-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsumbt_train.py
227 lines (194 loc) · 7.68 KB
/
sumbt_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse
import json
import os
import time
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from transformers import AdamW, BertTokenizer, get_linear_schedule_with_warmup
from data_utils import (WOSDataset, get_examples_from_dialogues, load_dataset,
set_seed, tokenize_ontology)
from eval_utils import DSTEvaluator
from evaluation import _evaluation
from inference import sumbt_inference, increment_path
from model.sumbt import SUMBT
from preprocessor import SUMBTPreprocessor
from torch.cuda.amp import autocast, GradScaler
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data")
parser.add_argument("--save_dir", type=str, default=None)
parser.add_argument("--train_batch_size", type=int, default=8)
parser.add_argument("--eval_batch_size", type=int, default=8)
parser.add_argument("--learning_rate", type=float, default=5e-5)
parser.add_argument("--adam_epsilon", type=float, default=1e-8)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
parser.add_argument("--epochs", type=int, default=1)
parser.add_argument("--warmup_ratio", type=int, default=0.1)
parser.add_argument("--random_seed", type=int, default=42)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--distance_metric", type=str, default="euclidean")
parser.add_argument("--model_name_or_path", type=str, default="dsksd/bert-ko-small-minimal")
# Model Specific Argument
parser.add_argument("--hidden_dim", type=int, help="GRU의 hidden size", default=300)
parser.add_argument("--vocab_size", type=int, default=None)
parser.add_argument("--hidden_dropout_prob", type=float, default=0.1)
parser.add_argument("--proj_dim", type=int, default=None)
parser.add_argument("--teacher_forcing_ratio", type=float, default=0.5)
parser.add_argument("--fix_utterance_encoder", type=bool, default=False)
parser.add_argument("--attn_head", type=int, default=4)
parser.add_argument("--max_label_length", type=int, default=12)
parser.add_argument("--max_seq_length", type=int, default=64)
parser.add_argument("--zero_init_rnn", type=bool, default=False)
parser.add_argument("--num_rnn_layers", type=int, default=1)
parser.add_argument("--use_amp", type=bool, default=True)
args = parser.parse_args()
print(args)
save = False
if args.save_dir:
save = True
save_dir = increment_path(args.save_dir)
set_seed(args.random_seed)
# Data Loading & processor
slot_meta = json.load(open(f"{args.data_dir}/slot_meta.json")) # 45개의 slot
ontology = json.load(open(f"{args.data_dir}/ontology.json"))
train_data_file = f"{args.data_dir}/wos-v1_train.json"
train_data, dev_data, dev_labels = load_dataset(train_data_file) # item별로 분류 6301개 , 699개
train_examples = get_examples_from_dialogues(
train_data, user_first=True, dialogue_level=True
)
dev_examples = get_examples_from_dialogues(
dev_data, user_first=True, dialogue_level=True
)
# Define Preprocessor
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
max_turn = max([len(e['dialogue']) for e in train_data])
processor = SUMBTPreprocessor(
slot_meta,
tokenizer,
ontology=ontology,
max_seq_length=64,
max_turn_length=max_turn,
)
# Extracting Featrues
train_features = processor.convert_examples_to_features(train_examples)
dev_features = processor.convert_examples_to_features(dev_examples)
# Ontology pre encoding
slot_type_ids, slot_values_ids = tokenize_ontology(ontology, tokenizer, 12)
num_labels = [len(s) for s in slot_values_ids] # 각 Slot 별 후보 Values의 갯수
# Model 선언
n_gpu = 1 if torch.cuda.device_count() < 2 else torch.cuda.device_count()
print(n_gpu)
model = SUMBT(args, num_labels, device)
model.initialize_slot_value_lookup(slot_values_ids, slot_type_ids)
model.to(device)
print("Model is initialized")
train_data = WOSDataset(train_features)
train_sampler = RandomSampler(train_data)
train_loader = DataLoader(
train_data,
batch_size=args.train_batch_size,
sampler=train_sampler,
collate_fn=processor.collate_fn, # feature를 tensor로 변경
)
print("# train:", len(train_data))
dev_data = WOSDataset(dev_features)
dev_sampler = SequentialSampler(dev_data)
dev_loader = DataLoader(
dev_data,
batch_size=args.eval_batch_size,
sampler=dev_sampler,
collate_fn=processor.collate_fn,
)
print("# dev:", len(dev_data))
# Optimizer 및 Scheduler 선언
n_epochs = args.epochs
t_total = len(train_loader) * n_epochs
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=1e-8)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=int(t_total * args.warmup_ratio), num_training_steps=t_total
)
if save:
if not os.path.exists(save_dir):
os.mkdir(save_dir)
json.dump(
vars(args),
open(f"{save_dir}/exp_config.json", "w"),
indent=2,
ensure_ascii=False,
)
scaler = GradScaler(enabled=args.use_amp)
idx = 0
best_score, best_checkpoint = 0, 0
for epoch in range(n_epochs):
start = time.time()
batch_loss = []
model.train()
for step, batch in enumerate(train_loader):
input_ids, segment_ids, input_masks, target_ids, num_turns, guids = [
b.to(device) if not isinstance(b, list) else b for b in batch
]
# Forward
if args.use_amp:
with autocast(enabled=args.use_amp):
if n_gpu == 1:
loss, loss_slot, acc, acc_slot, _ = model(input_ids, segment_ids, input_masks, target_ids,
n_gpu)
else:
loss, _, acc, acc_slot, _ = model(input_ids, segment_ids, input_masks, target_ids, n_gpu)
else:
if n_gpu == 1:
loss, loss_slot, acc, acc_slot, _ = model(input_ids, segment_ids, input_masks, target_ids, n_gpu)
else:
loss, _, acc, acc_slot, _ = model(input_ids, segment_ids, input_masks, target_ids, n_gpu)
batch_loss.append(loss.item())
# Backward
if not args.use_amp:
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
else:
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scale = scaler.get_scale()
scaler.update()
step_scheduler = scaler.get_scale() == scale
if step_scheduler:
scheduler.step()
if step % 100 == 0:
print(
f"[{epoch}/{n_epochs}] [{step}/{len(train_loader)}] loss: {loss.item()} time: {time.time() - start}"
)
predictions = sumbt_inference(model, dev_loader, processor, device)
eval_result = _evaluation(predictions, dev_labels, slot_meta)
for k, v in eval_result.items():
print(f"{k}: {v}")
print(f" 걸린 시간 : {time.time() - start}")
if best_score < eval_result['joint_goal_accuracy']:
print("Update Best checkpoint!")
best_score = eval_result['joint_goal_accuracy']
best_checkpoint = epoch
if save:
idx = (idx + 1) % 3
torch.save(model.state_dict(), f"{save_dir}/best_model{idx}.bin")
save_info = {"model_name": f"best_model{idx}.bin", "epoch": epoch, "JGA": best_score}
json.dump(save_info, open(f"{save_dir}/best_model{idx}.json", "w"), indent=2, ensure_ascii=False)
if save:
torch.save(model.state_dict(), f"{save_dir}/last_model.bin")
print(f"Best checkpoint: {save_dir}/model-{best_checkpoint}.bin")