-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinference.py
187 lines (159 loc) · 6.44 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import os
import json
import torch
from tqdm import tqdm
from transformers import BertTokenizer
from data_utils import WOSDataset, get_examples_from_dialogues, convert_state_dict
from model.somdst import SOMDST
from preprocessor import SOMDSTPreprocessor
import glob
from pathlib import Path
import re
from torch.cuda.amp import autocast
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def increment_path(path, exist_ok=False):
"""Automatically increment path, i.e. runs/exp --> runs/exp0, runs/exp1 etc.
Args:
path (str or pathlib.Path): f"{model_dir}/{args.name}".
exist_ok (bool): whether increment path (increment if False).
"""
path = Path(path)
if (path.exists() and exist_ok) or (not path.exists()):
return str(path)
else:
dirs = glob.glob(f"{path}*")
matches = [re.search(rf"%s(\d+)" % path.stem, d) for d in dirs]
i = [int(m.groups()[0]) for m in matches if m]
n = max(i) + 1 if i else 2
return f"{path}{n}"
def postprocess_state(state):
for i, s in enumerate(state):
s = s.replace(" : ", ":")
state[i] = s.replace(" , ", ", ")
return state
def somdst_inference(model, eval_examples, processor, device):
processor.reset_state()
model.eval()
predictions = {}
last_states = {}
for example in tqdm(eval_examples):
if not example.context_turns:
last_states = {}
# example.prev_state = last_states
features = processor._convert_example_to_feature(example)
features = processor.collate_fn([features])
batch = [
b.to(device) if not isinstance(b, int) and not isinstance(b, list) else b
for b in features
]
(
input_ids,
input_masks,
segment_ids,
slot_position_ids,
gating_ids,
domain_ids,
target_ids,
max_update,
max_value,
guids,
) = batch
domain_scores, state_scores, gen_scores = model(
input_ids=input_ids,
token_type_ids=segment_ids,
slot_positions=slot_position_ids,
attention_mask=input_masks,
max_value=9,
op_ids=None,
)
_, op_ids = state_scores.view(-1, 4).max(-1)
if gen_scores.size(1) > 0:
generated = gen_scores.squeeze(0).max(-1)[1].tolist()
else:
generated = []
pred_ops = [processor.id2op[op] for op in op_ids.tolist()]
processor.prev_state = last_states
prediction = processor.recover_state(pred_ops, generated)
prediction = postprocess_state(prediction)
last_states = convert_state_dict(prediction)
predictions[guids[0]] = prediction
return predictions
def sumbt_inference(model, eval_loader, processor, device):
model.eval()
predictions = {}
for batch in tqdm(eval_loader):
input_ids, segment_ids, input_masks, target_ids, num_turns, guids = [
b.to(device) if not isinstance(b, list) else b for b in batch
]
with torch.no_grad():
output, pred_slot = model(input_ids, segment_ids, input_masks, labels=None, n_gpu=1)
batch_size = input_ids.size(0)
for i in range(batch_size):
guid = guids[i]
states = processor.recover_state(pred_slot.tolist()[i], num_turns[i])
for tid, state in enumerate(states):
predictions[f"{guid}-{tid}"] = state
return predictions
def trade_inference(model, eval_loader, processor, device):
model.eval()
predictions = {}
for batch in tqdm(eval_loader):
input_ids, segment_ids, input_masks, gating_ids, target_ids, guids = [
b.to(device) if not isinstance(b, list) else b for b in batch
]
with torch.no_grad():
point_outputs, gate_outputs = model(input_ids, segment_ids, input_masks, 9)
_, generated_ids = point_outputs.max(-1)
_, gated_ids = gate_outputs.max(-1)
for guid, gate, gen in zip(guids, gated_ids.tolist(), generated_ids.tolist()):
prediction = processor.recover_state(gate, gen)
prediction = postprocess_state(prediction)
predictions[guid] = prediction
return predictions
def direct_output(model_path=None, model=None, processor=None):
"""
model,processor 혹은 model_path 둘중 하나는 정확히 넣어주어야 실행됩니다.
모델과 processor를 제대로 맞추지 않으면 오류가 납니다.
실행 방법 두가지
1. 저장된 모델 inference -> model_path 넣어주기 (확장자 제외, bin으로 통일)
2. 학습중에 바로 inference -> model과 processor 넣어주기
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data_path = "/opt/ml/input/DST_data/eval_dataset"
eval_data = json.load(open(f"{data_path}/eval_dials.json", "r"))
eval_examples = get_examples_from_dialogues(
eval_data, user_first=False, dialogue_level=False
)
if not processor:
model_dir_path = os.path.dirname(model_path)
model_name = model_path.split('/')[-1]
config = json.load(open(f"{model_dir_path}/exp_config.json", "r"))
config = argparse.Namespace(**config)
slot_meta = json.load(open(f"{model_dir_path}/slot_meta.json", "r"))
tokenizer = BertTokenizer.from_pretrained(config.model_name_or_path)
added_token_num = tokenizer.add_special_tokens( # config 파일에 이미 vocab size가 변경되어 있음
{"additional_special_tokens": ["[SLOT]", "[NULL]", "[EOS]"]}
)
# Define Preprocessor
processor = SOMDSTPreprocessor(slot_meta, tokenizer, max_seq_length=512)
tokenized_slot_meta = []
for slot in slot_meta:
tokenized_slot_meta.append(
tokenizer.encode(slot.replace("-", " "), add_special_tokens=False)
)
model = SOMDST(config, 5, 4, processor.op2id["update"])
ckpt = torch.load(f"{model_path}.bin", map_location="cpu")
model.load_state_dict(ckpt)
model.to(device)
print("Model is loaded")
else:
model_dir_path = model_path
model_name = "output"
predictions = somdst_inference(model, eval_examples, processor, device)
json.dump(
predictions,
open(f"{model_dir_path}/{model_name}.csv", "w"),
indent=2,
ensure_ascii=False,
)