng.y[2], length=30)
z <- array(NA, c(length(x),length(y)))
for (i.x in 1:length(x))
for (i.y in 1:length(y))
z[i.x,i.y] <- dmvnorm(c(x[i.x],y[i.y]), summ$coef[,1], summ$cov.unscaled*summ$sigma^2, log=TRUE)
z <- exp(z-max(z))
par(mar=c(0, 0, 0, 0))
persp(x, y, z,
xlim=c(rng.x[1]-.15*(rng.x[2]-rng.x[1]), rng.x[2]), ylim=c(rng.y[1]-.15*(rng.y[2]-rng.y[1]), rng.y[2]),
xlab="a", ylab="b", zlab="likelihood", d=2, box=FALSE, axes=TRUE, expand=.6) -> res
text(trans3d(mean(rng.x), rng.y[1]-.12*(rng.y[2]-rng.y[1]), 0, pm = res), expression(beta[0]))
text(trans3d(rng.x[1]-.08*(rng.x[2]-rng.x[1]), mean(rng.y), 0, pm = res), expression(beta[1]))
mtext("likelihood, p(a, b |y)", side=3, line=-1.5)
```
```{r eval=FALSE, include=FALSE}
if (savefigs) dev.off()
```
#### Plot maximum likelihood estimate and std errs
```{r eval=FALSE, include=FALSE}
if (savefigs) pdf(root("ElectionsEconomy/figs","hill_2b.pdf"), height=5, width=5)
```
```{r }
par(mar=c(3, 3, 3, 1), mgp=c(1.7, .5, 0), tck=-.01)
plot(rng.x, rng.y, xlab="a", ylab="b", main=expression(paste("(", hat(a) %+-% 1, " std err, ", hat(b) %+-% 1, " std err)")), type="n")
lines(rep(summ$coef[1,1], 2), summ$coef[2,1] + c(-1,1)*summ$coef[2,2], col="gray20")
lines(summ$coef[1,1] + c(-1,1)*summ$coef[1,2], rep(summ$coef[2,1], 2), col="gray20")
points(summ$coef[1,1], summ$coef[2,1], pch=19)
```
```{r eval=FALSE, include=FALSE}
if (savefigs) dev.off()
```
#### Plot maximum likelihood estimate and covariance
```{r eval=FALSE, include=FALSE}
if (savefigs) pdf(root("ElectionsEconomy/figs","hill_2c.pdf"), height=5, width=5)
```
```{r }
par(mar=c(3, 3, 3, 1), mgp=c(1.7, .5, 0), tck=-.01)
plot(rng.x, rng.y, xlab="a", ylab="b", main=expression(paste("(", hat(a), ", ", hat(b), ") and covariance matrix")), type="n")
points(summ$coef[1,1], summ$coef[2,1], pch=19)
rho <- summ$cov.unscaled[1,2]/sqrt(summ$cov.unscaled[1,1]*summ$cov.unscaled[2,2])
aa <- seq(-1,1,length=500)
bb <- sqrt(1-aa^2)
xx <- summ$coef[1,1] + summ$coef[1,2]*(aa*sqrt(1+rho)-bb*sqrt(1-rho))
yy <- summ$coef[2,1] + summ$coef[2,2]*(aa*sqrt(1+rho)+bb*sqrt(1-rho))
lines (xx, yy)
xx <- summ$coef[1,1] + summ$coef[1,2]*(aa*sqrt(1+rho)+bb*sqrt(1-rho))
yy <- summ$coef[2,1] + summ$coef[2,2]*(aa*sqrt(1+rho)-bb*sqrt(1-rho))
lines (xx, yy)
```
```{r eval=FALSE, include=FALSE}
if (savefigs) dev.off()
```
## Bayesian model with flat prior
```{r }
M3 <- stan_glm(vote ~ growth, data = hibbs,
prior_intercept=NULL, prior=NULL, prior_aux=NULL,
refresh = 0)
sims <- as.data.frame(M3)
a <- sims[,1]
b <- sims[,2]
```
#### Plot posterior draws
```{r eval=FALSE, include=FALSE}
if (savefigs) pdf(root("ElectionsEconomy/figs","hill_3c.pdf"), height=5, width=5)
```
```{r }
par(mar=c(3, 3, 3, 1), mgp=c(1.7, .5, 0), tck=-.01)
plot(c(39.8, 52.5), c(.3, 5.8), xlab="a", ylab="b", main="4000 posterior draws of (a, b)", type="n", cex.main=1.5, cex.lab=1.5, cex.axis=1.5)
points(a, b, pch=20, cex=.2)
```
```{r eval=FALSE, include=FALSE}
if (savefigs) dev.off()
```