-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathfftconv.py
416 lines (292 loc) · 13 KB
/
fftconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import numpy as np
import theano
import theano.tensor as T
import theano.sandbox.cuda as cuda
from theano.misc.pycuda_utils import to_gpuarray
import scikits.cuda
from scikits.cuda import fft
from scikits.cuda import linalg
from scikits.cuda import cublas
import pycuda.gpuarray
import theano.misc.pycuda_init
import string
linalg.init()
# TODO: implement __eq__ and __hash__ correctly
# TODO: Find out if scikits.cuda.fft.fft is destructive - if so we need to specify a destroy_map
# TODO: investigate FFTW compatibility modes. Can probably set this to the fastest setting.
# TODO: investigate the effect of enabling fastmath on FFT performance (how can it be enabled?).
class ScikitsCudaOp(cuda.GpuOp): # base class for shared code between scikits.cuda-based ops
def __eq__(self, other):
return type(self) == type(other)
def __hash__(self):
return hash(type(self))
def __str__(self):
return self.__class__.__name__
def output_type(self, inp):
raise NotImplementedError
def make_node(self, inp):
inp = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp))
assert inp.dtype == "float32"
return theano.Apply(self, [inp], [self.output_type(inp)()])
class CuFFTOp(ScikitsCudaOp):
def output_type(self, inp):
return cuda.CudaNdarrayType(broadcastable=[False] * (inp.type.ndim + 1)) # add one extra dim for real/imag
def make_thunk(self, node, storage_map, _, _2):
inputs = [storage_map[v] for v in node.inputs]
outputs = [storage_map[v] for v in node.outputs]
plan_input_shape = [None]
plan = [None]
def thunk():
input_shape = inputs[0][0].shape
# construct output shape
output_shape = list(input_shape)
output_shape[-1] = output_shape[-1] // 2 + 1 # DFT of real input is symmetric, no need to store redundant coefficients
output_shape += [2] # extra dimension with length 2 for real/imag
output_shape = tuple(output_shape)
z = outputs[0]
# only allocate if there is no previous allocation of the right size.
if z[0] is None or z[0].shape != output_shape:
z[0] = cuda.CudaNdarray.zeros(output_shape)
input_pycuda = to_gpuarray(inputs[0][0])
# I thought we'd need to change the type on output_pycuda so it is complex64,
# but as it turns out scikits.cuda.fft doesn't really care either way and
# treats the array as if it is complex64 anyway.
output_pycuda = to_gpuarray(z[0])
# only initialise plan if necessary
if plan[0] is None or plan_input_shape[0] != input_shape:
plan_input_shape[0] = input_shape
plan[0] = fft.Plan(input_shape[1:], np.float32, np.complex64, batch=input_shape[0])
fft.fft(input_pycuda, output_pycuda, plan[0])
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
class CuIFFTOp(ScikitsCudaOp):
def output_type(self, inp):
return cuda.CudaNdarrayType(broadcastable=[False] * (inp.type.ndim - 1)) # remove extra real/imag dim
def make_thunk(self, node, storage_map, _, _2):
inputs = [storage_map[v] for v in node.inputs]
outputs = [storage_map[v] for v in node.outputs]
plan_input_shape = [None]
plan = [None]
def thunk():
input_shape = inputs[0][0].shape
# construct output shape
output_shape = list(input_shape[:-1]) # chop off the extra length-2 dimension for real/imag
output_shape[-1] = (output_shape[-1] - 1) * 2 # restore full signal length
output_shape = tuple(output_shape)
z = outputs[0]
# only allocate if there is no previous allocation of the right size.
if z[0] is None or z[0].shape != output_shape:
z[0] = cuda.CudaNdarray.zeros(output_shape)
input_pycuda = to_gpuarray(inputs[0][0])
# input_pycuda is a float32 array with an extra dimension, but will be
# interpreted by scikits.cuda as a complex64 array instead.
output_pycuda = to_gpuarray(z[0])
# only initialise plan if necessary
if plan[0] is None or plan_input_shape[0] != input_shape:
plan_input_shape[0] = input_shape
plan[0] = fft.Plan(output_shape[1:], np.complex64, np.float32, batch=output_shape[0])
fft.ifft(input_pycuda, output_pycuda, plan[0]) # , True)
# strangely enough, enabling rescaling here makes it run very, very slowly.
# so do this rescaling manually afterwards!
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
def to_complex_gpuarray(x, copyif=False):
"""
adapted version of theano.misc.pycuda_utils.to_gpuarray that takes an array with an extra trailing
dimension of length 2 for real/imaginary parts, and turns it into a complex64 PyCUDA GPUArray.
