-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodelling.py
285 lines (266 loc) · 11.2 KB
/
modelling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
print("Imports...", end="")
# from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import plot_confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import seaborn as sns
sns.set()
import datetime
import json
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
pd.options.mode.chained_assignment = None
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', 50)
print("done")
params = {}
typeable = []
# TODO Check residuals to see what the model is lacking
# TODO Try adding in more time steps, as opposed to just the very instant of
# pressing the key
def init():
with open('params.json', 'r') as f:
params = json.load(f)
def fancy_lower(x):
""" lowercase _everything_, as though the shift key doesn't exist"""
if x.isalpha():
return x.lower()
if x in params.get('lower-dict').keys():
return params.get('lower-dict').get(x)
return x
for _, v in params.get('fingers-to-keys').items():
typeable.extend([fancy_lower(value) for value in v])
typeable = [item for item in list(set(typeable)) if item not in params.get('untypeable')]
# Load in some parameters constant across the various scripts
def load_dataset(
period_ms=10,
num_periods=10,
min_replicates=50,
dataset_suffix='2021-09-29-10ms'):
# Load in the keys and sensors datasets
keys = pd.read_pickle(f'data/keys-{dataset_suffix}.pkl').sort_values('datetime')
keys = keys[keys.value.isin(typeable)]
sensors = pd.read_pickle(f'data/sensors-{dataset_suffix}.pkl').sort_values('datetime')
# Take only the subset of sensor readings occurring in the instant a key
# was pressed
sub_keys = keys.loc[keys.sensor=='keyboard', ['datetime', 'value']]
period = pd.Timedelta(period_ms, unit='ms')
dfs = []
for i in range(0, num_periods):
datetimes = pd.Series(dtype='datetime64[ns]')
delta = period * i
datetimes = sub_keys.datetime - delta
sub_sens = sensors.loc[sensors.datetime.isin(datetimes), :]
sub_sens['neg_offset'] = delta
sub_sens['datetime'] += delta
dfs.append(sub_sens)
sub_sens = pd.concat(dfs)
assert len(sub_sens[sub_sens.isna().any(axis=1)]) == 0
X_df = sub_sens.pivot(index='datetime', columns=['sensor', 'neg_offset'], values='value')
y_df = sub_keys.set_index('datetime')
# Replace " " with "[space]" for clarity
y_df.loc[y_df.value==' ', 'value'] = "[space]"
# Remove observations with less than 10 replicates
vc = y_df.value_counts()
has_enough_replicates = (vc[vc >= min_replicates]).reset_index().value.to_list()
y_df = y_df[y_df.value.isin(has_enough_replicates)]
# Make sure the X's match the y's
X_df.dropna(inplace=True)
X_df = X_df[X_df.index.isin(y_df.index)]
y_df = y_df[y_df.index.isin(X_df.index)]
# Check that the dataframes are of the correct dimensions for each other
assert (X_df.index == y_df.index).all()
# Convert dataframes to ndarrays for sklearn
X = X_df.to_numpy()
y = y_df.to_numpy().ravel()
# Check that there aren't any NaN values
assert not np.isnan(X).any()
# Build training and testing data
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=.2, random_state=42, stratify=y)
return X_train, X_test, y_train, y_test
# =============================
# Attempt to train a MLP model
# =============================
# Imports
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler
from sklearn import metrics
from sklearn.utils.fixes import loguniform
num_periods_list = [2, 10, 20, 40, 80]
period_ms_list = [10, 20, 40, 80]
hidden_layer_sizes = [(500), (250), (125), (75), (25, 25), (50, 50), (25, 25, 25)]
history_max_ms = 1000
configs = []
best_test_acc = 0.0
best_model = None
for num_periods in num_periods_list:
print(f"num_periods={num_periods}")
for period_ms in period_ms_list:
total_history_ms = (num_periods - 1) * period_ms
# if total_history_ms >= history_max_ms:
# print(f"\tSkipping: total_history_ms={total_history_ms}")
# continue
print(f"\tperiod_ms={period_ms}")
X_train, X_test, y_train, y_test = load_dataset(
period_ms=period_ms, num_periods=num_periods,
dataset_suffix='2021-10-02-10ms'
)
for hls in hidden_layer_sizes:
print(f"\t\thls={hls}", end="", flush=True)
config={'period_ms': period_ms,
'num_periods': num_periods,
'total_history_ms': total_history_ms,
'hls': hls}
# First scale the data
scaler = StandardScaler()
_ = scaler.fit(X_train) # Don't cheat - fit only on training data
X_trn_scaled = scaler.transform(X_train)
# apply same transformation to test data
X_tst_scaled = scaler.transform(X_test)
mlp_clf = MLPClassifier(activation='tanh', hidden_layer_sizes=hls, alpha=0.001, max_iter=5000, random_state=42, solver='adam', tol=0.00001) #, verbose=2)
_ = mlp_clf.fit(X_trn_scaled, y_train)
train_acc = metrics.accuracy_score(y_train, mlp_clf.predict(X_trn_scaled))
test_acc = metrics.accuracy_score(y_test, mlp_clf.predict(X_tst_scaled))
if test_acc > best_test_acc:
best_test_acc = test_acc
best_model = mlp_clf
print(f"\t\taccuracy={round(10000*test_acc) / 100}")
config['test_acc'] = test_acc
config['traing_acc'] = train_acc
configs.append(config)
rcx = [
('hls', 'period_ms', 'num_periods'),
('period_ms', 'num_periods', 'hls'),
('num_periods', 'hls', 'period_ms'),
('num_periods', 'hls', 'total_history_ms'),
('period_ms', 'hls', 'total_history_ms'),
]
df = pd.DataFrame(configs)
for rows, cols, xs in rcx:
# --------------------
# Plot small multiples
# --------------------
g = sns.FacetGrid(data=df, col=cols, row=rows, ylim=(0.5,1), margin_titles=True)
g.map(sns.lineplot, xs, 'test_acc', markers=True)
plt.tight_layout()
plt.savefig(f"img/test_accuracy vs r={rows},c={cols},x={xs}.png")
plt.show()
# ---------------------------
# Plot pairwise relationships
# ---------------------------
g = sns.PairGrid(df[['test_acc', rows, cols, xs]], diag_sharey=False)
g.map_upper(sns.scatterplot)
g.map_lower(sns.kdeplot)
g.map_diag(sns.kdeplot)
plt.tight_layout()
plt.savefig(f"img/pairwise r={rows},c={cols},x={xs}.png")
plt.show()
print("Top 90% of models:")
best_models = df.loc[df.test_acc > df.test_acc.quantile(0.9), ['test_acc', 'period_ms', 'num_periods', 'total_history_ms', 'hls']].sort_values('test_acc', ascending=False)
print(best_models)
# --------------------------------------------------------
# Randomised Grid Search over the NN hyper-parameter space
# --------------------------------------------------------
hyper_params = []
scores = []
searches = []
pnh = []
from sklearn.model_selection import RandomizedSearchCV
distributions = {
'tol': loguniform(1e-6, 1e-3),
'alpha': loguniform(1e-7, 1e-3),
'activation': ['tanh', 'relu', 'logistic'],
}
for i, (index, row) in enumerate(best_models.iterrows()):
period_ms = row['period_ms']
num_periods = row['num_periods']
hls = row['hls']
print(f"({i}/{len(best_models)}) Tuning model {hls=}, {period_ms=}, {num_periods=}")
mlp = MLPClassifier(
hidden_layer_sizes=hls,
max_iter=5000,
random_state=42,
solver='adam')
X_train, X_test, y_train, y_test = load_dataset(
period_ms=period_ms, num_periods=num_periods
)
scaler = StandardScaler()
_ = scaler.fit(X_train)
X_trn_scaled = scaler.transform(X_train)
clf = RandomizedSearchCV(
mlp,
distributions,
random_state=42,
n_iter=5,
cv=4,
verbose=3)
search = clf.fit(X_trn_scaled, y_train)
searches.append(search)
pnh.append((period_ms, num_periods, hls))
hyper_params.append(search.best_params_)
scores.append(search.best_score_)
# ---------------------------------------------------------
# Find the best model, fit it, and plot a confusion matrix.
# ---------------------------------------------------------
best_params = df[df.test_acc == df.test_acc.max()]
X_train, X_test, y_train, y_test = load_dataset(
period_ms=int(best_params.period_ms), num_periods=int(best_params.num_periods))
scaler = StandardScaler()
_ = scaler.fit(X_train) # Don't cheat - fit only on training data
X_tst_scaled = scaler.transform(X_test) # apply same transformation to test data
plot_conf_matrix(y_test,
best_model.predict(X_tst_scaled),
y_train,
f"MLP With {round(10000*float(best_params.test_acc))/100} test accuracy, {int(best_params.hls)} Hidden Nodes And {int(best_params.num_periods)} Period(s) of {int(best_params.period_ms)}ms Each")
# ======================================
# Attempt to train a Random Forest model
# ======================================
def train_rf():
from sklearn.ensemble import RandomForestClassifier
rf_clf = RandomForestClassifier(random_state=42)
_ = rf_clf.fit(X_train, y_train)
rf_score = rf_clf.score(X_test, y_test)
print(rf_score)
print(rf_clf.score(X_train, y_train))
plot_conf_matrix(y_test, rf_clf.predict(X_test), y_train, f"Random Forest with score={round(rf_score * 10000) / 10000.0}")#, save_name="ConfusionMatrixRandomForest.png")
# =============================
# Attempt to train a KNN model
# =============================
def train_knn()
best_n = 0
best_score = 0.0
for n in (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100):
clf = KNeighborsClassifier(n)
_ = clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
if score > best_score:
best_n = n
best_score = score
if best_n > 0:
knn_clf= KNeighborsClassifier(best_n)
_ = knn_clf.fit(X_train, y_train)
print(f"Best knn is {best_n} with training: {knn_clf.score(X_train, y_train)}, and test: {knn_clf.score(X_test, y_test)}")
plot_conf_matrix(y_test, knn_clf.predict(X_test), y_train, f"KNN with n={best_n} and test score: {knn_clf.score(X_test, y_test)}")
def plot_conf_matrix(y_test, y_pred, y_train, name, save_name=None):
plt.rcParams.update({'font.size': 8})
labels = pd.Series(y_train).value_counts().index
full_labels = pd.Series(y_train).value_counts().reset_index().apply(
lambda y: f"{y['index']} ({y[0]})", axis=1)
print("Labels:")
print(full_labels)
cm = confusion_matrix(y_test, y_pred, labels=labels, normalize='true')
plt.figure(figsize=(15,8))
plt.title('Confusion matrix of ' + name)
sns.heatmap(cm, xticklabels=labels, yticklabels=full_labels,
annot=True, cmap="YlGnBu", fmt=".1g", linewidths=.5)
plt.xlabel('Predicted')
plt.ylabel('True')
if save_name:
plt.savefig(save_name)
else:
plt.show()