diff --git a/weeks/week01/7_tf_binding_promoters.ipynb b/weeks/week01/7_tf_binding_promoters.ipynb index 30395e6..6ffaeff 100644 --- a/weeks/week01/7_tf_binding_promoters.ipynb +++ b/weeks/week01/7_tf_binding_promoters.ipynb @@ -1301,4 +1301,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} diff --git a/weeks/week02/homework2.ipynb b/weeks/week02/homework2.ipynb index 3d439f3..73968e3 100644 --- a/weeks/week02/homework2.ipynb +++ b/weeks/week02/homework2.ipynb @@ -58,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 1, "metadata": { "collapsed": false }, @@ -109,7 +109,7 @@ "9 3 8" ] }, - "execution_count": 4, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -128,14 +128,29 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ + { + "ename": "ERROR", + "evalue": "Error in file(con, \"rb\"): cannot open the connection\n", + "output_type": "error", + "traceback": [ + "Error in file(con, \"rb\"): cannot open the connection\n" + ] + }, + { + "ename": "ERROR", + "evalue": "Error in file(con, \"rb\"): cannot open the connection\n", + "output_type": "error", + "traceback": [ + "Error in file(con, \"rb\"): cannot open the connection\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEJGlDQ1BJQ0MgUHJvZmlsZQAAOBGFVd9v21QUPolvUqQWPyBYR4eKxa9VU1u5GxqtxgZJk6XtShal6dgqJOQ6N4mpGwfb6baqT3uBNwb8AUDZAw9IPCENBmJ72fbAtElThyqqSUh76MQPISbtBVXhu3ZiJ1PEXPX6yznfOec7517bRD1fabWaGVWIlquunc8klZOnFpSeTYrSs9RLA9Sr6U4tkcvNEi7BFffO6+EdigjL7ZHu/k72I796i9zRiSJPwG4VHX0Z+AxRzNRrtksUvwf7+Gm3BtzzHPDTNgQCqwKXfZwSeNHHJz1OIT8JjtAq6xWtCLwGPLzYZi+3YV8DGMiT4VVuG7oiZpGzrZJhcs/hL49xtzH/Dy6bdfTsXYNY+5yluWO4D4neK/ZUvok/17X0HPBLsF+vuUlhfwX4j/rSfAJ4H1H0qZJ9dN7nR19frRTeBt4Fe9FwpwtN+2p1MXscGLHR9SXrmMgjONd1ZxKzpBeA71b4tNhj6JGoyFNp4GHgwUp9qplfmnFW5oTdy7NamcwCI49kv6fN5IAHgD+0rbyoBc3SOjczohbyS1drbq6pQdqumllRC/0ymTtej8gpbbuVwpQfyw66dqEZyxZKxtHpJn+tZnpnEdrYBbueF9qQn93S7HQGGHnYP7w6L+YGHNtd1FJitqPAR+hERCNOFi1i1alKO6RQnjKUxL1GNjwlMsiEhcPLYTEiT9ISbN15OY/jx4SMshe9LaJRpTvHr3C/ybFYP1PZAfwfYrPsMBtnE6SwN9ib7AhLwTrBDgUKcm06FSrTfSj187xPdVQWOk5Q8vxAfSiIUc7Z7xr6zY/+hpqwSyv0I0/QMTRb7RMgBxNodTfSPqdraz/sDjzKBrv4zu2+a2t0/HHzjd2Lbcc2sG7GtsL42K+xLfxtUgI7YHqKlqHK8HbCCXgjHT1cAdMlDetv4FnQ2lLasaOl6vmB0CMmwT/IPszSueHQqv6i/qluqF+oF9TfO2qEGTumJH0qfSv9KH0nfS/9TIp0Wboi/SRdlb6RLgU5u++9nyXYe69fYRPdil1o1WufNSdTTsp75BfllPy8/LI8G7AUuV8ek6fkvfDsCfbNDP0dvRh0CrNqTbV7LfEEGDQPJQadBtfGVMWEq3QWWdufk6ZSNsjG2PQjp3ZcnOWWing6noonSInvi0/Ex+IzAreevPhe+CawpgP1/pMTMDo64G0sTCXIM+KdOnFWRfQKdJvQzV1+Bt8OokmrdtY2yhVX2a+qrykJfMq4Ml3VR4cVzTQVz+UoNne4vcKLoyS+gyKO6EHe+75Fdt0Mbe5bRIf/wjvrVmhbqBN97RD1vxrahvBOfOYzoosH9bq94uejSOQGkVM6sN/7HelL4t10t9F4gPdVzydEOx83Gv+uNxo7XyL/FtFl8z9ZAHF4bBsrEwAAQABJREFUeAHs3Qm8bFddJ/qd3CFzQgjIEBEMAnEghkkNKCARRUCUBhya9slrjGgj+FTQlvY1CGLjA/EpiKBI000jLWBUBBNRBkEBjQgEUBAhzCIBQiDTzdi/f24VKU6qTp06t84+e/iuz+d/q2rtVXuv9V116tT/7F3rNo1CgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdF7gsM73cDwdvHuGum88wzVSAgQIECBAgACBAQlcmbG8fQjjkSB1YxYrOTqvG13RCwIECBAgQIAAAQLbEqjPtL1PkvZua+ietG6B6Zmj47Ljyr4VAgQIECBAgAABAn0R2J+OfjFRt70vEqRuTWElRxKkbs2J3hAgQIAAAQIECIxI4PARjdVQCRAgQIAAAQIECBAgsKmABGlTHhsJECBAgAABAgQIEBiTgARpTLNtrAQIECBAgAABAgQIbCogQdqUx0YCBAgQIECAAAECBMYkIEEa02wbKwECBAgQIECAAAECmwpIkDblsZEAAQIECBAgQIAAgTEJSJDGNNvGSoAAAQIECBAgQIDApgISpE15bCRAgAABAgQIECBAYEwCEqQxzbaxEiBAgAABAgQIECCwqYAEaVMeGwkQIECAAAECBAgQGJPA2BKkZePdk8k/MXHkmF4ExkqAAAECBAgQIECAwEGBZQnDEJxukUH8QeJziS8k3pC4V2JeuXMqq93Pz9uojgABAgQIECBAgACBYQsMPUE6NtN3XuL7E3V26OOJ+yTelHh6QiFAgAABAgQIECBAgMCXBIaeID0xI71N4pcSX5k4NXGPxHsST0o8O6EQIECAAAECBAgQIEBgFAJ/kVH+W2LvhtGekMd1Fum6RCVR03J67lTdk6cVLd2eMTnu/paO5zAECBAgQIAAAQIE1iVQn2HrM3R9pu19GfoZpJMzQ29OXL1hpi7O4wcnzk/8aqIuwVMIrEPgAbma8yVNc3Qu7TzinOzwJxNHrWPH9kGAAAECBAgQIEDgUAXqA+rnE4tWpasE6qOJyxO1cIMzSEFQtiWQv5zsfWXTHJ5k/GFXNc3T8leUx16bRRGvSKL0sezxTtvaqycRIECAAAECBLovMKgzSN3nPrQePiFPr9N99V2jWy/YVX1w/XSizir9l0S1f3KizeISuza1d+RYe57bNCcdyEnJvH6um4lLcv+BSZiuT5KcSdoRezslQIAAAQIEdllAgrTLE7DK4evM0XsT+ZDaXJP4wcS8UmeOLkpUu4qnJNosEqQ2tdd/rJOb5rC8vs7Na2c2OZreryTppJxJuv5yu/Uf3R4JECBAgAABArsrMKgEaePiBbtLu/6j14fSb07Ukt4PSVyZmFfemcq7J3IWoMl3SA651He7zkzs2+KevnaL7TTrpsD9muYmOUv0XUfM794xqf7BvHG88EFNc6BeYwoBAgQIECBAgEBHBYaeIBX7JYmfmsRmi1J8MG2+O1HLgFdidSjldnnyyxOVTW+l7Jk0mt5u5TnadEfgxKa5eb5vtFm55WFZvOFmm7WwjQABAgQIECBAgACBgwJn5aYu7atTDUr/BLIi4v6cQbpswSV2daldLdxQq9spBAgQIECAAIHBCQzqErvNzqgMbuYMiMAOCbwu+e0Xm+ZZC3b/7tT/Uc4gXfPSBQ1UEyBAgAABAgQIECAwI+AM0gxGT+8+4uBCDU/N2aLZM0m1cEOtbldLgCsECBAgQIAAgUEKDOoM0tC/g1SJx/HbeBm+Jc956zae5ynjFXjFwaskn/aCpvnl45rmdrmk7sKcof38vvzfSL+Ts0c/O14aIydAgAABAgQIEOiKwDvSkfwFf+V4cssDcAapZfAdPFz9X0f5TlLz+MQPJ05OKAQIECBAgACBIQs4g9Sj2a1V6c5O1P8z9CeJFyW2Ut6/lUbaEJgjcHnqXj2nXhUBAgQIECBAgACBTgjU/03ztkS+B9LcpRM9unEnnEG6sYkaAgQIECBAgACBfggM6gzSGFaxq8To0ZPX1nP68RrTSwIECBAgQIAAAQIEdkNgDAlSub438aRELdhw54RCgAABAgQIECBAgAABAh0VcIldRydGtwgQIECAAAECBJYKuMRuKZEGBAgQIECAAAECBAgQ6KHAWC6x6+HU6DIBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6KyBB6uzU6BgBAgQIECBAgAABAm0LSJDaFnc8AgQIECBAgAABAgQ6K7C3sz3TMQIECBDYaYGjcoAzE6ckLkq8PvGJhEKAAAECBAgQ2FWBs3L06xLH7GovHJwAgTEJPKJp9n2uafZf1TR3vKxpTryiaQ67pmn2PCcI+8cEYawECBAgcMgC9XujPsuecch7sgMCEwEJkpcCAQJtCiQ5qmToqflldlniukmcm9uTDjTN3le22RnHIkCAAIHeC0iQej+F3RuABKl7c6JHBIYqkMvq6sxRJUfTxGj29vzUH351Bv+AoQIYFwECBAisXWBQCZJFGtb++rBDAgQIdFog3zk67LimecKCTt459Q9NkrTnkQsaqCZAgAABAoMWkCANenoNjgABAjcSyIIMt8v3jmp9hkXl9Czgc8Spi7aqJ0CAAAECQxaQIA15do2NAAECNxbIanUXLnnv/1TOIF3zmRs/VQ0BAgQIEBi+wJJfksMHMEICBAiMTCBLeX9+X9P8+YJhX5r637+yaQ68ZkED1QQIECBAgACBHRewSMOOEzsAAQI3CNRS3rVaXS3IMLtAwyV5/MBcfnfEx9J2s2vwbtiVewQIECBA4OB/D5HfIcNY5tt/FOslTYAAgdEJXPOzTXPxrZrm9O87uCBDfeeoLqv73zlzdMmFOXv0HSG5fHQsBkyAAAECBAh0RsAZpM5MhY4QGJVAlvLe85KmOfq8nDU6JyN/XMKZo1G9BAyWAAECaxEY1DLfziCt5TVhJwQIEOilwLlZjCFxWS87r9MECBAgQGAnBCzSsBOq9kmAAAECBAgQIECAQC8FJEi9nDadJkCAAAECBAgQIEBgJwQkSDuhap8ECBAgQIAAAQIECPRSQILUy2nTaQIECBAgQIAAAQIEdkJAgrQTqvZJgAABAgQIECBAgEAvBSRIvZw2nSZAgAABAgQIECBAYCcEJEg7oWqfBAgQIECAAAECBAj0UkCC1Mtp02kCBAgQIECAAAECBHZCQIK0E6r2SYAAAQIECBAgQIBALwUkSL2cNp0mQIAAAQIECBAgQGAnBCRIO6FqnwQIECBAgAABAgQI9FJAgtTLadNpAgQIECBAgAABAgR2QkCCtBOq9kmAAAECBAgQIECAQC8FJEi9nDadJkCAAAECBAgQIEBgJwQkSDuhap8ECBAgQIAAAQIECPRSQILUy2nTaQIECBAgQIAAAQIEdkJAgrQTqvZJgAABAgQIECBAgEAvBSRIvZw2nSZAgAABAgQIECBAYCcEJEg7oWqfBAgQIECAAAECBAj0UkCC1Mtp02kCBAgQIECAAAECBHZCQIK0E6r2SYAAAQIECBAgQIBALwUkSL2cNp0mQIAAAQIECBAgQGAnBCRIO6FqnwQIECBAgAABAgQI9FJAgtTLadNpAgQIECBAgAABAgR2QkCCtBOq9kmAAAECBAgQIECAQC8FJEi9nDadJkCAAAECBAgQIEBgJwQkSDuhap8ECBAgQIAAAQIECPRSQILUy2nTaQIECBAgQIAAAQIEdkJAgrQTqvZJgAABAgQIECBAgEAvBSRIvZw2nSZAgAABAgQIECBAYCcEJEg7oWqfBAgQIECAAAECBAj0UkCC1Mtp02kCBAgQIECAAAECBHZCQIK0E6r2SYAAAQIECBAgQIBALwUkSL2cNp0mQIAAAQIECBAgQGAnBCRIO6FqnwQIECBAgAABAgQI9FJAgtTLadNpAgQIECBAgAABAgR2QkCCtBOq9kmAAAECBAgQIECAQC8FJEi9nDadJkCAAAECBAgQIEBgJwQkSDuhap8ECBAgQIAAAQIECPRSQILUy2nTaQIECBAgQIAAAQIEdkJg707stOP7PDH9OyFxROKSxOcTlyYUAgQIECBAgAABAgRGLjCWM0h3yTy/MPHpxOcSFyTel/h4opKkDyZekLh5QiFAgAABAgQIECBAYKQCYziD9F8zt780md+P5vatiUqSKjGqM0k3TXxV4scSD0s8PvH7CYUAAQIECBAgQIAAAQKDEnhERnNd4pzEXTcZ2WHZdu/EeYlqf89Em+WsHKyOe0ybB3UsAgQIECBAgAABAmsQ2J991GfZM9awL7vYYYGXZv91+Vx932grpb6f9IXE87fSeI1tJEhrxLQrAgQIECBAgACBVgUGlSAN/TtIp+WlUZfUHdjiS+SitDs/cfIW22tGYMwCJ2XwFQoBAgQIECBAYDACQ0+Q/jUzdbfEvi3OWJ1BqqSqFnBQCBC4sUC9Z/xMTsp+IrefORjX309dM/T3kwxRIUCAAAECBAj0W+CR6X5dD/mqxDdvMpT6DtK3Jf42cXXiXok2i0vs2tR2rO0KJAHa/+qmOTZnZJ+Zn6t3TaLuV93+P82OJUnb1fU8AgQIECDQX4FBXWLX32nYWs8r8fnpRP0/R5Uo1bLeb0u8JvGyyW1dgvfJRG2/KvFTibaLBKltccfbjkDOElUi9P78rFy3IaquttXZJYUAAQIECBAYmYAEqYcTfkr6XAlRXRZUidBsVPL0gcSzErdJ7EaRIO2GumOuKFCX0tXZoo3J0fRxbbv+crsV96s5AQIECBAg0HOBQSVIdYZlbOX4DLj+/6MjE/Ufx16cWHe5aXb4jES9WLZS7pBGtbT4sYlK2BQCXROoxRjynaN35aa+pjevnJ/Kb6wNN0t8tu4oBAgQIECAwCgE6jNvXUlSn2fr6qxelzH8R7EbJ+gLqahQCBAgQIAAAQIECBAgQKCDAi6x6+Ck6NJGAZfYbRTxmAABAgQIELheYFCX2JnTbghIkLoxD3qxucDPLFmk4co8PW0UAgQIECBAYGQCEqSRTXgbw5UgtaHsGIcqsGeTZb6THFnm+1CBPZ8AAQIECPRUYFAJ0tC/g1SJRy3KsGp5S57Q+y+YrTpo7QksEbimaa783kSWwv/Fn22aJ976YPsjPpnvZf5a7v//iWuX7MNmAgQIECBAgACBXRR4R449u6T3Vu8/ueU+O4PUMrjDrUWgVrarUAgQIECAAIFxCziD1KP5/+709ezEGYk/SbwosZXy/q000obAyAUs5T3yF4DhEyBAgAABAv0UOCLdflui1ma/S0eH4AxSRydGtwgQIECAAAECBJYKDOoM0uFLh9v/BpUYPXoyjOf0fzhGQIAAAQIECBAgQIDATgmMIUEqu/cmnpSoBRvunFAIECBAgAABAgQIECBAoKMCLrHr6MToFgECBAgQIECAwFIBl9gtJdKAAAECBAgQIECAAAECPRQYyyV2PZwaXSZAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG0BCVLb4o5HgAABAgQIECBAgEBnBSRInZ0aHSNAgAABAgQIECBAoG2BvW0f0PEIECDQE4GT08/7JU5MfCjxusTlCYUAAQIECBAgMGiB/RndNyaO2cVRnpVjX7fLfdjF4Ts0gU4J5D1hz3Oa5rBrkhtd0TR3vKxp9l/VNPs+l14+olM91RkCBAgQINANgfo8XZ9lz+hGd/RiKwI/kEbPTfx84msmTzg2t3+Q+EKiJjQfhpr/mTgh0XaRILUt7ngEFgrsfWXTnHSgac7N+8J1k7gst09NVNIkSVpIZwMBAgQIjFVAgtSjma/vWP1JIh9svhQX5f5XJX53UleXzbwg8XeTx2/O7WGJNosEqU1txyKwWOABTXP41U1z/iQxmiZI09tKkq4/k3TU4l3YQoAAAQIERicgQerRlD8mfa3k6C8S35P4T4n6LsEHEtcmHp6YLb+YB9X+h2YrW7gvQWoB2SEILBfY85KmeVgup5smRBtv60xSXW7XPHj5vrQgQIAAAQKjEZAg9Wiq/yx9/WziyJk+PyT3Kwl6zUzd9G6dcfpo4remFdu8PSXPqzNVl24x8j2H6/u0m9+DShcUAmMXOPq8pnla3h82Jkazj+s7Sc3jxy5l/AQIECBAYEZgUAnS0Fexu20m7vWJSkCmpS6pq7NH/zitmLmt+gsSXzVTt527H86Tvj+xb4tP/q6084Fri1iaEdg5gWs+0zSfqj+gbHKZ7YX1h5T6A4hCgAABAgQIEOidwDnpca08NXsGqS6rqw9A884gVcL4xURWsGq1uMSuVW4HI7BQ4HFZoCF/ULkk7xGzZ42m92vhhusXajh54R5sIECAAAEC4xMY1BmkoU/fj2eAlQzVWaSHJn4h8fHEOxJ1tujfJ6al/ir83xPV/mHTypZuJUgtQTsMgSUCWXzhiI81zQPzPaONSVIt3FCr29US4AoBAgQIECAwIyBBmsHo+t1Kev44UUnPND6d+7dI/M6k7m9z+4eJT0wevza3bRcJUtvijkdgscCdDiZJdSbpsflDSn0nqRZuqNXtagnwpn4JKAQIECBAgMANAhKkGyx6c6/OHj0z8ROJ6aUxN8n9FycuTFTyVF+8/s3EbizfK0EKvEKgQwL1PpDL7Y7IZbq1cEOtbtdkCXCFAAECBAgQmCMgQZqD0ueqOsv01Yk9uzgICdIu4js0AQIECBAgQIDAIQkMKkEa+ip2W5np+i7SBVtpqA0BAgQIECBAgAABAsMWqLMnCgECBAgQIECAAAECBAhEQILkZUCAAAECBAgQIECAAIGJgATJS4EAAQIECBAgQIAAAQITAQmSlwIBAgQIECBAgAABAgQmAhIkLwUCBAgQIECAAAECBAhMBCRIXgoECBAgQIAAAQIECBCYCEiQvBQIECBAgAABAgQIECAwEZAgeSkQIECAAAECBAgQIEBgIiBB8lIgQIAAAQIECBAgQIDARECC5KVAgAABAgQIECBAgACBiYAEyUuBAAECBAgQIECAAAECEwEJkpcCAQIECBAgQIAAAQIEJgISJC8FAgQIECBAgAABAgQITAQkSF4KBAgQIECAAAECBAgQmAhIkLwUCBAgQIAAAQIECBAgMBGQIHkpECBAgAABAgQIECBAYCIgQfJSIECAAAECBAgQIECAwERAguSlQIAAAQIECBAgQIAAgYmABMlLgQABAgQIECBAgAABAhMBCZKXAgECBAgQIECAAAECBCYCEiQvBQIECBAgQIAAAQIECEwEJEheCgQIECBAgAABAgQIEJgI7N2GxH3znAcmTk3cNDGvvCiVFQoBAgQIECBAgAABAgR6I7BqgvTwjOxlienzrlsw0r9YUK+aAAECBAgQIECAAAECnRWYJjpb7eCT0vDqxE8lXpP4SEIhQIAAAQIECBAgQIDAIARWSZCOzohPS/xh4nmDGL1BECBAgAABAgQIECBAYEZglUUarsjzLk+8b+b57hIgQIAAAQIECBAgQGAwAqskSNdm1K9PfE9ilTNPg8EyEAIECBAgQIAAAQIEhi2wLNE5IcOfbfNf8vhNiVcnfj3xz4kvJDaWy1JRZ5sUAgQIECBAgAABAgQIDEbgnRlJrVS3ajx5MALtDOSsifEx7RzOUQgQIECAAAECBAisTWB/9lT5whlr2+Mu7mj27NC8btQldR+at2FJne8pLQGymQABAgQIECBAgACB7gksS5B+ZkOXT8njixOf3VA/fVjfafq2RLVRCBAgQIAAAQIECBAg0CuBVRZpqIH9ZeInNxnhEdn2xsSPbdLGJgIECBAgQIAAAQIECHRSYNkZpDuk1/ee6flxuX/XxKNn6qZ3K9k6ffLgc9NKtwQIECBAgAABAgQIEBiKwPEZyCcTqyzScEna320oAC2NwyINLUE7DAECBAgQIECAwNoFRrVIQy3h/eDE100Yn53bNyf+aPJ49ubaPKjlvf8h8dHZDe4TIECAAAECBAgQIECgDwLLLrGrMVTCU1Hl7ok3Jc6uBwoBAgQIECBAgAABAgSGJLCVBGl2vL+RBxfMVrhPgAABAgQIECBAgACBoQisuord6zLwDySembhXYtXn5ykKAQIECBAgQIAAAQIEuimwaoLzwgzjisQTEn+d+NfE7yYelKglvhUCBAgQIECAAAECBAiMTuB2GfFjE+ckKmGqVe6+mHhF4pGJExLK1gWsYrd1Ky0JECBAgAABAgS6JTCoVezWQXtMdvK9iZcnaiW7SpaeklC2LiBB2rqVlgQIECBAgAABAt0SGFSCtOoiDbNTcWQe1PeQ7jeJe+T2sMQ1ic8kFAIECBAgQIAAAQIECPRKYNUE6Zszuu9MVFJ0RmL6vaP35/7zE3+ZeEPi4oRCgAABAgQIECBAgACBXgmsmiC9LKP76kT9B7IvTbwpUSvbfTyhECBAgAABArsncHQOfXziwkRdzaEQIECAwDYEVl3F7vwco9506w34QYk6m1Rx24RCgAABAgQItC9wn6Y58m05bC2WlNVl9+R234tz/1YJhQABAgRaEKgV6r4v8bzEBxK1KENF3a/L7B6eODGhbF3AIg1bt9KSAAECBG4QeFS+/ps/XD7q6lzUkd/F70u8MnHagSRJn06zU25o6h4BAgR2TGBQizSsQ6kuuasP+HX53XTJ76fkvrJ1AQnS1q20JECAAIGDArfP/9d+Vf5emYToug1xII/PvDJnlv4eFgECBFoQGFSCtOoldht9vyIV90x8a+K+iVq0oZb6topdEBQCBAgQILCDAj+eM0U5e/QTcw5Rn1VeuC9/t7xr7tQqswoBAgQIbFFg1UUa6h23EqLvSnxn4i6JWtr7ssRrE69KvDpRXxBVCBAgQIAAgR0TOCqryT64/jC5oNwu9bfNlR0fuVvunLegkWoCBAgQ2CCwaoL0rjz/1Mk+PpXbFyYqKarlvevyOoUAAQIECBAgQIAAAQK9FVj1ErsPZqS/kviWxK0TP5aoM0aSoyAoBAgQIECgPYHL35pfwVmMYVH5cDZ85Mj88/ZFLdQTIECAwHoFbpvd1aV2P5T4jsRNE8r2BCzSsD03zyJAgMCYBSzSMObZN3YC3RKor+FkcZgml/6Os3xdhv1XiUKYjSvz+DcS9Z0kZTUBCdJqXloTIECAwEGBR1nm20uBAIEOCIw6QbpNJuDiRCVG5yTqcrufSzwnUZffVf3vJVa9dC9PGXWRII16+g2eAAEChyRwn8l/FHtN9pLfw3uycNK+F+f+rRIKAQIE2hAYdYJ0doTreucz50hnOdHmuYlKkmrZb2XrAhKkrVtpSYAAAQLzBY5O9S0Te+ZvVkuAAIEdExh1gvTZsP7mJrS1Kl79z92/uEkbm24sIEG6sYkaAgQIECBAgACBfggMKkFa5VK4EzI/tRDDezaZp6uz7f2Ju27SxiYCBAgQIECAAAECBAh0UmCVBKm+e1Rx+iYjqezxaxMXbNLGJgIECBAgQIAAAQIECHRSYJUEqQZwbqIuB3twPdhQ6v9a+O3ESYk3bNjmIQECBAgQIECAAAECBDovUN8ZWqX8fBrX/330p4m/TrwjcVGiVre7f+IrE69M1H8eqxAgQIAAAQIECBAgQGDwAidnhLXEd61WNxuX5vH/m6gzScpqAhZpWM1LawIECBAgQIAAge4IDGqRhlXPIP1W5uHyxPckKhE6NXGLRH3n6IOJWgJcIUCAAAECBAgQIECAwOAFjsgIL0m8b/AjbX+AziC1b+6IBAgQIECAAAEC6xEY1BmkVRZpuDJ+X0zUf0R32Hos7YUAAQIECBAgQIAAAQLdEVglQarvGz100vVX5bYWa7h94vg5UWebFAIECBAgQIAAAQIECAxaoFau+0xidnGGefefMmiF9Q/OJXbrN7VHAgQIECBAgACBdgQGdYndqos01PePalnvZeX9yxrYToAAAQIECBAgQIAAga4JrJog/WjXBqA/BAgQIECAAAECBAgQWJfAKt9BWtcx7YcAAQIECBAgQIAAAQKdFJAgdXJadIoAAQIECBAgQIAAgd0QWPUSuz9KJ2+9pKP1n8VenPhQ4hWJv04oBAgQIECAAAECBAgQGJzAazOiLySmK9dVIvSJxDUzddNtdXt14ocSyuYCVrHb3MdWAgQIECBAgACB7goMahW7VZnvnidclnhJ4rYzT96X+/8hcWHimYmjEt+aeHeikqdTE8piAQnSYhtbCBAgQIAAAQIEui0w6gTp7zI3dRbpsAVz9JDU15mj0ybbv3LyuBIAZbGABGmxjS0ECBAgQIAAAQLdFhhUgrTKIg11VuguiT9OVBI0r5ybymsTdfaoyscTH0icUQ8UAgQIECBAgAABAgQIdFlglQTpigyk/pPYOiu0qJycDbXPS2caHJf7qy4GMfN0dwkQIECAAAECBAgQINCOwCoJUp01+vPE4xP3mNO9Y1L33En9305uvz23t0y8b/LYDQECBAgQIECAAAECBDorsOqZnV/LSM5MvC3xZ4n3JOrM0m0S9f2jmyeenqiEqFav+1+JyxMvSigECBAgQIAAAQIECBAYnMCtMqK/SFyVqLNK0/hk7j82MV3A4Rm5f17ingllcwGLNGzuYysBAgQIECBAgEB3BQa1SMOhMB+RJ9eldnXm6BsSBaNsT0CCtD03zyJAgAABAgQIENh9gUElSKteYjfLfyAP6gyRQoAAAQIECBAgQIAAgUEIrLJIwyAGbBAECBAgQIAAAQIECBBYJCBBWiSjngABAgQIECBAgACB0QlIkEY35QZMgAABAgQIECBAgMAiAQnSIhn1BAgQIECAAAECBAiMTkCCNLopN2ACBAgQIECAAAECBBYJSJAWyagnQIAAAQIECBAgQGB0AhKk0U25ARMgQIAAAQIECBAgsEhAgrRIRj0BAgQIECBAgAABAqMTkCCNbsoNmAABAgQIECBAgACBRQISpEUy6gkQIECAAAECBAgQGJ2ABGl0U27ABAgQIECAAAECBAgsEpAgLZJRT4AAAQIECBAgQIDA6AQkSKObcgMmQIAAAQIECBAgQGCRgARpkYx6AgQIECBAgAABAgRGJyBBGt2UGzABAgQIECBAgAABAosEJEiLZNQTIECAAAECBAgQIDA6AQnS6KbcgAkQIECAAAECBAgQWCQgQVoko54AAQIECBAgQIAAgdEJSJBGN+UGTIAAAQIECBAgQIDAIgEJ0iIZ9QQIECBAgAABAgQIjE5g7+hG/OUD3pOHX534TOLzX77JIwIECBAYgMDtM4bHNM1R9zw4lsvfktsXJD548LF/CRAgQIDA+AS+IkN+fuK/zwz9hNz/7cQViesS1yTOT/xsYjfKWTlo9eOY3Ti4YxIgQGCgAo9qmsOvaprT817/i3mPraj7Vddkm0KAAAECaxLYn/3UZ9kz1rQ/u9lBgZtl3x9P1IT91eQ4+3L79kldJUZvSLwi8ZFJXSVObV96KEEKukKAAIE1CtynaQ7Le/zz8v5/3YaoutrWpI1CgAABAmsQkCCtAbGtXTw7B8ovwuY/J46YHPSnJ3W/k9tbTurqpib2NxLV/v6JNosEqU1txyJAYAQCR74tJ4muvnFyNE2Walu1UQgQIEBgDQKDSpAOWwNIl3fx1nTuFomvSVw76ejZuf32RF16V5dZzJY6c/ThxMsSP5/Ybqn9nJmos1VbKd+VRo9PHJu4dCtP0IYAAQIEFgocnS1fbJo35b342xY0enPq712/F45LXLagkWoCBAgQ2JpAJUgHEvV9z/r83esy9EUaanzvSEyTo5qsuqzio4mNyVFtq3afTNyhHhxCuV2e+/JEvVi2UvZspZE2BAgQILAlgePTKslR/R1sUbl+W/0xq9pKkBYxqSdAgMAIBeqXw5BLfdeoLpc7aWaQb8r9OyZuPlM3vVuX3N098a5pxTZvP5TnnZioRRe2Eo/b5nE8jQABAgRuLHBh0+y5vGnec+MtX6p5d+5VmyZtFQIECBAgMB6BSnbqdN/HEtPrLOrSi79OvCFx68S0nJ47/5zICkfNnaeVLd36DlJL0A5DgMBYBPa9uGlOy/v/gXyvdPq9o+lt1dW2aqMQIECAwBoE6qqp+h7/GWvYl120IPB/5xj1V8K6fK7ODL0o8buTx1fm9h8T/5aoSa02lay0XSRIbYs7HgECQxe4VRKgT+froHmfv2AmSar7VVfbmrRRCBAgQGANAhKkNSC2vYtb5ID/LfHRRFYuuj4ZqoRoGpfkfi3M8A2J3SgSpN1Qd0wCBIYucEpWqvv7DDJ//LptvmdUUfevr8s2hQABAgTWJCBBWhPkbu2mFkQ4OfFNiUqIbpLY7SJB2u0ZcHwCBIYscI8M7scnUfcVAgQIEFivwKASpKGvYjdv6msVu09MYt52dQQIECAwLIHzMpwKhQABAgQILBU4fGkLDQgQIECAAAECBAgQIDASAQnSSCbaMAkQIECAAAECBAgQWC4gQVpupAUBAgQIECBAgAABAiMRkCCNZKINkwABAgQIECBAgACB5QISpOVGWhAgQIAAAQIECBAgMBIBCdJIJtowCRAgQIAAAQIECBBYLiBBWm6kBQECBAgQIECAAAECIxGQII1kog2TAAECBAgQIECAAIHlAhKk5UZaECBAgAABAgQIECAwEgEJ0kgm2jAJECBAgAABAgQIEFguIEFabqQFAQIECBAgQIAAAQIjEZAgjWSiDZMAAQIECBAgQIAAgeUCEqTlRloQIECAAAECBAgQIDASAQnSSCbaMAkQIECAAAECBAgQWC4gQVpupAUBAgQIECBAgAABAiMRkCCNZKINkwABAgQIECBAgACB5QISpOVGWhAgQIAAAQIECBAgMBIBCdJIJtowCRAgQIAAAQIECBBYLiBBWm6kBQECBAgQIECAAAECIxGQII1kog2TAAECBAgQIECAAIHlAhKk5UZaECBAgAABAgQIECAwEgEJ0kgm2jAJECBAgAABAgQIEFguIEFabqQFAQIECBAgQIAAAQIjEZAgjWSiDZMAAQIECBAgQIAAgeUCEqTlRloQIECAAAECBAgQIDASAQnSSCbaMAkQIECAAAECBAgQWC4gQVpupAUBAgQIECBAgAABAiMRkCCNZKINkwABAgQIECBAgACB5QISpOVGWhAgQIAAAQIECBAgMBIBCdJIJtowCRAgQIAAAQIECBBYLiBBWm6kBQECBAgQIECAAAECIxGQII1kog2TAAECBAgQIECAAIHlAhKk5UZaECBAgAABAgQIECAwEgEJ0kgm2jAJECBAgAABAgQIEFguIEFabqQFAQIECBAgQIAAAQIjEZAgjWSiDZMAAQIECBAgQIAAgeUCEqTlRloQIECAAAECBAgQIDASAQnSSCbaMAkQIECAAAECBAgQWC4gQVpupAUBAgQIECBAgAABAiMRkCCNZKINkwABAgQIECBAgACB5QISpOVGWhAgQIAAAQIECBAgMBIBCdJIJtowCRAgQIAAAQIECBBYLiBBWm6kBQECBAgQIECAAAECIxGQII1kog2TAAECBAgQIECAAIHlAhKk5UZaECBAgAABAgQIECAwEgEJ0kgm2jAJECBAgAABAgQIEFguIEFabqQFAQIECBAgQIAAAQIjEZAgjWSiDZMAAQIECBAgQIAAgeUCEqTlRloQIECAAAECBAgQIDASAQnSSCbaMAkQIECAAAECBAgQWC4gQVpupAUBAgQIECBAgAABAiMRkCCNZKINkwABAgQIECBAgACB5QISpOVGWhAgQIAAAQIECBAgMBIBCdJIJtowCRAgQIAAAQIECBBYLiBBWm6kBQECBAgQIECAAAECIxGQII1kog2TAAECBAgQIECAAIHlAhKk5UZaECBAgAABAgQIECAwEgEJ0kgm2jAJECBAgAABAgQIEFguIEFabqQFAQIECBAgQIAAAQIjEZAgjWSiDZMAAQIECBAgQIAAgeUCEqTlRloQIECAAAECBAgQIDASAQnSSCbaMAkQIECAAAECBAgQWC4gQVpupAUBAgQIECBAgAABAiMRkCCNZKINkwABAgQIECBAgACB5QISpOVGWhAgQIAAAQIECBAgMBIBCdJIJtowCRAgQIAAAQIECBBYLiBBWm6kBQECBAgQIECAAAECIxGQII1kog2TAAECBAgQIECAAIHlAhKk5UZaECBAgAABAgQIECAwEgEJ0kgm2jAJECBAgAABAgQIEFguIEFabqQFAQIECBAgQIAAAQIjEZAgjWSiDZMAAQIECBAgQIAAgeUCEqTlRloQIECAAAECBAgQIDASAQnSSCbaMAkQIECAAAECBAgQWC4gQVpupAUBAgQIECBAgAABAiMRkCCNZKINkwABAgQIECBAgACB5QISpOVGWhAgQIAAAQIECBAgMBIBCdJIJtowCRAgQIAAAQIECBBYLiBBWm6kBQECBAgQIECAAAECIxGQII1kog2TAAECBAgQIECAAIHlAhKk5UZaECBAgAABAgQIECAwEgEJ0kgm2jAJECBAgAABAgQIEFguIEFabqQFAQIECBAgQIAAAQIjEZAgjWSiDZMAAQIECBAgQIAAgeUCEqTlRloQIECAAAECBAgQIDASAQnSSCbaMAkQIECAAAECBAgQWC4gQVpupAUBAgQIECBAgAABAiMRkCCNZKINkwABAgQIECBAgACB5QISpOVGWhAgQIAAAQIECBAgMBIBCdJIJtowCRAgQIAAAQIECBBYLiBBWm6kBQECBAgQIECAAAECIxGQII1kog2TAAECBAgQIECAAIHlAhKk5UZaECBAgAABAgQIECAwEgEJ0kgm2jAJECBAgAABAgQIEFguIEFabqQFAQIECBAgQIAAAQIjEZAgjWSiDZMAAQIECBAgQIAAgeUCEqTlRloQIECAAAECBAgQIDASAQnSSCbaMAkQIECAAAECBAgQWC4gQVpupAUBAgQIECBAgAABAiMRkCCNZKINkwABAgQIECBAgACB5QISpOVGWhAgQIAAAQIECBAgMBIBCdJIJtowCRAgQIAAAQIECBBYLiBBWm6kBQECBAgQIECAAAECIxGQIDXNzTPXpyZYjORFb5gECBAgQIAAAQIEFglICprmCcH5p8RNFiGpJ0CAAAECBAgQIEBgHAJ7Bz7M0zK+Y5aM8eTJ9nvk9guT+x/L7ccn990QIECAAAECBAgQIEBgEALvzCiu20Y8ueXRnzXp47JkruVuORwBAgQIECBAgACBpQL706I+c5+xtGUPGgz9DNLzMwe/njgy8apEXUq3sXx7Kr4p8ZuJyycb/2Zyu92bm+aJz0jUi2Ur5Q5baaQNAQIECBAgQIAAAQI7KzCGBOnNIfz9xP0Tf5l4bqIy3Gn51dypBOmXEp+bVrolQIAAAQIECBAgQIDAUAWOyMCelbg28drE9HtHudtUglQJU5312a3iErvdkndcAgQIECBAgACBQxUY1CV2Y1nF7kBmvVar+47E1ybenfjBhEKAAAECBAgQIECAAIEvCYwlQZoO+PW5Uyvb/UXiZYm69O7EhEKAAAECBAgQIECAAIFm6N9BmjfFF6XyBxKvTtT3kY5PKAQIECBAgAABAgQIEGjGdgZpdspfkgffmHhl4o2JqxIKAQIECBAgQIAAAQIjFhjjGaTZ6f5wHjxitsJ9AgQIECBAgAABAgTGKzDmM0jjnXUjJ0CAAAECBAgQIEBgroAEaS6LSgIECBAgQIAAAQIExiggQRrjrBszAQIECBAgQIAAAQJzBSRIc1lUEiBAgAABAgQIECAwRgEJ0hhn3ZgJECBAgAABAgQIEJgrIEGay6KSAAECBAgQIECAAIExCkiQxjjrxkyAAAECBAgQIECAwFwBCdJcFpUECBAgQIAAAQIECIxRQII0xlk3ZgIECBAgQIAAAQIE5gpIkOayqCRAgAABAgQIECBAYIwCEqQxzroxEyBAgAABAgQIECAwV0CCNJdFJQECBAgQIECAAAECYxSQII1x1o2ZAAECBAgQIECAAIG5AhKkuSwqCRAgQIAAAQIECBAYo4AEaYyzbswECBAgQIAAAQIECMwVkCDNZVFJgAABAgQIECBAgMAYBSRIY5x1YyZAgAABAgQIECBAYK6ABGkui0oCBAgQIECAAAECBMYoIEEa46wbMwECBAgQIECAAAECcwUkSHNZVBIgQIAAAQIECBAgMEYBCdIYZ92YCRAgQIAAAQIECBCYKyBBmsuikgABAgQIECBAgACBMQpIkMY468ZMgAABAgQIECBAgMBcAQnSXBaVBAgQIECAAAECBAiMUUCCNMZZN2YCBAgQIECAAAECBOYKSJDmsqgkQIAAAQIECBAgQGCMAhKkMc66MRMgQIAAAQIECBAgMFdAgjSXRSUBAgQIECBAgAABAmMUkCCNcdaNmQABAgQIECBAgACBuQISpLksKgkQIECAAAECBAgQGKOABGmMs27MBAgQIECAAAECBAjMFZAgzWVRSYAAAQIECBAgQIDAGAUkSGOcdWMmQIAAAQIECBAgQGCugARpLotKAgQIECBAgAABAgTGKCBBGuOsGzMBAgQIECBAgAABAnMFJEhzWVQSIECAAAECBAgQIDBGAQnSGGfdmAkQIECAAAECBAgQmCsgQZrLopIAAQIECBAgQIAAgTEKSJDGOOvGTIAAAQIECBAgQIDAXAEJ0lwWlQQIECBAgAABAgQIjFFAgjTGWTdmAgQIECBAgJMOVGkAAB+ESURBVAABAgTmCkiQ5rKoJECAAAECBAgQIEBgjAISpDHOujETIECAAAECBAgQIDBXQII0l0UlAQIECBAgQIAAAQJjFJAgjXHWjZkAAQIECBAgQIAAgbkCe+fWqiRAgAABAgQIEGhb4PY54GOa5qh7Hjzw5W/J7QsSHzz4eBD/HpVR/GjTHPHAptlzs6Y58