-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
executable file
·99 lines (84 loc) · 2.84 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import numpy as np
import math
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
from torch.nn import functional as F
class GCN(Module):
"""
Graph Convolutional Network
"""
def __init__(self, in_features, out_features, bias=True):
super(GCN, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
return output
class GCNencoder(nn.Module):
"""
Encoder network.
"""
def __init__(self, nfeat, nhid, nout, dropout):
super(GCNencoder, self).__init__()
self.gc1 = GCN(nfeat, nhid)
self.gc2 = GCN(nhid, nout)
self.dropout = dropout
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.gc2(x, adj))
return x
class GCNdecoder(nn.Module):
"""
Decoder network.
"""
def __init__(self, nfeat, nhid, nout, dropout):
super(GCNdecoder, self).__init__()
self.gc1 = GCN(nfeat, nhid)
self.gc2 = GCN(nhid, nout)
self.dropout = dropout
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.gc2(x, adj))
return x
class Discriminator(nn.Module):
"""
Discriminator network with GCN.
"""
def __init__(self, input_size, output_size, dropout):
super(Discriminator, self).__init__()
self.gc1 = GCN(input_size, 32)
self.gc2 = GCN(32, 16)
self.gc3 = GCN(16, 1)
self.dropout = dropout
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.gc2(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
a = self.gc3(x, adj)
x = a.view(a.shape[0])
return F.sigmoid(x), F.softmax(x, dim=0)