"""
if not isinstance(x, cuda.CudaNdarray):
raise ValueError("We can transfer only CudaNdarray to pycuda.gpuarray.GPUArray")
else:
# Check if trailing dimension has length 2
assert x.shape[-1] == 2
# check if dtype is float32
assert x.dtype == 'float32'
# Check if it is c contiguous
size = 1
c_contiguous = True
for i in range(x.ndim-1, -1, -1):
if x.shape[i] == 1:
continue
if x._strides[i] != size:
c_contiguous = False
break
size *= x.shape[i]
if not c_contiguous:
if copyif:
x = x.copy()
else:
raise ValueError("We were asked to not copy memory, but the memory is not c contiguous.")
# Now x is always c contiguous
px = pycuda.gpuarray.GPUArray(x.shape[:-1], np.complex64, base=x, gpudata=x.gpudata)
return px
def bptrs(a):
"""
Pointer array when input represents a batch of matrices.
taken from scikits.cuda tests/test_cublas.py
"""
return pycuda.gpuarray.arange(a.ptr,a.ptr+a.shape[0]*a.strides[0],a.strides[0],
dtype=cublas.ctypes.c_void_p)
def sc_complex_dot_batched(bx_gpu, by_gpu, bc_gpu, transa='N', transb='N', handle=None):
"""
uses cublasCgemmBatched to compute a bunch of complex dot products in parallel
"""
if handle is None:
handle = scikits.cuda.misc._global_cublas_handle
assert len(bx_gpu.shape) == 3
assert len(by_gpu.shape) == 3
assert len(bc_gpu.shape) == 3
assert bx_gpu.dtype == np.complex64
assert by_gpu.dtype == np.complex64
assert bc_gpu.dtype == np.complex64
# Get the shapes of the arguments
bx_shape = bx_gpu.shape
by_shape = by_gpu.shape
# Perform matrix multiplication for 2D arrays:
alpha = np.complex64(1.0)
beta = np.complex64(0.0)
transa = string.lower(transa)
transb = string.lower(transb)
if transb in ['t', 'c']:
N, m, k = by_shape
elif transb in ['n']:
N, k, m = by_shape
else:
raise ValueError('invalid value for transb')
if transa in ['t', 'c']:
N2, l, n = bx_shape
elif transa in ['n']:
N2, n, l = bx_shape
else:
raise ValueError('invalid value for transa')
if l != k:
raise ValueError('objects are not aligned')
if N != N2:
raise ValueError('batch sizes are not the same')
if transb == 'n':
lda = max(1, m)
else:
lda = max(1, k)
if transa == 'n':
ldb = max(1, k)
else:
ldb = max(1, n)
ldc = max(1, m)
# construct pointer arrays needed for cublasCgemmBatched
bx_arr = bptrs(bx_gpu)
by_arr = bptrs(by_gpu)
bc_arr = bptrs(bc_gpu)
cublas.cublasCgemmBatched(handle, transb, transa, m, n, k, alpha, by_arr.gpudata,
lda, bx_arr.gpudata, ldb, beta, bc_arr.gpudata, ldc, N)
class BatchedComplexDotOp(ScikitsCudaOp):
"""
This version uses cublasCgemmBatched under the hood, instead of
doing multiple cublasCgemm calls.
"""
def make_node(self, inp1, inp2):
inp1 = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp1))
inp2 = cuda.basic_ops.gpu_contiguous(
cuda.basic_ops.as_cuda_ndarray_variable(inp2))
assert inp1.dtype == "float32"
assert inp2.dtype == "float32"
assert inp1.ndim == 4 # (batch, a, b, real/imag)
assert inp2.ndim == 4
return theano.Apply(self, [inp1, inp2], [self.output_type(inp1)()])
def output_type(self, inp):
return cuda.CudaNdarrayType(broadcastable=[False] * inp.type.ndim)
def make_thunk(self, node, storage_map, _, _2):
inputs = [storage_map[v] for v in node.inputs]
outputs = [storage_map[v] for v in node.outputs]
def thunk():
bx = inputs[0]
by = inputs[1]
input_shape_x = bx[0].shape # (batch, a, b, 2)
input_shape_y = by[0].shape # (batch, b, c, 2)
output_shape = (input_shape_x[0], input_shape_x[1], input_shape_y[2], 2) # (batch, a, c, 2)
bz = outputs[0]