L6muealqTt3EKMzCAIE1iZwVvZ0XeKYte3RjggQIECAAIE+CTyqaQ6/qmlOv6JpfjGfCSrqftU12TaIcqckRh9rmpMyrsde2zRPyxgflvEdfnXT7H1lRrh/EKMc5yBq7uqz7BnjHL5R74SABGknVO2TAAECBAj0Q+A+TXPYNU3zvHzAvG5DVF1ta9Km1yVnjio5emASoks2jPH8PD7pQM4oPafXIxx35yVI457/HRm9BGlHWO2UAAECBAj0QeDIt+UkUc6ibEyOpo9rW7XpdXncwTNHG5Oj6RjPnSaCJ/d6lOPtvARpvHO/YyOXIO0YrR0TIECAAIFOCxyd3uUM0Zs2nFWZJg51W9uqTVNte1qOOOfgZXWz49p4/8Rcetf8cE8HOPZuDypBsord2F/Oxk+AAAECBAjspsDxOXg+j33FJn24flt9Zqu2PS21IMMtD9u88zfP95KaEzdvYyuBnReQIO28sSMQIECAAAECBBYJXJjv3lzeNO9ZtD31705UmyZt+1pqtbp35lLBRaWG9+F9+edDi1qoJ0BgXAIusRvXfBstAQIECBCYEdj34qY5LYsUHJhzmV3V1bZq0+vygIOr1dWCDBsvravHT03s+1xGWMuAK/0TGNQldv3jH2aPJUjDnFejIkCAAAECWxG4VZKDTzfNmVc2zQUzCUTdr7ra1qRN30st5V2r1dWCDNMk6bLcr+To+pX6HtH3EY64/xKkEU/+Tg1dgrRTsvZLgAABAgT6IXBKVqr7+3Q138O57WUHo+5fX5dtgyj5EF1LeVcyVAsy3DHj3J9lv68/cyQ56vcUDypBWvJluX7PVI96XwnS7ySOTVzao37rKgECBAgQILBegXtkd3eb7PLtuT1vvbvvxN5qKe/7JWpBhvrO0esS9SUkpb8ClSDl7GBzz8Rb+zsMPe+SgDNIXZoNfSFAgAABAgQIEFhFYFBnkKxit8rUa0uAAAECBAgQIECAwKAFJEiDnl6DI0CAAAECBAgQIEBgFQEJ0ipa2hIgQIAAAQIECBAgMGgBCdKgp9fgCBAgQIAAAQIECBBYRUCCtIqWtgQIECBAgAABAgQIDFpAgjTo6TU4AgQIECBAgAABAgRWEZAgraKlLQECBAgQIECAAAECgxaQIA16eg2OAAECBAgQIECAAIFVBCRIq2hpS4AAAQIECBAgQIDAoAUkSIOeXoMjQIAAAQIECBAgQGAVAQnSKlraEiBAgAABAgQIECAwaAEJ0qCn1+AIECBAgAABAgQIEFhFQIK0ipa2BAgQIECAAAECBAgMWkCCNOjpNTgCBAgQIECAAAECBFYRkCCtoqUtAQIECBAgQIAAAQKDFpAgDXp6DY4AAQIECBAgQIAAgVUEJEiraGlLgAABAgQIECBAgMCgBSRIg55egyNAgAABAgQIECBAYBUBCdIqWtoSIECAAAECBAgQIDBoAQnSoKfX4AgQIECAAAECBAgQWEVAgrSKlrYECBAgQIAAAQIECAxaQII06Ok1OAIECBAgQIAAAQIEVhGQIK2ipS0BAgQIECBAgAABAoMWkCANenoNjgABAgQIECBAgACBVQQkSKtoaUuAAAECBAgQIECAwKAFJEiDnl6DI0CAAAECBAgQIEBgFQEJ0ipa2hIgQIAAAQIECBAgMGgBCdKgp9fgCBAgQIAAAQIECBBYRUCCtIqWtgQIECBAgAABAgQIDFpAgjTo6TU4AgQIECBAgAABAgRWEZAgraKlLQECBAgQIECAAAECgxaQIA16eg2OAAECBAgQIECAAIFVBCRIq2hpS4AAAQIECBAgQIDAoAUkSIOeXoMjQIAAAQIECBAgQGAVAQnSKlraEiBAgAABAgQIECAwaAEJ0qCn1+AIECBAgAABAgQIEFhFQIK0ipa2BAgQIECAAAECBAgMWkCCNOjpNTgCBAgQIECAAAECBFYRkCCtoqUtAQIECBAgQIAAAQKDFpAgDXp6DY4AAQIECBAgQIAAgVUEJEiraGlLgAABAgQIECBAgMCgBSRIg55egyNAgAABAgQIECBAYBUBCdIqWtoSIECAAAECBAgQIDBoAQnSoKfX4AgQIECAAAECBAgQWEVAgrSKlrYECBAgQIAAAQIECAxaYO+gR2dwBAgQIECAwFAEjspAzkyckrgo8frEJxIKAQIECByCwLIzZnuy7xMTRx7CMbbz1LPypOsSx2znyZ5DgAABAgQGLvCIptn3uabZf1XT3PGy/Kq+omkOu6Zp9jwn494/8LEbHoE+CNTPYX2WPaMPndXHprlFEP4gkTfW5pLEGxL3Sswrp6eyJvfJ8zbuYJ0EaQdx7ZoAAQIEei2Q5KiSoafm9/NliesmcW5uTzrQNHtf2evR6TyBYQhIkHo0j8emrx9N5E20uTjxvsS1ibzRNk9PbCwSpI0iHhMgQIAAgd0TyGV1deaokqNpYjR7e37qD7863XvA7nXRkQkQiMCgEqRll5z1fcafmAHcJvFLia9MnJq4R+I9iSclnp1QCBAgQIAAgW4K5DtHhx3XNE9Y0Ls7p/6hSZL2PHJBA9UECBBYWWDoizTcMyKfTvxyov7CVOXtiXsn/jTx04l/TTwzsc5SXyCt42z1uuj67lOVOrulECBAgAABAgcF8vv0dvne0VGbfF45PdvOyR9A89UkhQABAmsQ2OQNZw173/1dnJwuvDkxTY6mParL7R482faruf1I4uWJdZUPZ0ffn9i3xR1+bdo9K1GX/ikECBAgQIDAQYGsVnfhkqtdPpUzSNd8BhgBAgQIbE3gnDT7fGLRqnSVQH00cXniXond+g5SrfiRN/gtn3FKU4UAAQIECAxeIL+na4GGWpBh9rtH0/uXpL5WtGt+cvASBkig2wK+g9Tt+fmy3r0uj05I/Eri1l+25eCDT+Tm/okvJv4s8aCEQoAAAQIECHRDIL+nD39e0zzyyqZ594YeXZrH358rRC67MHd+b8NGDwkQIEBggUCdOXpvos7O1OVrP5iYV+rMUf2nc9Wu4imJNoszSG1qOxYBAgQI9Ekgf5mupbxrtbqHXdU0T8vv6cfmO7sn5czRER/LQO7Up8HoK4GBCgzqDNJA5+jLhnVsHv1G4oLEv/uyLV/+4PZ5WJfkSZC+3MUjAgQIECDQBYEHZLW6lzTN0eclMarf149LZBlwhQCBDghIkDowCdvtwpIvel6/21oGvNYNbbM4g9SmtmMRIECAAAECBAisU2BQCdLQV7HbOPFbWUY7f5lSCBAgQIAAAQIECBAYo8BWzqiM0cWYCRAgQIAAAQIECBAYoYAEaYSTbsgECBAgQIAAAQIECMwXkCDNd1FLgAABAgQIECBAgMAIBSRII5x0QyZAgAABAgQIECBAYL6ABGm+i1oCBAgQIECAAAECBEYoIEEa4aQbMgECBAgQIECAAAEC8wUkSPNd1BIgQIAAAQIECBAgMEIBCdIIJ92QCRAgQIAAAQIECBCYLyBBmu+ilgABAgQIECBAgACBEQpIkEY46YZMgAABAgQIECBAgMB8AQnSfBe1BAgQIECAAAECBAiMUECCNMJJN2QCBAgQIECAAAECBOYLSJDmu6glQIAAAQIECBAgQGCEAhKkEU66IRMgQIAAAQIECBAgMF9g7/xqtbsksD/H3bdLx3ZYAgQIECBAgAABAtsROGw7T+rqcyRI3ZiZqybd+GI3uqMXBAgQIECAAAECBFYWuHLlZ3TwCYPK9jrou0qX7p7GT08cm3hxQum3wHPS/Rck3tPvYYy+998QgcckHjd6if4DPGoyhBf3fyijH4H312G8BLy/DmMeaxSPSlySeFLi7QmFwFoFXpy9VSj9F7g0Q3hg/4cx+hHUHNZcKv0XeHGGUKH0X8D7a//nsEbg/XUY81ijePEk6v4gikUaBjGNBkGAAAECBAgQIECAwDoEJEjrULQPAgQIECBAgAABAgQGISBBGsQ0GgQBAgQIECBAgAABAusQkCCtQ9E+CBAgQIAAAQIECBAYhIAEaRDTaBAECBAgQIAAAQIECKxDQIK0DkX7IECAAAECBAgQIEBgEAISpEFMo0EQIECAAAECBAgQILAOAQnSOhTtgwABAgQIECBAgACBQQhIkAYxjQZBgAABAgQIECBAgMA6BPauYyf2sTaBK9e2JzvabYGay6t2uxOOf8gCNYd+Lg+ZsRM7MI+dmIa1dML761oYd30n3l93fQrW1gHvr2ujtKN5AjdNZYXSf4FTMgRnaPs/jzWHNZdK/wW8v/Z/Dqcj8P46lej3rffXfs/fbO+9v85quE+AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwCoCe1ZprG1rAqfkSGckvm5yxM+2dmQHOlSB+pmqufumxNWJzyWUfgr4OeznvG3W61tn43ckPp24fLOGtnVW4Jbp2X0S9fP5xcSlCaV/Al+VLn9r4o6JA4mLE0o/BG6Xbj4o8e5Nuuuz0CY4Nq0uUG/8f5y4bkO8Po/rl4HSbYE7pHv/lJidv/fm8W263W292yDg53ADyEAe1i/styTq57P+iKH0S+D4dPfsxOz7ayW5v9CvYYy+t0dE4IWJaxPTuaz7v5M4MqF0W6B+Dv8xUX+cWFR8Floko35bAofnWW9M1BvGHyS+O3GfxO8l6s3jPQlvHkHoaDks/XpT4guJ/5D4msRZicsSH0kck1C6L+DnsPtztN0e/tc8cfqBTIK0XcXde97fTebvV3J758SjEvUHqJrTH0wo/RD49XSz5uzPEvdPnJl4TaLqfjOhdFfgxHTt3ETN1aIEyWeh7s5fb3t2n8mLrv7CubFM3zwesXGDx50R+In0pN40HrOhR5Ukzavf0MzDjgj4OezIRKy5G3XJ61WJurSufh4lSEHoUanLeWrenr+hz3UZetW/cUO9h90UqA/P9UfE+nB9wkwXj5vU1xnBvTP17nZH4KHpyicT9fN2ILEoQfJZKDjKegV+JLu7IPGjc3Zbfx2rF+WT52xT1Q2Bv003rkjcZEN36nR0vemft6Hew24K+Dns5rwcSq/q7O0HEm9OPDNR76XfklD6I/CGdPWixLyrKO6X+nv0Zyij7umxGX19N/cf5ijUFRj1s/kVc7ap2l2BuqKp5uYziYckav4WJUg+CwVHaU/gSTlUvTjr0i2lewL70qX6i8r5C7r2jtRfmah2Sn8F/Bz2c+7quw31V+uvTjwjUe+lEqQg9KjU/L1q0t86C/H1idMSzjZMUHp0U3+oqJ/Bmr9puX3uXJN457TCbacE6lLIpyVuOunVogTJZ6FOTdvwO3OzDPHCRK3wcsvhD7eXI6y/eNUb/hsW9P51k+23XrBddfcF/Bx2f47m9fB7U1k/m/9xslGCNE+p23XHp3s1h89N1GU+9fuwHlfUCq8PSyj9Eajvj707cVnifyXqe9Z1NuJfEs4EBqEHZVGC5LNQDyZvKF08JgN5W6J+ETx6KIMa4Di+ZjJHr1gwtqqvObzDgu2quy3g57Db87Ood/UHpQsTtTLotEiQphL9uf3adLXeP9+VuCLxa4lKlJ6QqASptn1XQumHQC2EU3NX8zYbT8nj2qZ0X2BRguSzUPfnrrM93J+e1XdUNsa8DtdfrGvBhnoD+Y15DdR1RuAr05Oapz9c0KOzJ9tPWbBddXcF/Bx2d26W9ezP0uDfEjefaShBmsHoyd1vTj+nH6T/rw19PnOy7Z821HvYTYH6DFSfa+qS9J9O1BmHiv8nUcnvGxP1Byml2wKLEiSfhbo9b53u3Q+nd9M3+tnbIzf0uq7HrS8VV5tf3rDNw+4J7E2Xain2Nyzo2htTX3N50oLtqrsp4Oewm/OylV49No3qZ+4HEkfPRJ19qPr7Turq+yxKtwW+Kt2rOasVCDeWOuPwr4naXn94VLotUGf6aq6ePKebT5xsq7ODSrcFFiVIPgt1e9463btvT+/+dE7UX1Wm5Rty55OJWpL2rGml284LfCo9fNeCXp6f+ksTexZsV909AT+H3ZuTVXr0+jSuD2LL4k6r7FTbXRGoD131Bf73LDj676e+5tklzAuAOlT9nMlcfeOcPtUiKjWPL5qzTVW3BBYlSNXLwXwWqjcepT2BN+RQFYvK3bPhzxO1EsiDEq9NKP0QqEs8vjVRl2TVUpjTUpf31DX0b03UL3ml+wJ+Drs/R8t6+EdpMO8D9b1Sf9fEKxL1i/yihNJtgavTvX9JVDJbZwMvS8yWW+VBzWO1UbotUFdaVKnL6jaW6R+K/SFxo0y/Hvss1K/56kVvj0ovL0jUdbhn9KLHOjkr8O/yoP769XOzlbn/nyf1D99Q72E3BfwcdnNe1tWrZ2RH9XP6Levaof20IvDjOUrN21M2HO20PK4Eqq7MULov8Ih0sebxlYmNCzI8a7LNlTOB6HjZ7AySz0Idn7w+du+p6XS9cXwi8ccL4kdTr3RToN7s/zFRZ4melviOxC9PHp+dW6UfAn4O+zFP2+2lBGm7crv7vCNy+Hp/rd+Rv5V4QKI+SNciHJ9KnJJQui9Q3/mrq2RqHl+VqO8I1ly+MFF1b0k4gxSEjpfNEiSfhTo+eX3s3jvS6XqD2CysZtftma3L685J1GUE03msXwa3TCj9EPBz2I952m4vJUjbldv95x2XLrw0cSBR76/1Pd2/SdQlk0p/BGqVumcmpvNYc3llohLfExJK9wU2S5Cq9z4LdX8O9ZDArgjUL/K7JSRGu8LvoAQIDFigvqtyWqLeZ5X+CuxN109NfF1iX3+HoeebCPgstAmOTQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMANAt+Uuw9N7L+hyj0CBAgQIECAAAECBAjsnMC+7PqJiR/YuUNse8+vyDOvS9x823vo3hPb9m77eN0T1yMCBAgcgsDhh/BcTyVAgACBfgp8f7r9/yWO7WD3/yF9ek3iyg72bbtdatu77eNt18XzCBAg0EmBvZ3slU4RIECAwFgF/ttYB27cBAgQINANgT3d6IZeECBAgEBLAt+W4zw4cffEZxInJi5IHEhUuVniexIPS3xv4vaJ2vZviWmp59TleZcnrko8JPGoxGmJSxPbbZunNvdJ3Dfx/sTViVWOleablltma43tPyZOT1yUuDCxsXx9Kh6ZqDHeKVHj/1Rittw3D+6R+MfEXRM/lPi+RF0a+IHENYkqy7yrzR0Sj0jUMet45TprmIfXm6zreLU/hQABAgQIECBAgACBCLw0Ud/xmca1uV8fyqtUQlQJQ227OHHF5H592P+5xLRUIlRtnpp47+R+XRJXdZUw/VhiWlZpW8/Z+B2kVZ8/Pe7G27NSUf2r8f7r5H6Nq5Kl2fLsPKjErNp9cnJb7ap+9qqLsyfbf2bSpsZd+6/4h8RNE1U2867tP5uoBKyO97FEHbuO9/TEYYlpWdfxpvtzS4AAAQIECBAgQIDARKDOVNQH+UfPiByf+19IfDZRZ5f2JI5J1FmR+gB/WeKERJXTEtNk4+W5f0aikodKsKrt5xJHJ6qs0rbaL0qQKoFYdqx6/rxSZ40q8Xhdos4iVfm6xD8lKiGcjquSpRrXuYlbJKrUGbVXJaq+kplpOTt3qk+fTvx4os501b5fnai2v5CYlnneta36VW3/KnHrRJXjEr+fqPofSUzLOo433ZdbAgQIECBAgAABAgRmBOZ9YP+WbK/EYDZpmj7lT3OnPrB/w6RimvR8OI83LsddSUy1rTZVVmlb7RclSB/OtmXHqufPK3+TykrwKoGZLXWp4T8n6lK6OltzUaISxGnClLvXl0oU66zTFxN1v0olLDXOx9SDmVKJV9XX9mmZ513b3peotnerBzOljlH9rTNY07NI6zjezCHcJUCAAIFFArOXCyxqo54AAQIEhi/wtgzxATPD3Jf7t0/Ud3WmZ1OOntled9+e2Lja3IdrQ8rxB2++9O8qbb/0pJk7233+4dnHNybemtj4PaI621NR5XaJmyRekqjLC2fLpXnwR4mfSJyaqL5My1umdya3H57cbhz/hmbXH+tOqfxA4qrEaRsanJfH907UmaVPzGzb7vFmduEuAQIECGwmIEHaTMc2AgQIjEvgazLcuozsvom6X78j6jKyOnNSZXo24+CjGyccVX/FZGMlJrNlY3JS2xa1nX3e9P52n19JXp2R+dh0RwtuK1mp8pGDNzf6d1pfLrMJ0sZ+bXVMd5gcoW7fdaOj3VBRx5tNkLZ7vBv26B4BAgQIbCpQv/wUAgQIECBwagjq7MRxiT9P1JmUdybqTMZTEv8psbFU8rTVskrbefvc7vPr7EyVjWe/Dtbe8G+dJapSydS8Ui5VpgnQwUcHE8jp/VVup/sp62du8sT3bNi2XYcNu/GQAAECBBYJSJAWyagnQIDAuAQen+HWQgOPSvyPxGy54+TBntnKntz/aPpZlwHefk5/b566lyUqSfmfk+31HaJ5ZVo/PZM0r80qdf+SxvX9o5slavGIjeWbU1Gr2U3P3m3c7jEBAgQI7JDAxksgdugwdkuAAAECHRKYnlWZPVvy1ZP+XbChn3fJ4zMmdfs2bOvDwzrjck7irol7behwnRU7M1F/LKz/d+htie9M3D0xW2pxiockymazy+FmnzN7f5735Wnw2kQt0PDA2ca5//WJNyV+L1FJ1Kpl3vFW3Yf2BAgQGK2ABGm0U2/gBAiMWODTk7H/ZG5/NXGbxOsndb+e2x9K3DPx84n6EH8gUWX6f/scfNSff5+YrtYlbbUgw08lHpB4XqLqP5R4fqJKedRy4H+ZqO9iVfJU7f8qcXHioYntJCzzvLOr6/dd/frDxJMT90/8XOJPEnW27tGJabKTu1sui4635R1oSIAAAQIECBAgQGBMAnXG5H8n6sN3feB/eKI+kP92ohKEqqv4VOKsRJ1RqcfTRKJWXKvHz0lsLE9NRW2792TDKm3rKa9I1PPr8rcqqz7/4LNu/G+dlfnbRO17GpX83T4xW+6SB3+fmLap5bYrYaozULPl7DyoNifNVuZ+/eGx6qcJZ22e5131VU5N1NmiupxuesyP5/6PJGbLuo43u0/3CRAgQIAAAQIECBCYETgq979i5nHdPT5RS3vfuh4MsEzHt+xsWLU7LbF/jQbzvKe7Pzp3yv22iUpW11E2O9469m8fBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwP9phw5IAAAAAAT9f92OQCdowIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABAwYMGDBgwIABA4uBAHQ7QOtSzGyWAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] diff --git a/weeks/week03/02_Mann_Whitney.ipynb b/weeks/week03/02_Mann_Whitney.ipynb index 1716c4d..2074769 100644 --- a/weeks/week03/02_Mann_Whitney.ipynb +++ b/weeks/week03/02_Mann_Whitney.ipynb @@ -549,21 +549,11 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "The following objects are masked from ad13b (pos = 5):\n", - "\n", - " cohort.f2, id.f2, normal.f2, nxf1.f2, raw.f2\n", - "\n" - ] - }, { "data": { "text/html": [ @@ -597,7 +587,7 @@ "[1] \"id.f2\" \"nxf1.f2\" \"raw.f2\" \"normal.f2\" \"cohort.f2\"" ] }, - "execution_count": 41, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -617,22 +607,28 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { - "ename": "ERROR", - "evalue": "Error in stopifnot(is.numeric(x)): object 'normal' not found\n", - "output_type": "error", - "traceback": [ - "Error in stopifnot(is.numeric(x)): object 'normal' not found\n" - ] + "data": { + "text/plain": [ + "\n", + "\tShapiro-Wilk normality test\n", + "\n", + "data: normal.f2[1:6]\n", + "W = 0.63073, p-value = 0.001059\n" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "shapiro.test(normal[1:6])" + "shapiro.test(normal.f2[1:6])" ] }, { @@ -644,22 +640,28 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { - "ename": "ERROR", - "evalue": "Error in stopifnot(is.numeric(x)): object 'normal' not found\n", - "output_type": "error", - "traceback": [ - "Error in stopifnot(is.numeric(x)): object 'normal' not found\n" - ] + "data": { + "text/plain": [ + "\n", + "\tShapiro-Wilk normality test\n", + "\n", + "data: normal.f2[7:12]\n", + "W = 0.92503, p-value = 0.5423\n" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "shapiro.test(normal[7:12])" + "shapiro.test(normal.f2[7:12])" ] }, { @@ -671,22 +673,29 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { - "ename": "ERROR", - "evalue": "Error in wilcox.test(normal[1:6], normal[7:12], paired = F, alternative = \"less\"): object 'normal' not found\n", - "output_type": "error", - "traceback": [ - "Error in wilcox.test(normal[1:6], normal[7:12], paired = F, alternative = \"less\"): object 'normal' not found\n" - ] + "data": { + "text/plain": [ + "\n", + "\tWilcoxon rank sum test\n", + "\n", + "data: normal.f2[1:6] and normal.f2[7:12]\n", + "W = 14, p-value = 0.2944\n", + "alternative hypothesis: true location shift is less than 0\n" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "wilcox.test(normal[1:6],normal[7:12],paired=F,alternative=\"less\")" + "wilcox.test(normal.f2[1:6],normal.f2[7:12],paired=F,alternative=\"less\")" ] }, { @@ -698,31 +707,44 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "ename": "ERROR", - "evalue": "Error in eval(expr, envir, enclos): object 'normal' not found\n", + "evalue": "Error in file(con, \"rb\"): cannot open the connection\n", "output_type": "error", "traceback": [ - "Error in eval(expr, envir, enclos): object 'normal' not found\n" + "Error in file(con, \"rb\"): cannot open the connection\n" ] }, { "ename": "ERROR", - "evalue": "Error in eval(expr, envir, enclos): object 'normal' not found\n", + "evalue": "Error in file(con, \"rb\"): cannot open the connection\n", "output_type": "error", "traceback": [ - "Error in eval(expr, envir, enclos): object 'normal' not found\n" + "Error in file(con, \"rb\"): cannot open the connection\n" ] + }, + { + "data": { + "text/plain": [ + "plot without title" + ] + }, + "metadata": { + "image/svg+xml": { + "isolated": true + } + }, + "output_type": "display_data" } ], "source": [ - "plot(normal~nxf1)\n", - "points(normal~nxf1,col=\"darkgreen\")" + "plot(normal.f2~nxf1.f2)\n", + "points(normal.f2~nxf1.f2,col=\"darkgreen\")" ] }, { @@ -734,7 +756,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 8, "metadata": { "collapsed": false }, @@ -743,11 +765,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "The following objects are masked from ad13b (pos = 3):\n", - "\n", - " cohort.f2, id.f2, normal.f2, nxf1.f2, raw.f2\n", - "\n", - "The following objects are masked from ad13b (pos = 6):\n", + "The following objects are masked from ad13b:\n", "\n", " cohort.f2, id.f2, normal.f2, nxf1.f2, raw.f2\n", "\n" @@ -786,7 +804,7 @@ "[1] \"id.f2\" \"nxf1.f2\" \"raw.f2\" \"normal.f2\" \"cohort.f2\"" ] }, - "execution_count": 46, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -806,7 +824,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 9, "metadata": { "collapsed": false }, @@ -821,7 +839,7 @@ "W = 0.70643, p-value = 9.494e-05\n" ] }, - "execution_count": 47, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -839,7 +857,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 10, "metadata": { "collapsed": false }, @@ -854,7 +872,7 @@ "W = 0.62012, p-value = 0.0001587\n" ] }, - "execution_count": 48, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -940,39 +958,38 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { - "ename": "ERROR", - "evalue": "Error in eval(expr, envir, enclos): object 'normal' not found\n", - "output_type": "error", - "traceback": [ - "Error in eval(expr, envir, enclos): object 'normal' not found\n" - ] - }, - { - "ename": "ERROR", - "evalue": "Error in eval(expr, envir, enclos): object 'normal' not found\n", - "output_type": "error", - "traceback": [ - "Error in eval(expr, envir, enclos): object 'normal' not found\n" + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning message:\n", + "In wilcox.test.default(grpB, grpC, paired = F, alternative = \"less\"): cannot compute exact p-value with ties" ] }, { - "ename": "ERROR", - "evalue": "Error in wilcox.test(grpB, grpC, paired = F, alternative = \"less\"): object 'grpB' not found\n", - "output_type": "error", - "traceback": [ - "Error in wilcox.test(grpB, grpC, paired = F, alternative = \"less\"): object 'grpB' not found\n" - ] + "data": { + "text/plain": [ + "\n", + "\tWilcoxon rank sum test with continuity correction\n", + "\n", + "data: grpB and grpC\n", + "W = 124, p-value = 0.00999\n", + "alternative hypothesis: true location shift is less than 0\n" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "grpB<-c(normal.f2[1:18],normal[1:6])\n", - "grpC<-c(normal.f2[19:30],normal[7:12])\n", + "grpB<-c(normal.f2[1:18],normal.f2[1:6])\n", + "grpC<-c(normal.f2[19:30],normal.f2[7:12])\n", "wilcox.test(grpB,grpC,paired=F,alternative=\"less\")" ] }, @@ -985,18 +1002,39 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "ename": "ERROR", - "evalue": "Error in boxplot(grpB, grpC): object 'grpB' not found\n", + "evalue": "Error in file(con, \"rb\"): cannot open the connection\n", + "output_type": "error", + "traceback": [ + "Error in file(con, \"rb\"): cannot open the connection\n" + ] + }, + { + "ename": "ERROR", + "evalue": "Error in file(con, \"rb\"): cannot open the connection\n", "output_type": "error", "traceback": [ - "Error in boxplot(grpB, grpC): object 'grpB' not found\n" + "Error in file(con, \"rb\"): cannot open the connection\n" ] + }, + { + "data": { + "text/plain": [ + "plot without title" + ] + }, + "metadata": { + "image/svg+xml": { + "isolated": true + } + }, + "output_type": "display_data" } ], "source": [ diff --git a/weeks/week03/homework.ipynb b/weeks/week03/homework.ipynb index 9a17a19..607dc81 100644 --- a/weeks/week03/homework.ipynb +++ b/weeks/week03/homework.ipynb @@ -23,7 +23,7 @@ "cell_type": "raw", "metadata": {}, "source": [ - " " + "Two-tailed, becuase relative gene expression could go in either direction (up or down)" ] }, { @@ -36,7 +36,9 @@ { "cell_type": "raw", "metadata": {}, - "source": [] + "source": [ + "Mann-Whitney U Test/Wilcoxon rank sum test The data are not explicitly paired, thus the Wilcoxon signed rank test cannot be used. Tha data do fit the assumptions of the Mann-Whitney U Test/Wilcoxon rank sum test however." + ] }, { "cell_type": "markdown", @@ -46,9 +48,285 @@ ] }, { - "cell_type": "raw", - "metadata": {}, - "source": [] + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The following objects are masked from b6 (pos = 3):\n", + "\n", + " cohort, id, normal, nxf1, raw\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
    \n", + "\t
  1. 'id'
  2. \n", + "\t
  3. 'nxf1'
  4. \n", + "\t
  5. 'raw'
  6. \n", + "\t
  7. 'normal'
  8. \n", + "\t
  9. 'cohort'
  10. \n", + "
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'id'\n", + "\\item 'nxf1'\n", + "\\item 'raw'\n", + "\\item 'normal'\n", + "\\item 'cohort'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'id'\n", + "2. 'nxf1'\n", + "3. 'raw'\n", + "4. 'normal'\n", + "5. 'cohort'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"id\" \"nxf1\" \"raw\" \"normal\" \"cohort\"" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
idnxf1rawnormalcohort
1N30F4.192B0.0054738810.002223781B6
2N30F4.196B0.0052682190.00214023B6
3N30F4.202B0.02197720.008928305B6
4N30F4.207B0.0029788390.001210162B6
5N30F4.217B0.0031768750.001290615B6
6N30F4.218B0.0036228040.001471775B6
7N30F4.199C0.026494440.01076345B6
8N30F4.210C0.0042818120.001739499B6
9N30F4.215C0.0062761290.002549696B6
10N30F4.216C0.0079623580.003234732B6
11N30F4.220C0.029519410.01199235B6
12N30F4.222C0.013544320.005502421B6
\n" + ], + "text/latex": [ + "\\begin{tabular}{r|lllll}\n", + " & id & nxf1 & raw & normal & cohort\\\\\n", + "\\hline\n", + "\t1 & N30F4.192 & B & 0.005473881 & 0.002223781 & B6\\\\\n", + "\t2 & N30F4.196 & B & 0.005268219 & 0.00214023 & B6\\\\\n", + "\t3 & N30F4.202 & B & 0.0219772 & 0.008928305 & B6\\\\\n", + "\t4 & N30F4.207 & B & 0.002978839 & 0.001210162 & B6\\\\\n", + "\t5 & N30F4.217 & B & 0.003176875 & 0.001290615 & B6\\\\\n", + "\t6 & N30F4.218 & B & 0.003622804 & 0.001471775 & B6\\\\\n", + "\t7 & N30F4.199 & C & 0.02649444 & 0.01076345 & B6\\\\\n", + "\t8 & N30F4.210 & C & 0.004281812 & 0.001739499 & B6\\\\\n", + "\t9 & N30F4.215 & C & 0.006276129 & 0.002549696 & B6\\\\\n", + "\t10 & N30F4.216 & C & 0.007962358 & 0.003234732 & B6\\\\\n", + "\t11 & N30F4.220 & C & 0.02951941 & 0.01199235 & B6\\\\\n", + "\t12 & N30F4.222 & C & 0.01354432 & 0.005502421 & B6\\\\\n", + "\\end{tabular}\n" + ], + "text/plain": [ + " id nxf1 raw normal cohort\n", + "1 N30F4.192 B 0.005473881 0.002223781 B6\n", + "2 N30F4.196 B 0.005268219 0.002140230 B6\n", + "3 N30F4.202 B 0.021977200 0.008928305 B6\n", + "4 N30F4.207 B 0.002978839 0.001210162 B6\n", + "5 N30F4.217 B 0.003176875 0.001290615 B6\n", + "6 N30F4.218 B 0.003622804 0.001471775 B6\n", + "7 N30F4.199 C 0.026494443 0.010763448 B6\n", + "8 N30F4.210 C 0.004281812 0.001739499 B6\n", + "9 N30F4.215 C 0.006276129 0.002549696 B6\n", + "10 N30F4.216 C 0.007962358 0.003234732 B6\n", + "11 N30F4.220 C 0.029519412 0.011992351 B6\n", + "12 N30F4.222 C 0.013544320 0.005502421 B6" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b6<-read.table(\"adamts_B6.txt\",head=T)\n", + "attach (b6)\n", + "names(b6)\n", + "b6" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "\n", + "\tShapiro-Wilk normality test\n", + "\n", + "data: raw[1:6]\n", + "W = 0.62231, p-value = 0.0008452\n" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "\n", + "\tShapiro-Wilk normality test\n", + "\n", + "data: raw[7:12]\n", + "W = 0.85741, p-value = 0.1805\n" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "shapiro.test(raw[1:6])\n", + "shapiro.test(raw[7:12])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "\n", + "\tShapiro-Wilk normality test\n", + "\n", + "data: normal[1:6]\n", + "W = 0.62231, p-value = 0.0008452\n" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "\n", + "\tShapiro-Wilk normality test\n", + "\n", + "data: normal[7:12]\n", + "W = 0.85741, p-value = 0.1805\n" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "shapiro.test(normal[1:6])\n", + "shapiro.test(normal[7:12])" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "0.002877478" + ], + "text/latex": [ + "0.002877478" + ], + "text/markdown": [ + "0.002877478" + ], + "text/plain": [ + "[1] 0.002877478" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/html": [ + "0.00596369116666667" + ], + "text/latex": [ + "0.00596369116666667" + ], + "text/markdown": [ + "0.00596369116666667" + ], + "text/plain": [ + "[1] 0.005963691" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean(normal[1:6])\n", + "mean(normal[7:12])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "\n", + "\tWilcoxon rank sum test\n", + "\n", + "data: normal[1:6] and normal[7:12]\n", + "W = 6, p-value = 0.03247\n", + "alternative hypothesis: true location shift is less than 0\n" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wilcox.test(normal[1:6],normal[7:12],paired=F,alternative=\"less\")" + ] }, { "cell_type": "markdown", @@ -62,7 +340,204 @@ { "cell_type": "raw", "metadata": {}, - "source": [] + "source": [ + "Also the Mann-Whitney U Test/Wilcoxon rank sum test" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\t
  1. 'id.f2'
  2. \n", + "\t
  3. 'nxf1.f2'
  4. \n", + "\t
  5. 'raw.f2'
  6. \n", + "\t
  7. 'normal.f2'
  8. \n", + "\t
  9. 'cohort.f2'
  10. \n", + "
\n" + ], + "text/latex": [ + "\\begin{enumerate*}\n", + "\\item 'id.f2'\n", + "\\item 'nxf1.f2'\n", + "\\item 'raw.f2'\n", + "\\item 'normal.f2'\n", + "\\item 'cohort.f2'\n", + "\\end{enumerate*}\n" + ], + "text/markdown": [ + "1. 'id.f2'\n", + "2. 'nxf1.f2'\n", + "3. 'raw.f2'\n", + "4. 'normal.f2'\n", + "5. 'cohort.f2'\n", + "\n", + "\n" + ], + "text/plain": [ + "[1] \"id.f2\" \"nxf1.f2\" \"raw.f2\" \"normal.f2\" \"cohort.f2\"" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
id.f2nxf1.f2raw.f2normal.f2cohort.f2
1EB026B7e-050.0007404244/3/09
2EB211B0.000120.0011573924/3/09
3EB030B0.000140.0013809454/3/09
4EB034B0.000220.0022087354/3/09
5EB319B0.000910.0090849164/3/09
6EB189B0.002130.0010815164/15/09
7EB237B0.00310.0015732334/15/09
8EB279B0.003490.0017728144/15/09
9EB222B0.003720.0018909224/15/09
10EB342B0.002140.0013347544/16/09
11EB299B0.002170.0013494564/16/09
12EB336B0.002710.0016862544/16/09
13EB326B0.002890.0018002174/16/09
14EB319B0.003270.0020372324/16/09
15EB338B0.003350.0020869754/16/09
16EB362B0.006570.0040914044/16/09
17EB321B0.007760.0048340294/16/09
18EB323B0.011120.0069268834/16/09
19EB032C0.000370.003693984/3/09
20EB346C0.000550.005479564/3/09
21EB217C0.000630.0063117334/3/09
22EB297C0.004450.0022610184/15/09
23EB266C0.005580.002833164/15/09
24EB265C0.005960.0030299214/15/09
25EB241C0.006270.0031887024/15/09
26EB278C0.008910.004530214/15/09
27EB225C0.010610.0053921364/15/09
28EB294C0.010890.0055334254/15/09
29EB305C0.014590.0090844574/16/09
30EB340C0.037840.023560124/16/09
31EB216H0.000220.0021601744/3/09
\n" + ], + "text/latex": [ + "\\begin{tabular}{r|lllll}\n", + " & id.f2 & nxf1.f2 & raw.f2 & normal.f2 & cohort.f2\\\\\n", + "\\hline\n", + "\t1 & EB026 & B & 7e-05 & 0.000740424 & 4/3/09\\\\\n", + "\t2 & EB211 & B & 0.00012 & 0.001157392 & 4/3/09\\\\\n", + "\t3 & EB030 & B & 0.00014 & 0.001380945 & 4/3/09\\\\\n", + "\t4 & EB034 & B & 0.00022 & 0.002208735 & 4/3/09\\\\\n", + "\t5 & EB319 & B & 0.00091 & 0.009084916 & 4/3/09\\\\\n", + "\t6 & EB189 & B & 0.00213 & 0.001081516 & 4/15/09\\\\\n", + "\t7 & EB237 & B & 0.0031 & 0.001573233 & 4/15/09\\\\\n", + "\t8 & EB279 & B & 0.00349 & 0.001772814 & 4/15/09\\\\\n", + "\t9 & EB222 & B & 0.00372 & 0.001890922 & 4/15/09\\\\\n", + "\t10 & EB342 & B & 0.00214 & 0.001334754 & 4/16/09\\\\\n", + "\t11 & EB299 & B & 0.00217 & 0.001349456 & 4/16/09\\\\\n", + "\t12 & EB336 & B & 0.00271 & 0.001686254 & 4/16/09\\\\\n", + "\t13 & EB326 & B & 0.00289 & 0.001800217 & 4/16/09\\\\\n", + "\t14 & EB319 & B & 0.00327 & 0.002037232 & 4/16/09\\\\\n", + "\t15 & EB338 & B & 0.00335 & 0.002086975 & 4/16/09\\\\\n", + "\t16 & EB362 & B & 0.00657 & 0.004091404 & 4/16/09\\\\\n", + "\t17 & EB321 & B & 0.00776 & 0.004834029 & 4/16/09\\\\\n", + "\t18 & EB323 & B & 0.01112 & 0.006926883 & 4/16/09\\\\\n", + "\t19 & EB032 & C & 0.00037 & 0.00369398 & 4/3/09\\\\\n", + "\t20 & EB346 & C & 0.00055 & 0.00547956 & 4/3/09\\\\\n", + "\t21 & EB217 & C & 0.00063 & 0.006311733 & 4/3/09\\\\\n", + "\t22 & EB297 & C & 0.00445 & 0.002261018 & 4/15/09\\\\\n", + "\t23 & EB266 & C & 0.00558 & 0.00283316 & 4/15/09\\\\\n", + "\t24 & EB265 & C & 0.00596 & 0.003029921 & 4/15/09\\\\\n", + "\t25 & EB241 & C & 0.00627 & 0.003188702 & 4/15/09\\\\\n", + "\t26 & EB278 & C & 0.00891 & 0.00453021 & 4/15/09\\\\\n", + "\t27 & EB225 & C & 0.01061 & 0.005392136 & 4/15/09\\\\\n", + "\t28 & EB294 & C & 0.01089 & 0.005533425 & 4/15/09\\\\\n", + "\t29 & EB305 & C & 0.01459 & 0.009084457 & 4/16/09\\\\\n", + "\t30 & EB340 & C & 0.03784 & 0.02356012 & 4/16/09\\\\\n", + "\t31 & EB216 & H & 0.00022 & 0.002160174 & 4/3/09\\\\\n", + "\\end{tabular}\n" + ], + "text/plain": [ + " id.f2 nxf1.f2 raw.f2 normal.f2 cohort.f2\n", + "1 EB026 B 0.00007 0.000740424 4/3/09\n", + "2 EB211 B 0.00012 0.001157392 4/3/09\n", + "3 EB030 B 0.00014 0.001380945 4/3/09\n", + "4 EB034 B 0.00022 0.002208735 4/3/09\n", + "5 EB319 B 0.00091 0.009084916 4/3/09\n", + "6 EB189 B 0.00213 0.001081516 4/15/09\n", + "7 EB237 B 0.00310 0.001573233 4/15/09\n", + "8 EB279 B 0.00349 0.001772814 4/15/09\n", + "9 EB222 B 0.00372 0.001890922 4/15/09\n", + "10 EB342 B 0.00214 0.001334754 4/16/09\n", + "11 EB299 B 0.00217 0.001349456 4/16/09\n", + "12 EB336 B 0.00271 0.001686254 4/16/09\n", + "13 EB326 B 0.00289 0.001800217 4/16/09\n", + "14 EB319 B 0.00327 0.002037232 4/16/09\n", + "15 EB338 B 0.00335 0.002086975 4/16/09\n", + "16 EB362 B 0.00657 0.004091404 4/16/09\n", + "17 EB321 B 0.00776 0.004834029 4/16/09\n", + "18 EB323 B 0.01112 0.006926883 4/16/09\n", + "19 EB032 C 0.00037 0.003693980 4/3/09\n", + "20 EB346 C 0.00055 0.005479560 4/3/09\n", + "21 EB217 C 0.00063 0.006311733 4/3/09\n", + "22 EB297 C 0.00445 0.002261018 4/15/09\n", + "23 EB266 C 0.00558 0.002833160 4/15/09\n", + "24 EB265 C 0.00596 0.003029921 4/15/09\n", + "25 EB241 C 0.00627 0.003188702 4/15/09\n", + "26 EB278 C 0.00891 0.004530210 4/15/09\n", + "27 EB225 C 0.01061 0.005392136 4/15/09\n", + "28 EB294 C 0.01089 0.005533425 4/15/09\n", + "29 EB305 C 0.01459 0.009084457 4/16/09\n", + "30 EB340 C 0.03784 0.023560116 4/16/09\n", + "31 EB216 H 0.00022 0.002160174 4/3/09" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "f2<-read.table (\"adamts_balbF2.txt\", head=T)\n", + "attach (f2)\n", + "names (f2)\n", + "f2" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "\n", + "\tWilcoxon rank sum test\n", + "\n", + "data: normal.f2[1:18] and normal.f2[19:30]\n", + "W = 32, p-value = 0.0003972\n", + "alternative hypothesis: true location shift is less than 0\n" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wilcox.test(normal.f2[1:18],normal.f2[19:30],paired=F,alternative=\"less\")" + ] }, { "cell_type": "markdown", @@ -74,7 +549,9 @@ { "cell_type": "raw", "metadata": {}, - "source": [] + "source": [ + "The C allele of Nfx1 causes an increase in expression of gene 8. The evidence is fairly strong since both independent sets of experiments found this same conclusion at a p-value of less than 0.05. THe evidence would have been much weaker if only one such set of experiments existed." + ] }, { "cell_type": "markdown", @@ -86,7 +563,9 @@ { "cell_type": "raw", "metadata": {}, - "source": [] + "source": [ + "parametric tests are in general more sensitive to outliers because they assume a specific distribution of data" + ] }, { "cell_type": "markdown", diff --git a/weeks/week04/0_alignment_expression_quantification.ipynb b/weeks/week04/0_alignment_expression_quantification.ipynb index 4e241be..21d2111 100644 --- a/weeks/week04/0_alignment_expression_quantification.ipynb +++ b/weeks/week04/0_alignment_expression_quantification.ipynb @@ -270,7 +270,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "collapsed": false, "deletable": false, @@ -282,7 +282,18 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "25" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "5**2" ] @@ -305,7 +316,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "collapsed": false, "deletable": false, @@ -317,14 +328,25 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "73" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "ord('I')" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "collapsed": false, "deletable": false, @@ -336,7 +358,18 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "33" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "ord('!')" ] @@ -359,7 +392,11 @@ }, { "cell_type": "code", +<<<<<<< HEAD + "execution_count": 8, +======= "execution_count": 3, +>>>>>>> 3763db8983f51be4f5e2a40d9b92af6d0e25f41f "metadata": { "collapsed": false, "deletable": false, @@ -384,7 +421,13 @@ } ], "source": [ +<<<<<<< HEAD + "q = ord('A') -33\n", + "\n", + "p = 10**(-q/10)" +======= "10**(-(ord(\"A\") - ord(\"!