forked from microsoft/ML-For-Beginners
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrlboard.py
195 lines (175 loc) · 7.06 KB
/
rlboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Maze simulation environment for Reinforcement Learning tutorial
# by Dmitry Soshnikov
# http://soshnikov.com
import matplotlib.pyplot as plt
import numpy as np
import cv2
import random
import math
def clip(min,max,x):
if x<min:
return min
if x>max:
return max
return x
def imload(fname,size):
img = cv2.imread(fname)
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
img = cv2.resize(img,(size,size),interpolation=cv2.INTER_LANCZOS4)
img = img / np.max(img)
return img
def draw_line(dx,dy,size=50):
p=np.ones((size-2,size-2,3))
if dx==0:
dx=0.001
m = (size-2)//2
l = math.sqrt(dx*dx+dy*dy)*(size-4)/2
a = math.atan(dy/dx)
cv2.line(p,(int(m-l*math.cos(a)),int(m-l*math.sin(a))),(int(m+l*math.cos(a)),int(m+l*math.sin(a))),(0,0,0),1)
s = -1 if dx<0 else 1
cv2.circle(p,(int(m+s*l*math.cos(a)),int(m+s*l*math.sin(a))),3,0)
return p
def probs(v):
v = v-v.min()
if (v.sum()>0):
v = v/v.sum()
return v
class Board:
class Cell:
empty = 0
water = 1
wolf = 2
tree = 3
apple = 4
def __init__(self,width,height,size=50):
self.width = width
self.height = height
self.size = size+2
self.matrix = np.zeros((width,height))
self.grid_color = (0.6,0.6,0.6)
self.background_color = (1.0,1.0,1.0)
self.grid_thickness = 1
self.grid_line_type = cv2.LINE_AA
self.pics = {
"wolf" : imload('images/wolf.png',size-4),
"apple" : imload('images/apple.png',size-4),
"human" : imload('images/human.png',size-4)
}
self.human = (0,0)
self.frame_no = 0
def randomize(self,water_size=5, num_water=3, num_wolves=1, num_trees=5, num_apples=3,seed=None):
if seed:
random.seed(seed)
for _ in range(num_water):
x = random.randint(0,self.width-1)
y = random.randint(0,self.height-1)
for _ in range(water_size):
self.matrix[x,y] = Board.Cell.water
x = clip(0,self.width-1,x+random.randint(-1,1))
y = clip(0,self.height-1,y+random.randint(-1,1))
for _ in range(num_trees):
while True:
x = random.randint(0,self.width-1)
y = random.randint(0,self.height-1)
if self.matrix[x,y]==Board.Cell.empty:
self.matrix[x,y] = Board.Cell.tree # tree
break
for _ in range(num_wolves):
while True:
x = random.randint(0,self.width-1)
y = random.randint(0,self.height-1)
if self.matrix[x,y]==Board.Cell.empty:
self.matrix[x,y] = Board.Cell.wolf # wolf
break
for _ in range(num_apples):
while True:
x = random.randint(0,self.width-1)
y = random.randint(0,self.height-1)
if self.matrix[x,y]==Board.Cell.empty:
self.matrix[x,y] = Board.Cell.apple
break
def at(self,pos=None):
if pos:
return self.matrix[pos[0],pos[1]]
else:
return self.matrix[self.human[0],self.human[1]]
def is_valid(self,pos):
return pos[0]>=0 and pos[0]<self.width and pos[1]>=0 and pos[1] < self.height
def move_pos(self, pos, dpos):
return (pos[0] + dpos[0], pos[1] + dpos[1])
def move(self,dpos,check_correctness=True):
new_pos = self.move_pos(self.human,dpos)
if self.is_valid(new_pos) or not check_correctness:
self.human = new_pos
def random_pos(self):
x = random.randint(0,self.width-1)
y = random.randint(0,self.height-1)
return (x,y)
def random_start(self):
while True:
pos = self.random_pos()
if self.at(pos) == Board.Cell.empty:
self.human = pos
break
def image(self,Q=None):
img = np.zeros((self.height*self.size+1,self.width*self.size+1,3))
img[:,:,:] = self.background_color
# Draw water
for x in range(self.width):
for y in range(self.height):
if (x,y) == self.human:
ov = self.pics['human']
img[self.size*y+2:self.size*y+ov.shape[0]+2,self.size*x+2:self.size*x+2+ov.shape[1],:] = np.minimum(ov,1.0)
continue
if self.matrix[x,y] == Board.Cell.water:
img[self.size*y:self.size*(y+1),self.size*x:self.size*(x+1),:] = (0,0,1.0)
if self.matrix[x,y] == Board.Cell.wolf:
ov = self.pics['wolf']
img[self.size*y+2:self.size*y+ov.shape[0]+2,self.size*x+2:self.size*x+2+ov.shape[1],:] = np.minimum(ov,1.0)
if self.matrix[x,y] == Board.Cell.apple: # apple
ov = self.pics['apple']
img[self.size*y+2:self.size*y+ov.shape[0]+2,self.size*x+2:self.size*x+2+ov.shape[1],:] = np.minimum(ov,1.0)
if self.matrix[x,y] == Board.Cell.tree: # tree
img[self.size*y:self.size*(y+1),self.size*x:self.size*(x+1),:] = (0,1.0,0)
if self.matrix[x,y] == Board.Cell.empty and Q is not None:
p = probs(Q[x,y])
dx,dy = 0,0
for i,(ddx,ddy) in enumerate([(-1,0),(1,0),(0,-1),(0,1)]):
dx += ddx*p[i]
dy += ddy*p[i]
l = draw_line(dx,dy,self.size)
img[self.size*y+2:self.size*y+l.shape[0]+2,self.size*x+2:self.size*x+2+l.shape[1],:] = l
# Draw grid
for i in range(self.height+1):
img[:,i*self.size] = 0.3
#cv2.line(img,(0,i*self.size),(self.width*self.size,i*self.size), self.grid_color, self.grid_thickness,lineType=self.grid_line_type)
for j in range(self.width+1):
img[j*self.size,:] = 0.3
#cv2.line(img,(j*self.size,0),(j*self.size,self.height*self.size), self.grid_color, self.grid_thickness,lineType=self.grid_line_type)
return img
def plot(self,Q=None):
plt.figure(figsize=(11,6))
plt.imshow(self.image(Q),interpolation='hanning')
def saveimage(self,filename,Q=None):
cv2.imwrite(filename,255*self.image(Q)[...,::-1])
def walk(self,policy,save_to=None,start=None):
n = 0
if start:
self.human = start
else:
self.random_start()
while True:
if save_to:
self.saveimage(save_to.format(self.frame_no))
self.frame_no+=1
if self.at() == Board.Cell.apple:
return n # success!
if self.at() in [Board.Cell.wolf, Board.Cell.water]:
return -1 # eaten by wolf or drowned
while True:
a = policy(self)
new_pos = self.move_pos(self.human,a)
if self.is_valid(new_pos) and self.at(new_pos)!=Board.Cell.water:
self.move(a) # do the actual move
break
n+=1