# only allocate if there is no previous allocation of the right size.
if bz[0] is None or bz[0].shape != output_shape:
bz[0] = cuda.CudaNdarray.zeros(output_shape)
input_bx_pycuda = to_complex_gpuarray(bx[0])
input_by_pycuda = to_complex_gpuarray(by[0])
output_b_pycuda = to_complex_gpuarray(bz[0])
# fancy native batched version
sc_complex_dot_batched(input_bx_pycuda, input_by_pycuda, output_b_pycuda)
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
cufft = CuFFTOp()
cuifft = CuIFFTOp()
batched_complex_dot = BatchedComplexDotOp()
def mult_and_reduce(input_fft_v, filters_fft_v, input_shape=None, filter_shape=None):
"""
input_fft_v is (b, ic, i0, i1//2 + 1, 2)
filters_fft_v is (oc, ic, i0, i1//2 + 1, 2)
"""
if input_shape is None:
input_shape = input_fft_v.shape # symbolic
if filter_shape is None:
filter_shape = filters_fft_v.shape # symbolic
b, ic, i0, i1_f, _ = input_shape
oc = filter_shape[0]
# reshape to flatten the dimensions that are multiplied elemwise
input_r = input_fft_v.reshape((b, ic, i0 * i1_f, 2))
filters_r = filters_fft_v.reshape((oc, ic, i0 * i1_f, 2))
# shuffle for batched dot product
input_s = input_r.dimshuffle(2, 0, 1, 3) # (i0 * i1_f, b, ic, 2)
filters_s = filters_r.dimshuffle(2, 1, 0, 3) # (i0 * i1_f, ic, oc, 2)
output_s = batched_complex_dot(input_s, filters_s)
# shuffle again
output_r = output_s.dimshuffle(1, 2, 0, 3)
# reshape to unflatten
output = output_r.reshape((b, oc, i0, i1_f, 2))
return output
def conv2d_fft(input, filters, image_shape=None, filter_shape=None):
"""
expects bc01 input
performs a valid convolution
input: (b, ic, i0, i1)
filters: (oc, ic, f0, f1)
"""
# use symbolic shapes to compute shape info at runtime if not specified
if image_shape is None:
image_shape = input.shape
if filter_shape is None:
filter_shape = filters.shape
b, ic, i0, i1 = image_shape # batch size, input channels, input dim 0, input dim 1
oc, ic_, f0, f1 = filter_shape # output channels, input channels, filter dim 0, filter dim 1
# pad filters to input shape
filters_padded = T.zeros((oc, ic, i0, i1))
filters_padded = T.set_subtensor(filters_padded[:, :, :f0, :f1], filters)
# reshape for FFT
input_flat = input.reshape((b * ic, i0, i1))
filters_flat = filters_padded.reshape((oc * ic, i0, i1))
# perform FFT
input_fft_flat = cufft(input_flat) # (b * ic, i0, i1//2 + 1, 2)
filters_fft_flat = cufft(filters_flat) # (oc * ic, i0, i1//2 + 1, 2)
# unfold ic dimension
input_fft_v_shape = (b, ic, i0, i1//2 + 1, 2)
filters_fft_v_shape = (oc, ic, i0, i1//2 + 1, 2)
input_fft_v = input_fft_flat.reshape(input_fft_v_shape)
filters_fft_v = filters_fft_flat.reshape(filters_fft_v_shape)
output_fft_s = mult_and_reduce(input_fft_v, filters_fft_v,
input_shape=input_fft_v_shape, filter_shape=filters_fft_v_shape) # (b, oc, i0, i1//2 + 1, 2)
# reshape for IFFT
output_fft_flat = output_fft_s.reshape((b * oc, i0, i1//2 + 1, 2))
# perform IFFT
output_flat = cuifft(output_fft_flat) # (b * oc, i0, i1)
# reshape
output_circ = output_flat.reshape((b, oc, i0, i1)) # circular!
# slice because the convolution was circular, we need it to be valid
output = output_circ[:, :, f0 - 1:, f1 - 1:]
# rescale manually
output = (1.0 / T.cast(i0 * i1, theano.config.floatX)) * output # allow for the scale factor to move to the gpu
# output should now be the result of a batched valid convolution of the input with the filters.
return output