-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathborders_statistics5.R
165 lines (127 loc) · 6.08 KB
/
borders_statistics5.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# script to assign several feature to a set of borders based on DI analysis
# 5: october 2016 to integrate other GO groups
`%ni%` = Negate(`%in%`)
# input file for the borders:
borders=read.table("/run/media/axel/RSG3/ECOLI_PROJECT_IN_PROGRESS/enrichment_borders/bins_borders_files/borders_detected_WT_BC70_5kb.txt")
#borders=read.table("/home/axel/Bureau/enrichment_borders/bins_borders_files/borders_detected_WT_MM30C_5kb.txt");
#borders=read.table("/home/axel/Bureau/enrichment_borders/borders_files/borders_detected_WT_LB30C_5kb.txt");
#borders=read.table("/home/axel/Bureau/enrichment_borders/borders_files/borders_detected_WT_LB37C_5kb.txt");
#borders=read.table("/home/axel/Bureau/DI_all_banks_100kb/replicats_MM_30C/borders_detected_MM_30C_NextSeq_dec2014.txt");
#borders=read.table("/home/axel/Bureau/DI_phase_stat/borders_detected_GTCT_Coli_Phae_stat_rep1.txt");
#borders=read.table("/home/axel/Bureau/enrichment_borders/bins_borders_files/borders_bins5kb_DI100kb_Stationary.txt")
#FILE="test";
#FILE="MM_30C_NextSeq_dec2014";
#FILE="DI100kb_Stationary"
FILE="DI100kb_BC70_5kb"
nb_borders = dim(borders)[1]
borders=borders$V1
# Biological features:
gene=read.table("/home/axel/Bureau/bacteries_project/coli/genes_K12_UCSC.dat2")
gene_expr = read.table("/home/axel/Bureau/bacteries_project/coli/genes_expression_MM.txt2")
#gene_expr = read.table("/home/axel/Bureau/bacteries_project/coli/genes_expression_LB.txt2")
on_genes=subset(gene_expr,gene_expr$V2 >250);
gene_sorted = gene_expr[with(gene_expr, order(-gene_expr$V2) ), ]
pc=10./100;
higly_genes = gene_sorted[ 1:floor(dim(gene_sorted)[1] * pc),]; # we take the 10% most expressed genes from Oliver data
rna_genes= read.table("/home/axel/Bureau/bacteries_project/coli/rrna.txt2");
higly_genes=rbind(higly_genes,rna_genes);
gene_sorted = gene_expr[with(gene_expr, order(gene_expr$V2) ), ];
pc=10./100;
poorly_genes = gene_sorted[ 1:floor(dim(gene_sorted)[1] * pc),];
# to remove rrna genes that can be in poorly expressed:
poorly_genes = subset(poorly_genes, poorly_genes$V1 %ni% higly_genes$V1)
is = read.table("/home/axel/Bureau/bacteries_project/coli/me/IS_ALL.txt")
heEPOD=read.table("/run/media/axel/RSG3/ECOLI_PROJECT_IN_PROGRESS/Protein-occupancy/EPOD_enrichment/EPOD-technique/heEPOD.txt")
tsEPOD=read.table("/run/media/axel/RSG3/ECOLI_PROJECT_IN_PROGRESS/Protein-occupancy/EPOD_enrichment/EPOD-technique/tsEPOD.txt")
is = tsEPOD
SRP = read.table("/home/axel/Bureau/bacteries_project/coli/genes_SRP.txt");
SRP_on = subset(SRP, SRP$V1 %in% on_genes$V1);
#SRP_on = subset(SRP, SRP$V1 %in% on_genes$V1 & SRP$V1 %ni% higly_genes$V1);
SECB=read.table("/home/axel/Bureau/bacteries_project/coli/genes_secB.txt");
SECB_on = subset(SECB, SECB$V1 %in% on_genes$V1);
HTG=read.table("/home/axel/Bureau/bacteries_project/coli/me/ecoli.HGT.txt3");
HTG_on = subset(HTG, HTG$V1 %in% on_genes$V1);
#SECB_on = HTG
# Computation:
computation(borders)
# # random realisations:
# max=0;
# vect1=vector();vect2=vector();vect3=vector();
# for(r in 0:100)
# {
# object =computation(floor(runif(nb_borders, 0, 928) ) )
# vect1 = c(vect1,object[2]); vect2 = c(vect2,object[3]); vect3 = c(vect3,object[4]);
# }
# function to compute and write into file:
computation <- function(pos) # take a vector of positions to compute different number of highly, IS, SRP
{
nb_pos=length(pos)
BIN = 5000;
nb_high=0;
nb_is=0;
nb_srp=0;
nb_poor=0;
nb_secb=0;
df = data.frame("Bin",";","Pos1",";","Pos2",";","genes",";","10% highly expr.",";","IS",";","SRP",";","10 poorly expr.",";","SecB");
write.table(df, file = FILE, append = TRUE,quote = F,row.names = F,col.names = F);
for(i in 1:nb_pos )
{
p1=(pos[i]-1)*BIN
p2=(pos[i]+2)*BIN
g = subset(gene$V1,gene$V2> p1 & gene$V3 < p2);
g2="";
for(j in g) {g2=paste(g2,j,sep = " ") }
hg = subset(g,g %in% higly_genes$V1);
hg2=" ";
for(j in hg) {hg2=paste(hg2,j,sep = " ") }
if( length(hg) > 0) {nb_high= nb_high+1};
pg = subset(g,g %in% poorly_genes$V1);
pg2=" ";
for(j in pg) {pg2=paste(pg2,j,sep = " ") }
if( length(pg) > 0) {nb_poor= nb_poor+1};
i1 = subset(is$V1, is$V1 > p1 & is$V1 < p2);
if( length(i1) > 0) {i2="yes";nb_is=nb_is+1;} else {i2="no";}
sg = subset(g,g %in% SRP_on$V1);
sg2=" ";
for(j in sg) {sg2=paste(sg2,j,sep = " ") }
if( length(sg) > 0) {nb_srp=nb_srp+1};
sec_g = subset(g,g %in% SECB_on$V1);
sec_g2=" ";
for(j in sec_g) {sec_g2=paste(sec_g2,j,sep = " ") }
if( length(sec_g) > 0) {nb_secb=nb_secb+1};
df <- data.frame( borders[i],";", p1,";", p2,";", g2,";",hg2,";",i2,";",sg2,";",pg2 ,";",sec_g2);
write.table(df, file = FILE, append = TRUE,quote = F,row.names = F,col.names = F);
}
object= c(nb_pos, nb_high, nb_is, nb_srp, nb_poor,nb_secb) ;
return(object)
}
# Counting the number of occurences for biological features:
ob=computation(borders) # to have the number of occurences for the determined borders
oe=computation(1:928) # to have expectations.
# Fisher tests:
mat <- matrix( c(ob[2], nb_borders-ob[2], oe[2] ,928-oe[2]), nrow = 2); tes <- fisher.test(mat);tes;p1=tes$p.value;
mat <- matrix( c(ob[3], nb_borders-ob[3], oe[3] ,928-oe[3]), nrow = 2); tes <- fisher.test(mat);tes;p2=tes$p.value;
mat <- matrix( c(ob[4], nb_borders-ob[4], oe[4] ,928-oe[4]), nrow = 2); tes <- fisher.test(mat);tes;p3=tes$p.value;
mat <- matrix( c(ob[5], nb_borders-ob[5], oe[5] ,928-oe[5]), nrow = 2); tes <- fisher.test(mat);tes;p4=tes$p.value;
mat <- matrix( c(ob[6], nb_borders-ob[6], oe[6] ,928-oe[6]), nrow = 2); tes <- fisher.test(mat);tes;p5=tes$p.value;
#
# Computation around the borders:
v1=vector();v2=vector();v3=vector();v4=vector();v5=vector();
for(b in -20:20)
{
print(b);
object = computation(borders+b);
v1 = c(v1,object[2]); v2 = c(v2,object[3]); v3 = c(v3,object[4]);v4 = c(v4,object[5]); v5 = c(v5,object[6]);
}
# Computation around the borders:
v1=vector()
v2=vector()
v3=vector()
v4=vector()
v5=vector();
for(b in -20:20)
{
print(b);
object = computation_GO(borders+b);
v1 = c(v1,object[2]); v2 = c(v2,object[3]); v3 = c(v3,object[4]);v4 = c(v4,object[5]); v5 = c(v5,object[6])
}