From 46aa60454ce9c630fed173fb3f8dc6c09c45b41d Mon Sep 17 00:00:00 2001 From: Wei Ouyang Date: Mon, 2 Sep 2024 02:53:17 -0700 Subject: [PATCH] complete cellpose --- .../engine/ray_apps/cellpose/__init__.py | 51 ++++++++++++++++--- .../engine/ray_apps/cellpose/manifest.yaml | 2 + 2 files changed, 45 insertions(+), 8 deletions(-) diff --git a/bioimageio/engine/ray_apps/cellpose/__init__.py b/bioimageio/engine/ray_apps/cellpose/__init__.py index a96ce04..6f1330d 100644 --- a/bioimageio/engine/ray_apps/cellpose/__init__.py +++ b/bioimageio/engine/ray_apps/cellpose/__init__.py @@ -1,17 +1,52 @@ from hypha_rpc import api +import numpy as np class CellposeModel: def __init__(self): - # Load model - import torch + from cellpose import core + # Check if GPU is available + self.use_GPU = core.use_gpu() + print('>>> GPU activated? %d' % self.use_GPU) + + # Initialize model caching attributes + self.cached_model_type = None + self.model = None - def predict(self, image: str) -> str: - prediction = "prediction of cellpose model on image: " + image - return prediction + def _load_model(self, model_type): + from cellpose import models + if self.model is None or model_type != self.cached_model_type: + print(f'Loading model: {model_type}') + self.model = models.Cellpose(gpu=self.use_GPU, model_type=model_type) + self.cached_model_type = model_type + else: + print(f'Reusing cached model: {model_type}') + return self.model - def train(self, data: str, config: str) -> str: - training = "training cellpose model on data: " + data + "with config:" + config - return training + def predict(self, images: list[np.ndarray], channels=None, diameter=None, flow_threshold=None, model_type='cyto3'): + """Run segmentation on the provided images using the specified model type.""" + # Load the model, utilizing caching + model = self._load_model(model_type) + if channels is None: + # Default channels if not provided + channels = [[2, 3]] * len(images) + + # Perform segmentation using the model + masks, flows, styles, diams = model.eval(images, diameter=diameter, flow_threshold=flow_threshold, channels=channels) + + # Prepare the response with masks and diameters + results = { + 'masks': [mask.tolist() for mask in masks], # Converting numpy arrays to lists for JSON serialization + 'diameters': diams # List of estimated diameters for each image + } + return results + + def train(self, images, labels, config): + """Train the model using the provided images and labels.""" + # This method would handle the training process. + # Currently, returning a placeholder response. + raise NotImplementedError("Training functionality not implemented yet") + +# Export the CellposeModel class using Hypha RPC API api.export(CellposeModel) diff --git a/bioimageio/engine/ray_apps/cellpose/manifest.yaml b/bioimageio/engine/ray_apps/cellpose/manifest.yaml index c8769cf..87c43fc 100644 --- a/bioimageio/engine/ray_apps/cellpose/manifest.yaml +++ b/bioimageio/engine/ray_apps/cellpose/manifest.yaml @@ -8,6 +8,8 @@ ray_serve_config: num_gpus: 1 runtime_env: pip: + - opencv-python-headless==4.2.0.34 + - cellpose==3.0.11 - torch==2.3.1 - torchvision==0.18.1 autoscaling_config: