-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
160 lines (127 loc) · 6.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import os
import socket
import gym
import numpy as np
import torch
import TD3
import SWTD3
import utils
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def evaluate_policy(agent, env_name, seed, eval_episodes=10):
eval_env = gym.make(env_name)
eval_env.seed(seed + 100)
avg_reward = 0.
for _ in range(eval_episodes):
state, done = eval_env.reset(), False
while not done:
action = agent.select_action(np.array(state))
state, reward, done, _ = eval_env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
print("---------------------------------------")
print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}")
print("---------------------------------------")
return avg_reward
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--policy", default="SWTD3", help='Algorithm (default: SWTD3)')
parser.add_argument("--env", default="Hopper-v2", help='OpenAI Gym environment name')
parser.add_argument("--seed", default=0, type=int,
help='Seed number for PyTorch, NumPy and OpenAI Gym (default: 0)')
parser.add_argument("--gpu", default="0", type=int, help='GPU ordinal for multi-GPU computers (default: 0)')
parser.add_argument("--start_time_steps", default=25000, type=int, metavar='N',
help='Number of exploration time steps sampling random actions (default: 1000)')
parser.add_argument("--buffer_size", default=1000000, type=int,
help='Size of the experience replay buffer (default: '
'1000000)')
parser.add_argument("--eval_freq", default=1e3, metavar='N', help='Evaluation period in number of time '
'steps (default: 1000)')
parser.add_argument("--max_time_steps", default=1000000, type=int, metavar='N',
help='Maximum number of steps (default: 1000000)')
parser.add_argument("--exploration_noise", default=0.1, metavar='G', help='Std of Gaussian exploration noise')
parser.add_argument("--batch_size", default=256, metavar='N',
help='Batch size (default: 256)')
parser.add_argument("--discount", default=0.99, metavar='G',
help='Discount factor for reward (default: 0.99)')
parser.add_argument("--tau", default=0.005, type=float, metavar='G',
help='Learning rate in soft/hard updates of the target networks (default: 0.005)')
parser.add_argument("--policy_noise", default=0.2, metavar='G', help='Noise added to target policy during critic '
'update')
parser.add_argument("--noise_clip", default=0.5, metavar='G', help='Range to clip target policy noise')
parser.add_argument("--policy_freq", default=2, type=int, metavar='N', help='Frequency of delayed policy updates')
parser.add_argument("--save_model", action="store_true", help='Save model and optimizer parameters')
parser.add_argument("--load_model", default="", help='Model load file name; if empty, does not load')
args = parser.parse_args()
file_name = f"{args.policy}_{args.env}_{args.seed}"
print("---------------------------------------")
print(f"Policy: {args.policy}, Env: {args.env}, Seed: {args.seed}")
print("---------------------------------------")
if not os.path.exists("./results"):
os.makedirs("./results")
if args.save_model and not os.path.exists("./models"):
os.makedirs("./models")
env = gym.make(args.env)
# Set seeds
env.seed(args.seed)
env.action_space.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
kwargs = {"state_dim": state_dim, "action_dim": action_dim, "max_action": max_action, "discount": args.discount,
"tau": args.tau, "policy_noise": args.policy_noise * max_action,
"noise_clip": args.noise_clip * max_action, "policy_freq": args.policy_freq}
# Target policy smoothing is scaled wrt the action scale
# Initialize the algorithm
if args.policy == "TD3":
agent = TD3.TD3(**kwargs)
elif args.policy == "SWTD3":
agent = SWTD3.SWTD3(**kwargs, max_iterations=args.max_time_steps)
if args.load_model != "":
policy_file = file_name if args.load_model == "default" else args.load_model
agent.load(f"./models/{policy_file}")
replay_buffer = utils.ExperienceReplayBuffer(state_dim, action_dim, max_size=args.buffer_size)
# Evaluate the untrained policy
evaluations = [f"HOST: {socket.gethostname()}", f"GPU: {torch.cuda.get_device_name(args.gpu)}",
evaluate_policy(agent, args.env, args.seed)]
state, done = env.reset(), False
episode_reward = 0
episode_time_steps = 0
episode_num = 0
for t in range(int(args.max_time_steps)):
print(agent.beta_lower)
episode_time_steps += 1
# Sample action from the action space or policy
if t < args.start_time_steps:
action = env.action_space.sample()
else:
action = (agent.select_action(np.array(state)) +
np.random.normal(0, max_action * args.exploration_noise, size=action_dim)) \
.clip(-max_action, max_action)
# Take the selected action
next_state, reward, done, _ = env.step(action)
done_bool = float(done) if episode_time_steps < env._max_episode_steps else 0
# Store data in the experience replay buffer
replay_buffer.add(state, action, next_state, reward, done_bool)
state = next_state
episode_reward += reward
# Train the agent after collecting sufficient samples
if t >= args.start_time_steps:
agent.update_parameters(replay_buffer, args.batch_size)
if done:
print(f"Total T: {t + 1} Episode Num: {episode_num + 1} Episode T: {episode_time_steps} Reward: "
f"{episode_reward:.3f}")
# Reset the environment
state, done = env.reset(), False
episode_reward = 0
episode_time_steps = 0
episode_num += 1
# Evaluate the agent over a number of episodes
if (t + 1) % args.eval_freq == 0:
evaluations.append(evaluate_policy(agent, args.env, args.seed))
np.save(f"./results/{file_name}", evaluations)
if args.save_model:
agent.save(f"./models/{file_name}")