-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathconfig.py
68 lines (64 loc) · 2.75 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class EmptyClass(PretrainedConfig):
def __init__(self):
pass
class SDConfig(PretrainedConfig):
def __init__(self,
sd_version = '2-1',
override_total_steps = -1,
freeze_class_embeds = True,
freeze_vae = False,
use_flash = False,
adapt_only_classifier = True,
adapt_topk = -1,
loss = 'mse',
actual_bs = 16,
mean = [0.485, 0.456, 0.406],
std = [0.229, 0.224, 0.225],
use_same_noise_among_timesteps = False,
random_timestep_per_iteration = True,
rand_timestep_equal_int = False,
weight_decay = 0,
train_steps = 1,
accum_iter = 1,
optimizer = 'sgd',
optimizer_momentum = 0.9,
pred_noise_batch_size = 1,
output_dir = './outputs/First_Start',
visual_pattern = None,
clip_image_size = 224,
metaclip_version = 1
):
super().__init__()
self.model = EmptyClass()
self.model.sd_version = sd_version
self.model.override_total_steps = override_total_steps
self.model.freeze_class_embeds = freeze_class_embeds
self.model.freeze_vae = freeze_vae
self.model.use_flash = use_flash
self.model.adapt_only_classifier = adapt_only_classifier
self.tta = EmptyClass()
self.tta.gradient_descent = EmptyClass()
self.tta.adapt_topk = adapt_topk
self.tta.loss = loss
self.tta.use_same_noise_among_timesteps = use_same_noise_among_timesteps
self.tta.random_timestep_per_iteration = random_timestep_per_iteration
self.tta.rand_timestep_equal_int = rand_timestep_equal_int
self.tta.gradient_descent.weight_decay = weight_decay
self.tta.gradient_descent.train_steps = train_steps
self.tta.gradient_descent.accum_iter = accum_iter
self.tta.gradient_descent.optimizer = optimizer
self.tta.gradient_descent.optimizer_momentum = optimizer_momentum
self.input = EmptyClass()
self.input.batch_size = pred_noise_batch_size
self.input.mean = mean
self.input.std = std
self.output_dir = output_dir
self.actual_bs = actual_bs
self.visual_pattern = visual_pattern
self.clip_image_size = clip_image_size
self.metaclip_version = metaclip_version
if __name__ =='__main__':
SDConfig()