-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_data.py
148 lines (119 loc) · 4.11 KB
/
get_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# %%
#
import json
import pandas as pd
import os
import argparse
from modules.eumf_google_trends import (
GoogleTrendsConnector,
prepare_searchwords,
get_trends,
trends_to_csv,
get_trends_output_filename,
)
import logging
import logging.config
logging.config.fileConfig("logging.conf")
logger = logging.getLogger(__name__)
KEYWORD_FILE = "data/keywords/keywords-prototype-21-04-22.xlsx"
LANGUAGE_ASSIGNMENT_FILE = "data/config/assignment_language_country.json"
GERMANY_TRANSLATION_FILE = "data/config/germany_language_keywords.json"
parser = argparse.ArgumentParser(
description="Obtain data from Google Trends API and store them in csv files."
)
parser.add_argument(
"--start_iteration",
type=int,
help="no. of the first iteration of datasets to draw",
default=0,
)
parser.add_argument(
"--n_iterations", type=int, default=1, help="no. of datasets to draw"
)
parser.add_argument(
"-d",
"--data_version",
type=str,
default="default",
help="arbitrary string to name the version of the data drawn",
)
parser.add_argument(
"-f", "--force", action="store_true", help="draw also existing datasets"
)
parser.add_argument(
"--start_date", type=str, default="2007-01", help="datestring for earliest date"
)
parser.add_argument(
"--end_date", type=str, default="2020-12", help="datestring for last date"
)
parser.add_argument(
"--countries",
type=str,
nargs="+",
help="limit countries of origin to draw data for (2 letter ISO code)",
default=[],
)
args, unknown = parser.parse_known_args()
#%%
trends = GoogleTrendsConnector()
df_keywords = pd.read_excel(KEYWORD_FILE)
df_keywords = df_keywords.loc[~df_keywords["KeywordID"].isna()]
df_keywords["KeywordID"] = df_keywords["KeywordID"].astype(int)
df_keywords = df_keywords.melt(
id_vars=["KeywordID", "FlagWithoutGermany"],
var_name="language_id",
value_name="keyword",
).rename(columns={"KeywordID": "keyword_id", "FlagWithoutGermany": "without_germany"})
df_keywords.loc[~df_keywords["without_germany"].isna(), "without_germany"] = True
df_keywords.loc[df_keywords["without_germany"].isna(), "without_germany"] = False
df_keywords["version_id"] = 1
with open(LANGUAGE_ASSIGNMENT_FILE) as f:
assignment_language_country = json.load(f)
tmp_assignments = []
for country, arr in assignment_language_country.items():
for lan in arr:
tmp_assignments.append([country, lan])
df_assignments = pd.DataFrame(tmp_assignments, columns=["country_id", "language_id"])
df_countries = (
df_assignments[["country_id"]]
.rename(columns={"country_id": "id"})
.drop_duplicates()
)
df_countries["short"] = df_countries["id"]
with open(GERMANY_TRANSLATION_FILE) as f:
germany_language_keywords = json.load(f)
df_languages = (
pd.Series(germany_language_keywords)
.rename("germany")
.to_frame()
.rename_axis(index="id")
.reset_index()
)
df_languages["short"] = df_languages["id"]
df_languages["remove_diacritics"] = False
for l in ["PL", "CS", "SK", "FR", "EL", "HR", "IT", "LV", "LI", "PT", "ES"]:
df_languages.loc[df_languages["short"] == l, "remove_diacritics"] = True
logger.info("Prepare Searchwords...")
df_searchwords = prepare_searchwords(df_keywords, df_assignments, df_languages)
df_searchwords = df_searchwords.merge(df_countries, left_on="country_id", right_on="id")
#%%
countries = (
args.countries if len(args.countries) > 0 else list(df_countries["short"].unique())
)
logger.info("Get Trends...")
for iteration in range(args.start_iteration, args.start_iteration + args.n_iterations):
logger.info("Iteration %d", iteration)
for country in countries:
if not args.force and os.path.exists(
get_trends_output_filename(country, args.data_version, iteration)
):
continue
logger.info(f"Get data for country {country}")
tmp_searchwords = df_searchwords[df_searchwords["short"] == country]
df_responses = get_trends(
trends, tmp_searchwords, args.start_date, args.end_date
)
trends_to_csv(
df_responses, df_searchwords, country, args.data_version, iteration
)
# %%