\"))/10)" +>>>>>>> 3763db8983f51be4f5e2a40d9b92af6d0e25f41f ] }, { @@ -534,8 +577,16 @@ "Make directories in scratch:\n", "\n", "```\n", +<<<<<<< HEAD + "/home/ucsd-train##/projects\n", + "/home/ucsd-train##/projects/shalek2013\n", + "/home/ucsd-train##/projects/shalek2013/processing_scripts\n", + "/home/ucsd-train##/projects/shalek2013/raw_data\n", + "/home/ucsd-train##/scratch/shalek2013/processed_data\n", +======= "mkdir $HOME/scratch/shalek2013\n", "mkdir $HOME/scratch/shalek2013/processed_data\n", +>>>>>>> 3763db8983f51be4f5e2a40d9b92af6d0e25f41f "```\n", "\n", "### Exercise 4: Create soft links\n", @@ -697,7 +748,11 @@ } }, "source": [ +<<<<<<< HEAD + "kallisto quant --single -l (average fragment length)" +======= "--single --fragment-length=200.1" +>>>>>>> 3763db8983f51be4f5e2a40d9b92af6d0e25f41f ] }, { @@ -762,7 +817,7 @@ "Read about the [SAM](https://samtools.github.io/hts-specs/SAMv1.pdf) format and check out [this](https://broadinstitute.github.io/picard/explain-flags.html) helpful website for explaining SAM flags.\n", "\n", "1. Which file would you use to get the percentage of mapped reads from your data?\n", - "2. Which file would you send to someone when the alignment didn't go as expected and thye asked for the parameters you used?\n", + "2. Which file would you send to someone when the alignment didn't go as expected and they asked for the parameters you used?\n", "\n", "To view the SAM file, you'll want to use `samtools`. Viewing directly with `head` gives you the \"header\" of the SAM file which has a bunch of parameters about the genome and the program that was used to align:\n", "\n", @@ -812,7 +867,11 @@ }, "source": [ "1. S10.Log.final.out\n", +<<<<<<< HEAD + "2. your original .sh script\n" +======= "2. S10.Log.out" +>>>>>>> 3763db8983f51be4f5e2a40d9b92af6d0e25f41f ] }, { @@ -857,9 +916,15 @@ } }, "source": [ +<<<<<<< HEAD + "1. --input-fmt-sam\n", + "2. -b\n", + "3. --threads" +======= "1. -S\n", "2. -b\n", "3. -@ 4" +>>>>>>> 3763db8983f51be4f5e2a40d9b92af6d0e25f41f ] }, { diff --git a/weeks/week04/2_compare_alignment_vs_quasialignment.ipynb b/weeks/week04/2_compare_alignment_vs_quasialignment.ipynb index 6c9fe1a..cc3c996 100644 --- a/weeks/week04/2_compare_alignment_vs_quasialignment.ipynb +++ b/weeks/week04/2_compare_alignment_vs_quasialignment.ipynb @@ -41,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": { "collapsed": false, "deletable": false, @@ -53,7 +53,16 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py:872: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n", + " warnings.warn(self.msg_depr % (key, alt_key))\n" + ] + } + ], "source": [ "# We're doing \"import superlongname as abbrev\" for our laziness - this way we don't have to type out the whole thing each time.\n", "\n", @@ -71,6 +80,7 @@ "\n", "sns.set(style='ticks', context='notebook')\n", "\n", + "\n", "# This is necessary to show the plotted figures inside the notebook -- \"inline\" with the notebook cells\n", "%matplotlib inline" ] @@ -93,7 +103,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "collapsed": false, "deletable": false, @@ -105,7 +115,15 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/oasis/tscc/scratch/ucsd-train12/shalek2013/processed_data\n" + ] + } + ], "source": [ "cd ~/projects/shalek2013/processed_data" ] @@ -128,7 +146,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": { "collapsed": false, "deletable": false, @@ -140,7 +158,91 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
lengtheff_lengthest_countstpm
target_id
ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMUSG00000026353.2|OTTMUST00000065166.1|Xkr4-001|Xkr4|3634|UTR5:1-150|CDS:151-2094|UTR3:2095-3634|36343389.5800
ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127194.1|Rp1-002|Rp1|3047|UTR5:1-54|CDS:55-912|UTR3:913-3047|30472802.5800
ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127195.2|Rp1-001|Rp1|6869|UTR5:1-127|CDS:128-6415|UTR3:6416-6869|68696624.5800
ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127245.2|Sox17-001|Sox17|3127|UTR5:1-1082|CDS:1083-2342|UTR3:2343-3127|31272882.5800
ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127249.1|Sox17-005|Sox17|1977|UTR5:1-635|CDS:636-1511|UTR3:1512-1977|19771732.5800
\n", + "
" + ], + "text/plain": [ + " length eff_length \\\n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 3634 3389.58 \n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 3047 2802.58 \n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 6869 6624.58 \n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 3127 2882.58 \n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 1977 1732.58 \n", + "\n", + " est_counts tpm \n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 0 0 \n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 0 0 \n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 0 0 \n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 0 0 \n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 0 0 " + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "s10_kallisto = pd.read_table('S10_kallisto/abundance.tsv', index_col='target_id')\n", "s10_kallisto.head()" @@ -164,7 +266,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": { "collapsed": false, "deletable": false, @@ -176,7 +278,91 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
lengtheff_lengthest_countstpm
target_id
ENSMUST00000084013.1|ENSMUSG00000065947.3|-|-|mt-Nd4l-201|mt-Nd4l|297|CDS:1-297|29770.846724381204.930
ENSMUST00000082414.1|ENSMUSG00000064363.1|-|-|mt-Nd4-201|mt-Nd4|1378|CDS:1-1378|13781133.5800431141331.720
ENSMUST00000082418.1|ENSMUSG00000064367.1|-|-|mt-Nd5-201|mt-Nd5|1824|CDS:1-1824|18241579.580044220980.222
ENSMUST00000082419.1|ENSMUSG00000064368.1|-|-|mt-Nd6-201|mt-Nd6|519|CDS:1-519|519274.69804520576.142
ENSMUST00000082421.1|ENSMUSG00000064370.1|-|-|mt-Cytb-201|mt-Cytb|1144|CDS:1-1144|1144899.57901202344679.880
\n", + "
" + ], + "text/plain": [ + " length eff_length \\\n", + "target_id \n", + "ENSMUST00000084013.1|ENSMUSG00000065947.3|-|-|m... 297 70.8467 \n", + "ENSMUST00000082414.1|ENSMUSG00000064363.1|-|-|m... 1378 1133.5800 \n", + "ENSMUST00000082418.1|ENSMUSG00000064367.1|-|-|m... 1824 1579.5800 \n", + "ENSMUST00000082419.1|ENSMUSG00000064368.1|-|-|m... 519 274.6980 \n", + "ENSMUST00000082421.1|ENSMUSG00000064370.1|-|-|m... 1144 899.5790 \n", + "\n", + " est_counts tpm \n", + "target_id \n", + "ENSMUST00000084013.1|ENSMUSG00000065947.3|-|-|m... 2438 1204.930 \n", + "ENSMUST00000082414.1|ENSMUSG00000064363.1|-|-|m... 43114 1331.720 \n", + "ENSMUST00000082418.1|ENSMUSG00000064367.1|-|-|m... 44220 980.222 \n", + "ENSMUST00000082419.1|ENSMUSG00000064368.1|-|-|m... 4520 576.142 \n", + "ENSMUST00000082421.1|ENSMUSG00000064370.1|-|-|m... 120234 4679.880 " + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "s10_kallisto.tail()" ] @@ -201,7 +387,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": { "collapsed": false, "deletable": false, @@ -213,14 +399,207 @@ "solution": true } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
lengtheff_lengthest_countstpm
target_id
ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMUSG00000026353.2|OTTMUST00000065166.1|Xkr4-001|Xkr4|3634|UTR5:1-150|CDS:151-2094|UTR3:2095-3634|36343389.5800.000000.000000
ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127194.1|Rp1-002|Rp1|3047|UTR5:1-54|CDS:55-912|UTR3:913-3047|30472802.5800.000000.000000
ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127195.2|Rp1-001|Rp1|6869|UTR5:1-127|CDS:128-6415|UTR3:6416-6869|68696624.5800.000000.000000
ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127245.2|Sox17-001|Sox17|3127|UTR5:1-1082|CDS:1083-2342|UTR3:2343-3127|31272882.5800.000000.000000
ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127249.1|Sox17-005|Sox17|1977|UTR5:1-635|CDS:636-1511|UTR3:1512-1977|19771732.5800.000000.000000
ENSMUST00000192650.5|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127247.2|Sox17-004|Sox17|3242|UTR5:1-1851|CDS:1852-2916|UTR3:2917-3242|32422997.5800.000000.000000
ENSMUST00000116652.7|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127246.1|Sox17-002|Sox17|1512|UTR5:1-249|CDS:250-1509|UTR3:1510-1512|15121267.5800.000000.000000
ENSMUST00000191647.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127267.2|Sox17-007|Sox17|406|UTR5:1-83|CDS:84-406|406163.2700.000000.000000
ENSMUST00000191939.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127266.2|Sox17-006|Sox17|840|UTR5:1-329|CDS:330-840|840595.5790.000000.000000
ENSMUST00000192913.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127248.2|Sox17-003|Sox17|1506|UTR5:1-997|CDS:998-1506|15061261.5800.000000.000000
ENSMUST00000130201.7|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072660.1|Mrpl15-002|Mrpl15|1894|UTR5:1-33|CDS:34-648|UTR3:649-1894|18941649.58010.000000.212263
ENSMUST00000156816.6|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072659.1|Mrpl15-001|Mrpl15|4203|UTR5:1-62|CDS:63-950|UTR3:951-4203|42033958.5800.000000.000000
ENSMUST00000045689.13|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072661.1|Mrpl15-003|Mrpl15|497|UTR5:1-21|CDS:22-180|UTR3:181-497|497252.8040.000000.000000
ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072662.2|Mrpl15-004|Mrpl15|1569|UTR5:1-62|CDS:63-569|UTR3:570-1569|15691324.5800.000000.000000
ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051163.2|Lypla1-002|Lypla1|1136|UTR5:1-126|CDS:127-801|UTR3:802-1136|1136891.5795.425560.213075
ENSMUST00000027036.10|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051162.1|Lypla1-001|Lypla1|2507|UTR5:1-91|CDS:92-784|UTR3:785-2507|25072262.580518.909008.030360
ENSMUST00000150971.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051164.3|Lypla1-003|Lypla1|877|UTR5:1-84|CDS:85-750|UTR3:751-877|877632.5790.000000.000000
\n", + "
" + ], + "text/plain": [ + " length eff_length \\\n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 3634 3389.580 \n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 3047 2802.580 \n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 6869 6624.580 \n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 3127 2882.580 \n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 1977 1732.580 \n", + "ENSMUST00000192650.5|ENSMUSG00000025902.13|OTTM... 3242 2997.580 \n", + "ENSMUST00000116652.7|ENSMUSG00000025902.13|OTTM... 1512 1267.580 \n", + "ENSMUST00000191647.1|ENSMUSG00000025902.13|OTTM... 406 163.270 \n", + "ENSMUST00000191939.1|ENSMUSG00000025902.13|OTTM... 840 595.579 \n", + "ENSMUST00000192913.1|ENSMUSG00000025902.13|OTTM... 1506 1261.580 \n", + "ENSMUST00000130201.7|ENSMUSG00000033845.13|OTTM... 1894 1649.580 \n", + "ENSMUST00000156816.6|ENSMUSG00000033845.13|OTTM... 4203 3958.580 \n", + "ENSMUST00000045689.13|ENSMUSG00000033845.13|OTT... 497 252.804 \n", + "ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTM... 1569 1324.580 \n", + "ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTM... 1136 891.579 \n", + "ENSMUST00000027036.10|ENSMUSG00000025903.14|OTT... 2507 2262.580 \n", + "ENSMUST00000150971.7|ENSMUSG00000025903.14|OTTM... 877 632.579 \n", + "\n", + " est_counts tpm \n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 0.00000 0.000000 \n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 0.00000 0.000000 \n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 0.00000 0.000000 \n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 0.00000 0.000000 \n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 0.00000 0.000000 \n", + "ENSMUST00000192650.5|ENSMUSG00000025902.13|OTTM... 0.00000 0.000000 \n", + "ENSMUST00000116652.7|ENSMUSG00000025902.13|OTTM... 0.00000 0.000000 \n", + "ENSMUST00000191647.1|ENSMUSG00000025902.13|OTTM... 0.00000 0.000000 \n", + "ENSMUST00000191939.1|ENSMUSG00000025902.13|OTTM... 0.00000 0.000000 \n", + "ENSMUST00000192913.1|ENSMUSG00000025902.13|OTTM... 0.00000 0.000000 \n", + "ENSMUST00000130201.7|ENSMUSG00000033845.13|OTTM... 10.00000 0.212263 \n", + "ENSMUST00000156816.6|ENSMUSG00000033845.13|OTTM... 0.00000 0.000000 \n", + "ENSMUST00000045689.13|ENSMUSG00000033845.13|OTT... 0.00000 0.000000 \n", + "ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTM... 0.00000 0.000000 \n", + "ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTM... 5.42556 0.213075 \n", + "ENSMUST00000027036.10|ENSMUSG00000025903.14|OTT... 518.90900 8.030360 \n", + "ENSMUST00000150971.7|ENSMUSG00000025903.14|OTTM... 0.00000 0.000000 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# YOUR CODE HERE" + "# YOUR CODE HERE\n", + "s10_kallisto.head(17)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": { "collapsed": false, "deletable": false, @@ -258,7 +637,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": { "collapsed": false, "deletable": false, @@ -270,9 +649,20 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(56504, 4)" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "s13_kallisto.shape" + "s10_kallisto.shape" ] }, { @@ -295,7 +685,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": { "collapsed": false, "deletable": false, @@ -307,7 +697,91 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
lengtheff_lengthest_countstpm
target_id
ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMUSG00000026353.2|OTTMUST00000065166.1|Xkr4-001|Xkr4|3634|UTR5:1-150|CDS:151-2094|UTR3:2095-3634|36343395.2420.03967
ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127194.1|Rp1-002|Rp1|3047|UTR5:1-54|CDS:55-912|UTR3:913-3047|30472808.2400.00000
ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127195.2|Rp1-001|Rp1|6869|UTR5:1-127|CDS:128-6415|UTR3:6416-6869|68696630.2400.00000
ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127245.2|Sox17-001|Sox17|3127|UTR5:1-1082|CDS:1083-2342|UTR3:2343-3127|31272888.2400.00000
ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127249.1|Sox17-005|Sox17|1977|UTR5:1-635|CDS:636-1511|UTR3:1512-1977|19771738.2400.00000
\n", + "
" + ], + "text/plain": [ + " length eff_length \\\n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 3634 3395.24 \n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 3047 2808.24 \n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 6869 6630.24 \n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 3127 2888.24 \n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 1977 1738.24 \n", + "\n", + " est_counts tpm \n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 2 0.03967 \n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 0 0.00000 \n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 0 0.00000 \n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 0 0.00000 \n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 0 0.00000 " + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "s13_kallisto = pd.read_table('S13_kallisto/abundance.tsv', index_col='target_id')\n", "s13_kallisto.head()" @@ -333,7 +807,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": { "collapsed": false, "deletable": false, @@ -345,14 +819,26 @@ "solution": true } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(56504, 4)" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# YOUR CODE HERE" + "# YOUR CODE HERE\n", + "s13_kallisto.shape" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": { "collapsed": false, "deletable": false, @@ -390,7 +876,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": { "collapsed": false, "deletable": false, @@ -403,7 +889,36 @@ }, "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py:892: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n", + " warnings.warn(self.msg_depr % (key, alt_key))\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAGoCAYAAADWwOtRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu81VWd//HXEQGFxMALFiRawNJMNExmKn+mMqaZSI43\n/PlIDZ2GzLKcGQutAVO8/ia1fKhTkonaeMEcRXwYiWkPmkkx0xyxT5TgBYZjCoKiIgfO74/9Pcd9\nDrcDnH05Z72ejwcP9l77+/3utc6G/T5rfdd3fRuam5uRJCkn29S6ApIkVZvhJ0nKjuEnScqO4SdJ\nyo7hJ0nKjuEnScrOtrWuQBfjdSGSuqKGWleg3tjzkyRlx/CTJGXHYc8M/Wn+Ap574dU2ZWn3Aew1\n/CM1qpEkVZfhl6FVq1fTu+8ubcreXb2qRrWRpOpz2FOSlB3DT5KUHcNPkpQdw0+SlB3DT5KUHcNP\nkpQdw0+SlB3DT5KUHcNPkpQdw0+SlB3DT5KUHcNPkpQdw0+SlB3DT5KUHcNPkpQdw0+SlB3DT5KU\nHcNPkpQdw0+SlB3DT5KUHcNPkpQdw0+SlB3DT5KUHcNPkpQdw0+SlB3DT5KUHcNPkpQdw0+SlB3D\nT5KUHcNPkpQdw0+SlB3DT5KUHcNPkpQdw0+SlB3DT5KUHcNPkpQdw0+SlB3DT5KUHcNPkpQdw0+S\nlB3DT5KUHcNPkpQdw0+SlB3DT5KUHcNPkpQdw0+SlB3DT5KUnW1rXYGuIqW07ezZs2tdjU7xyiuN\nvLaiZ5uyVa8uo+c2a2tUI6n722GHHWr23qNHj94DeDkimmpWiTpj+HXc4NGjR9e6DpK0JRYAewIL\na1yPumH4ddzLxd971rQWnaflP0NX113aAd2nLbaj/izgve8wAQ3Nzc21rkOXkVJqjoiGWtejM3SX\ntnSXdkD3aYvtqD/dqS2dxQkvkqTsGH6SpOwYfpKk7FRlwktKaTAwDRgIrAV+HBE/SCn1B+4AhlCa\nhXRiRCwv9pkIjAeagHMiYlZRPhL4KbAd8EBEfKMo71W8xwHAq8BJEfFi8dppwAVAMzAlIqZtYVMu\n3ML96lF3aUt3aQd0n7bYjvrTndrSKaoy4SWltBuwW0Q8lVJ6H/A7YCzwJeC1iLgipfQtoH9EfDul\n9FHgNuBAYDDwEDAsIppTSo8BZ0fE3JTSA8A1EfGLlNJXgH0j4qyU0knAsRExrgjYJ4CRQEPx3iNb\nQlaSlJ+qDHtGxJKIeKp4/CbwHKVQGwvcXGx2M/CF4vExwO0R0RQRC4H5wKgiRHeIiLnFdtPK9ik/\n1nTgsOLxEcCsiFgeEa8Ds4AjO7+VkqSuourn/FJKewD7A78FBkZEI5QCEti12GwQ8FLZbouKskG0\nvVbl5aKszT4RsQZYnlIasJFjSZIyVdWL3Ishz+mUzuG9mVJqP+bamWOwnXpNS0ppW0q9VZcIktTt\n5PYdV7XwK36w04FbIuLeorgxpTQwIhqLIc1XivJFwIfKdh9clG2ovHyfxSmlHkC/iFiaUloEHNJu\nn19toq6TgUnre627rO8pKSttOgMZfcdtsBNUzZ7fT4B5EXFNWdl9wOnA5cBpwL1l5bellK6iNEQ5\nFHi8mPCyPKU0CpgLnAr8oGyf04DHgBOAh4vyXwBTUko7UhrmPRz49sYqGhGTgcnlZcVw7YLNabAk\n1SO/46p3qcOngVOAZ1JKv6c0vHk+pdC7M6U0HngBOBEgIuallO4E5gGrgbMiomVI9Ku0vdThwaJ8\nKnBLSmk+8BowrjjWspTSRZRmfDYDFxYTXyRJmXJtzw5q+a1o9uzZDB48uNbVkaTNsck5EN30O26D\n7XaFF0lSdgw/SVJ2DD9JUnYMP0lSdgw/SVJ2DD9JneLXv/41Rx55JEcccQQ/+tGP1rvN888/z7hx\n49h333256aab1nl97dq1HHvssUyYMKHS1V2vTdWvxT//8z9z5JFHMmbMGC644ALWrFmzWe9zxRVX\n8LnPfY6xY8fyta99jTfffLP1tT/+8Y+MGzeOo48+mmOOOYZ3330XgKuuuopDDjmEkSNHblnj1Ibh\nJ3Uxm/tF21Fr167dqn0vuugipk6dyv3338/MmTP5y1/+ss5273//+/nOd77DGWecsd7jTJs2jY98\n5CNbXI+ttan6tTjmmGN48MEHmTFjBu+88w533XXXZr3PQQcdxMyZM7n33nsZMmQIN9xwA1D6bM87\n7zy+973vcf/993PLLbfQs2dPAEaPHs306dO3rGFaR1XX9pRysmjRIs4880z22Wcf5s2bx7Bhw7ji\niivo3bs3zz77LJdddhlvvfUW/fv357LLLmPnnXfmrrvu4o477qCpqYndd9+dK6+8kt69ezNx4kR6\n9erFc889xwEHHMBhhx3GlClTaGhooKGhgVtvvZU+ffpw+eWXM2fOHBoaGpgwYQJHHXUUjz/+OD/8\n4Q/p378/8+fP52Mf+xhXXnklAIcddhhHHXUU//Vf/8WZZ57JUUcdtUVt/cMf/sCQIUMYNKi0Zvzn\nP/95Zs+evU6QDRgwgAEDBvDII4+sc4wlS5bw6KOPMmHChDa9rttvv52GhgZOOumkNtvfc889/PKX\nv+SNN97glVdeYcyYMZx99tlbVP+O1K/cwQcf3Pp43333ZcmSJQC8/fbbXHTRRfz5z3+mqamJs88+\nm8MOO2yd/T/1qU+1Pt5///35xS9+AcCcOXPYa6+9GD58OAA77rhj63YjRozY4nZpXYafVEELFizg\n0ksvZf/99+f888/nZz/7GV/84he56KKLuP766+nfvz8PPPAA3//+97nkkkv47Gc/ywknnADA1Vdf\nzfTp0znllFMAaGxs5M477wRgwoQJTJo0iY9//OO8/fbb9OrVi1mzZvGnP/2JGTNm8Nprr3H88ccz\natQooDSUNnPmTHbZZRdOPvlknnzyydbhs/79+/Pzn/98nbrPmDGDqVOn0tDQ9jrh3XffnWuuuaZN\nWWNjIx/4wAdanw8cOJBnnnlms35Wl1xyCeeddx5vvPFGm/Jx48ZtcJ9nnnmGmTNn0rt3b44//ngO\nPfRQ9tlnnzbbfPOb32ThwoXr7Hv66aczduzYzapje01NTdx333185zvfAeCGG27gk5/8JJdccglv\nvPEGxx9/PJ/61KfYbrvtNniM6dOnc/TRRwO01vOMM85g2bJlHHXUUZx55plbVUetn+EnVdAHP/hB\n9t9/f6A0VHbrrbdy0EEHMX/+fMaPH09zczNr165l111Ld/OKCK655hpWrFjB22+/zUEHHdR6rCOP\nfO82lCNHjuTSSy9lzJgxfPazn2XgwIH87ne/4/Of/zwAO+20E6NGjeKZZ56hb9++jBgxovU99tpr\nLxYtWtQafhvq7Y0ZM4YxY8Z0/g9lPR555BF23nln9t57bx577LEO7/fpT3+afv36AXD44Yfzu9/9\nbp3wu+qqqzq1ruUuvPBCDjzwwNaf5Zw5c3j44YeZOnUqAKtXr2bx4sV8+MMfXu/+119/PT179mwN\nvzVr1vDkk09y991307t3b04//XQ+9rGP8bd/+7cVa0OuDD+pihoaGmhubmbYsGHcfvvt67w+ceJE\nrr/+eoYPH84999zD448/3vpanz59Wh9/+ctf5tBDD+WRRx7h5JNP5sYbb1znWOVLF7acNwLo0aNH\nm/OG22+//Xrr2tLza2/IkCHr9PwGDhzI4sWLW583Nja2hm1HPPnkkzz88MM8+uijrFq1ipUrV3Le\needxxRVXbHS/9r3S9s+h1PNbsGDBOtttbc/v2muvZdmyZVx00UVtyn/4wx+yxx57tCmbOHEizz33\nHAMHDuTf//3fAfj5z3/Oo48+yrRp01q322233TjwwANbhzsPPvhg5s2bZ/hVgOEnVdDixYt5+umn\n2W+//bj//vs54IAD2HPPPVm2bBlPPfUU+++/P01NTSxcuJChQ4fy1ltvsfPOO7N69WpmzJjBwIED\n13vcl156iWHDhjFs2DCeeeYZFixYwCc+8QnuuOMOvvCFL/D666/zxBNP8K1vfWu9E086YnN6fvvu\nuy8vvvgiixYtYpdddmHmzJl8//vf3+g+5eF87rnncu655wLw+OOP85Of/KQ1+G677TaA1uHfcr/5\nzW9YsWIFvXr14qGHHuLSSy9dZ5st7fltbN3ju+66izlz5rQJLihNZLnlllv47ne/C8Bzzz3H3nvv\nvU69fv3rXzN16lRuvfVWevXq1Wb/G2+8kVWrVtGjRw/mzp3L6aef3uF6qeMMP6mC9txzT2677TYm\nTpzI0KFDOfnkk+nZsyfXXHMNF198MW+88QZr167l1FNPZejQoXz961/nhBNOYKeddmLEiBGsXLly\nvce9+eabeeyxx9hmm20YOnQoBx98MD179uSpp55i7NixNDQ0cN5557HTTjutE37lvaP19ZS2RI8e\nPfjud7/bOpR7/PHHt052KZ+w8uqrr3LcccexcuVKttlmG6ZNm8bMmTPp27fvBo/9/PPPc8ABB6z3\ntREjRnD22WfT2NjI2LFj1xny3Fwbq9+Xv/xlpkyZwi677MLkyZMZNGgQJ554Ig0NDRx++OGcddZZ\nnHXWWUyZMqX1l4ZBgwa1zuQsd/HFF7N69WrGjx8PwH777cfkyZPp168fX/rSlzjuuONoaGjgM5/5\nDJ/5zGcAuPLKK7n//vtZtWoVhxxyCMcff/xWT/DJmXd16KBuuuK5KmjRokVMmDCBGTNm1LoqXdqE\nCRO49tpr2Xbbtr+r33PPPTz77LOtk020Ud7VoR17fpLq2vp6TtLWMvykChk0aJC9vgo69thjOfbY\nY2tdDXVRrvAiScqO4SdJyo7Dntpsy1e+yw13P03j0rcYOKAPXzluP/r17bXpHSWpThh+2mw33P00\nc54uXdA8/6XXAfjWqQfWskqStFkc9tRma1z61kafS1K9M/y02QYO6LPR55JU7xz21Gb7ynH7AbQ5\n5ydJXYnhp83Wr28vz/FJ6tIc9pQkZcfwkyRlx/CTJGXH8JMkZcfwkyRlx/CTJGXH8JMkZcfwkyRl\nx/CTJGXH8JMkZcfwkyRlx/CTJGXH8JMkZcfwkyRlx/CTJGXH8JMkZcfwkyRlx/CTJGXH8JMkZcfw\nkyRlx/CTJGXH8JMkZcfwkyRlx/CTJGXH8JMkZcfwkyRlx/CTJGXH8JMkZcfwkyRlZ9tqvElKaSpw\nNNAYESOKsknAPwCvFJudHxEPFq9NBMYDTcA5ETGrKB8J/BTYDnggIr5RlPcCpgEHAK8CJ0XEi8Vr\npwEXAM3AlIiYVvEGS5LqWrV6fjcBR6yn/PsRMbL40xJ8ewMnAnsDnwOuSyk1FNtfD5wREcOB4Sml\nlmOeASyNiGHA1cAVxbH6A/8KHAj8DTAppbRjRVooSeoyqhJ+ETEHWLaelxrWUzYWuD0imiJiITAf\nGJVS2g3YISLmFttNA75Qts/NxePpwGHF4yOAWRGxPCJeB2YBR25teyRJXVutz/mdnVJ6KqV0Y1mP\nbBDwUtk2i4qyQcDLZeUvF2Vt9omINcDylNKAjRxLkpSxqpzz24DrgO9FRHNK6WLg34AzO+nY6+tR\ndlhKaTIwqXOqIkn1xe+4GoZfRPy17OmPgRnF40XAh8peG1yUbai8fJ/FKaUeQL+IWJpSWgQc0m6f\nX3WgbpOByeVlKaU9gAWb2leS6p3fcdUd9mygrEdWnMNr8ffA/xSP7wPGpZR6pZT2BIYCj0fEEkrD\nmaOKCTCnAveW7XNa8fgE4OHi8S+Aw1NKOxaTXw4vyiRJGavWpQ4/o9QD2yml9CKl7vahKaX9gbXA\nQuAfASJiXkrpTmAesBo4KyKai0N9lbaXOjxYlE8FbkkpzQdeA8YVx1qWUroIeILSpQ4XFhNfJEkZ\na2hubt70VmodEpg9ezaDBw+udXUkaXNsch5EN/2O22C7az3bU5KkqjP8JEnZMfwkSdkx/CRJ2TH8\nJEnZMfwkSdkx/CRJ2TH8JEnZMfwkSdkx/CRJ2TH8JEnZMfwkSdkx/CRJ2TH8JEnZMfwkSdkx/CRJ\n2TH8JEnZMfwkSdkx/CRJ2TH8JEnZMfwkSdkx/CRJ2TH8JEnZMfwkSdkx/CRJ2TH8JEnZMfwkSdkx\n/CRJ2TH8JEnZMfwkSdkx/CRJ2TH8JEnZMfwkSdkx/CRJ2TH8JEnZMfwkSdkx/CRJ2TH8JEnZMfwk\nSdkx/CRJ2TH8JEnZMfwkSdkx/CRJ2TH8JEnZMfwkSdkx/CRJ2TH8JEnZMfwkSdkx/CRJ2TH8JEnZ\nMfwkSdkx/CRJ2dm2Gm+SUpoKHA00RsSIoqw/cAcwBFgInBgRy4vXJgLjgSbgnIiYVZSPBH4KbAc8\nEBHfKMp7AdOAA4BXgZMi4sXitdOAC4BmYEpETKtCkyVJdaxaPb+bgCPalX0beCgiEvAwMBEgpfRR\n4ERgb+BzwHUppYZin+uBMyJiODA8pdRyzDOApRExDLgauKI4Vn/gX4EDgb8BJqWUdqxMEyVJXUVV\nwi8i5gDL2hWPBW4uHt8MfKF4fAxwe0Q0RcRCYD4wKqW0G7BDRMwttptWtk/5saYDhxWPjwBmRcTy\niHgdmAUc2WkNkyR1SbU857drRDQCRMQSYNeifBDwUtl2i4qyQcDLZeUvF2Vt9omINcDylNKAjRxL\nkpSxeprw0tyJx2rY9CaSpFxVZcLLBjSmlAZGRGMxpPlKUb4I+FDZdoOLsg2Vl++zOKXUA+gXEUtT\nSouAQ9rt86tNVSylNBmYtNktkqQuwO+46oZfA217ZPcBpwOXA6cB95aV35ZSuorSEOVQ4PGIaE4p\nLU8pjQLmAqcCPyjb5zTgMeAEShNoAH4BTCkmuWwDHE5pos1GRcRkYHJ5WUppD2BBRxsrSfXK77jq\nXerwM0o9sJ1SSi9S+o3jMuCulNJ44AVKMzyJiHkppTuBecBq4KyIaBkS/SptL3V4sCifCtySUpoP\nvAaMK461LKV0EfAEpWHVC4uJL5KkjDU0N3fmqbbuq+W3otmzZzN48OBaV0eSNscm50F00++4Dba7\nnia8SJJUFYafJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7\nhp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTvbdmSjlFIfYHD59hExr1KVkiSpkjYZ\nfimlrwNTgKXA2qK4GfhwBeslSVLFdKTn9w0gRcTiSldGkqRq6Mg5v5cNPklSd9KRnt+klNKNwAPA\nOy2FEfFAxWolSVIFdST8xhR/hgNrirJmSmEoSVKX05HwOxbYIyLernRlJEmqho6c83seWF3pikiS\nVC0d6fnNBx5OKf0nbc/5XVexWkmSVEEdCb/ewF+AfcvKmitTHUmSKm+T4RcRX6pGRSRJqpaOrPCy\nLfBl4LCiaDbw44hoqmTFJEmqlI4Me14HDAFuLp5/EdgPmFCpSkmSVEkdCb+DgY9GxFqAlNKdwLMV\nrZUkSRXUkUsdXqM06aVFT+CvlamOJEmV15Ge37PAf6eU7iienwDMTSmdBV7yIEnqejoSfrsAv6e0\nvBnA00XZgXjJgySpC+pI+A2JiGPLC1JKT0bEyArVSZKkitpg+BWXOPQCtkkpbQ80FC/tCPSpQt0k\nSaqIjU14uQB4ExgBrCwevwk8B9xW+apJklQZG+z5RcSFwIUppWsj4uwq1kmSpIra5KUOBp8kqbvp\nyHV+kiR1K4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7\nhp8kKTuGnyQpOx25k3tFpZQWAsuBtcDqiBiVUuoP3AEMARYCJ0bE8mL7icB4oAk4JyJmFeUjgZ8C\n2wEPRMQ3ivJewDTgAOBV4KSIeLFKzZMk1aF66PmtBQ6JiI9HxKii7NvAQxGRgIeBiQAppY8CJwJ7\nA58Drksptdxh/nrgjIgYDgxPKR1RlJ8BLI2IYcDVwBXVaJQkqX7VQ/g1sG49xgI3F49vBr5QPD4G\nuD0imiJiITAfGJVS2g3YISLmFttNK9un/FjTgdGd3gJJUpdSD+HXDPwypTQ3pXRmUTYwIhoBImIJ\nsGtRPgh4qWzfRUXZIODlsvKXi7I2+0TEGuD1lNKASjREktQ11PycH/DpiPjflNIuwKyUUlAKxHLt\nn2+Nhk1vIknqzmoefhHxv8Xff00p/ScwCmhMKQ2MiMZiSPOVYvNFwIfKdh9clG2ovHyfxSmlHkC/\niFi6sTqllCYDk7aqYZJUp/yOq3H4pZT6ANtExJsppb7AZ4ELgfuA04HLgdOAe4td7gNuSyldRWk4\ncyjweEQ0p5SWp5RGAXOBU4EflO1zGvAYcAKlCTQbFRGTgcnt6roHsGALmypJdcPvuNr3/AYC96SU\nmou63BYRs1JKTwB3ppTGAy9QmuFJRMxLKd0JzANWA2dFRMuQ6Fdpe6nDg0X5VOCWlNJ84DVgXHWa\nJkmqVw3NzZ15Oq37avmtaPbs2QwePLjW1ZGkzbHJuQ7d9Dtug+2uh9mekiRVleEnScqO4SdJyo7h\nJ0nKjuEnScqO4SdJyo7hJ0nKjuEnScqO4SdJyo7hJ0nKTq3X9lSVLV/5Ljfc/TSNS99i4IA+fOW4\n/ejXt1etqyVJVWX4ZeaGu59mztOLAZj/0usAfOvUA2tZJUmqOoc9M9O49K2NPpekHBh+mRk4oM9G\nn0tSDhz2zMxXjtsPoM05P0nKjeGXmX59e3mOT1L2HPaUJGXH8JMkZcfwkyRlx3N+qhkvuJdUK4af\nasYL7iXVisOeqhkvuJdUK4afasYL7iXVisOeqhkvuJdUK4afasYL7iXVisOekqTsGH6SpOwYfpKk\n7Bh+kqTsOOFFdcVVXyRVg+GnuuKqL5KqwWFP1RVXfZFUDYaf6oqrvkiqBoc9VVdc9UVSNRh+qiuu\n+iKpGhz2lCRlx55fhtpfTnDKkXtz24PPeXmBpGwYfhlqfznBHxcu5dXl77Q+h62/vKAlYBf/9U1W\nrHyXHfr2YtAu7zNYJdUFwy9D7S8feOOtdzf6+pYoD1iAV5e/w4LFKwCv25NUe4ZfhgYO6NPawwPY\noU8vVhU9P4BlK97h3Ksf3eAQaEdWYdlQgHrdnqR6YPhlZvnKd1ndtIb3bd+TZprZ98M7c/rR+3Br\ncc5v2Yp3eHV56c+GhkA7sgpL+4AtL5ekWjP8MnPD3U/z2LONrc///PLr7FB2ecG5Vz/aev4P1t9T\n68gqLC3X563vnJ8k1Zrhl5n2QfXq8ne4/u6nW8OvfY9tfT21jmyzsev1XLxaUq0ZfplZ33BkeSB2\nZIWVrV2FxcWrJdWa4ZeZrxy3X5tLG6Btz60jK6xs7SosLl4tqdYMv8z069uLa/7pUK5vN+xYTR0Z\nNm3hEKmkSjD8MlTr9TM3Z9jUIVJJlWD4aaMqsVLL5oSvQ6SSKsHw00bVeqWW9kOky1a8w4qV7zr0\nKWmrGH4Ze/mVN/nuDb/hjbfeZfve27K2eS1vvtVEQ0MD+w3bmX865RM1X6ml/QSd9pdmSNKWMPwy\ns3zlu/zwjt/zP8+/ysq3m1rLV60uW9+zuZkn46987f89vMHjVGulln59e9G/33ZtZqc+9ae/2vuT\ntFW8n19mSiu8LGkTfBuydMUqlq5Y1fq817bbsOcH+3HQfh+s6gzR9kH75turuf7up6v2/pK6n2x6\nfimlI4GrKQX+1Ii4vMZVqomXGt/Y4n2HfKAfk/7hk9xw99NM/vF/V+3Sg68ctx+//9MrbQLbiS9S\nZfxx/gKWLu+a/7/Wrm1mn70+TM+ePTe5bRbhl1LaBrgWGA0sBuamlO6NiD/WtmbV98KSLQ+/gQP6\n1OTSg359e/Hx4bu2mXjjAtlSZTS+0ZOm7brmKYWVb65gjw+t5P3vf/8mt80i/IBRwPyIeAEgpXQ7\nMBbILvy2VJ/ePWhqWsvv//RKm/JqTnxpeb9aXJgvqXvJJfwGAS+VPX+ZUiCqg95atYbfPrtknfKW\nSw+aoXUllgH9tgOaWbpi1WYNjW5sNZcNXRtY6RVguuIKM12xzt2Zn0d9yiX8VCEtlx4AbYYlW2zO\n0OiWDKlWehi2K64w0xXr3J35edSnXMJvEbB72fPBRdl6pZQmA5MqXKduY1NDnx0dGt2S1VwqvQJM\nV1xhpivWuTurx89jY99xu/Vbza47vru+l+pec7/evO997+vQtrmE31xgaEppCPC/wDjg5A1tHBGT\ngcnlZSmlPYAFFathF9Yy+WR9d24vf70jx+nogtdbs8/mqPTxK6Er1rk7q8fPY2PfcWnongwePLgG\ntaquLMIvItaklM4GZvHepQ7P1bhaXdIHBmzPkA/sSHO7c3otGpe+xU79ttvg6xuzJZNaKj0RpitO\ntOmKde7O/DzqU0Nzc3Ot69AltPxWNHv27Cx+K5LUrTRsaoNu+h23wXa7woskKTuGnyQpO4afJCk7\nhp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4af\nJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQp\nO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuG\nnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8kKTuGnyQpO4afJCk7hp8k\nKTuGnyQpO4afJCk7hp8kKTuGnyQpO9vW6o1TSpOAfwBeKYrOj4gHi9cmAuOBJuCciJhVlI8Efgps\nBzwQEd8oynsB04ADgFeBkyLixeK104ALgGZgSkRMq0oDJUl1q9Y9v+9HxMjiT0vw7Q2cCOwNfA64\nLqXUUGx/PXBGRAwHhqeUjijKzwCWRsQw4GrgiuJY/YF/BQ4E/gaYlFLasUptkyTVqVqHX8N6ysYC\nt0dEU0QsBOYDo1JKuwE7RMTcYrtpwBfK9rm5eDwdOKx4fAQwKyKWR8TrwCzgyM5vhiSpK6l1+J2d\nUnoqpXR5l53sAAAHdklEQVRjWY9sEPBS2TaLirJBwMtl5S8XZW32iYg1wPKU0oCNHEuSlLGKnvNL\nKf0SGFhW1EDp3NsFwHXA9yKiOaV0MfBvwJmd9Nbr61FurR4AS5YsqcChJalyRo8evQfwckQ01bou\n9aKi4RcRh3dw0x8DM4rHi4APlb02uCjbUHn5PotTSj2AfhGxNKW0CDik3T6/2lRlUkqTgUnre+2U\nU07Z1O6SVG8WAHsCC2Hj33GjR4/eszjl1K3VcrbnbhHR0o36e+B/isf3AbellK6iNEQ5FHi86CEu\nTymNAuYCpwI/KNvnNOAx4ATg4aL8F8CUYkh1G+Bw4NubqltETAYmt6tvb+Cdoj5rNre9dajlP0NX\n113aAd2nLbaj/iyg7LTRBr7jtqXUQSg/vdRtNTQ3N9fkjVNK04D9gbWUfhv5x4hoLF6bSGkG52ra\nXupwAG0vdTinKO8N3AJ8HHgNGNfym0tK6XTeu9Th4q251CGl1BwRlRhSrbru0pbu0g7oPm2xHfWn\nO7Wls9Ss5xcRp27ktUuBS9dT/jtg3/WUr6J0ecT6jvVTSoEpSRJQ+9mekiRVneEnScqO4bd5Lqx1\nBTpRd2lLd2kHdJ+22I76053a0ilqNuFFkqRasecnScqO4SdJyo7hJ0nKjuEnScqO4SdJyk7NVnip\nBymlK4AxwCrgL8CXImJF8Vq3vJt8SulISjf83QaYGhGX16ouLVJKgyn97AZSWu7uxxHxg+JmxHcA\nQygtgXdiRCwv9um0z6cC7dkGeILSKvrHdOF27AjcCHyM0ucyHvhTV2tLSumblJZLXAs8A3wJ6NsV\n2pFSmgocDTRGxIiirCr/nurpe6sScu/5zQL2iYj9Kd00dyJASumjdMO7yRdfytdSusnvPsDJKaW9\nalGXdpqAcyNiH+CTwFeLen0beCgiEqXFyjv986mQc4B5Zc+7ajuuofRFuTewH/DHrtaWlNIHga8B\nI4vw2BY4uQu14yZK/1/LVbzu9fS9VSlZh19EPBQRa4unv6W0ojnAMXTPu8mPAuZHxAsRsRq4nVK9\nayoilkTEU8XjN4HnKH0W5T/Tm3nvZ90Zn8/oSrSl6MUeRanH1KIrtqMf8H8i4iaAoo7Lu2JbKN2L\ns29x14LtKd0CrUu0IyLmAMvaFVey7vX4vVURWYdfO+OBB4rH3fVu8u3rUl7/upBS2oPS3T5+Cwxs\nudNHcfurXYvNOuPzeb34fDrbVcC/UBoqatEV27En8GpK6aaU0pMppR+llPp0tbZExGJKN8p+sajT\n8oh4qKu1o51dK1j3evzeqohuf85vY3eTj4gZxTYXAKsj4j868a29fchmSim9j9Jvn+dExJsppfbL\nD3XmckSd/vmklD5P6dzMUymlQzayaV23o7AtMBL4akQ8Udxf89usW/e6bktK6f2UejdDgOXAXSml\nU+hi7diErlz3mun2Pb+IODwiRpT92bf4uyX4Tqc0TPV/y3bbmrvJU343+aJ89w3sU231VJc2iiGp\n6cAtEXFvUdyYUhpYvL4b8EpR3pmfT2f6NHBMSul54D+Aw1JKtwBLulg7oNQ7eCkiniie300pDLva\nZ/J3wPMRsbTo2dwDfKoLtqNcNepet98VnaXbh9/GFDMf/wU4prgnYIv7gHEppV4ppT15727ySygN\nC4wqTiSfCtxbts9pxeP2d5M/PKW0Y3ES+fCirBbmAkNTSkOKWV7jKNW7HvwEmBcR15SV3QecXjw+\njbY/6876fDpNRJwfEbtHxIcp/WwfjogvAjO6UjuKtjQCL6WUhhdFo4Fn6WKfCaXhzr9NKW1XvP9o\nSpORulI7GmjbI6tG3evpe6siuv2w5yb8EOgF/DKlBPDbiDgrIuallO6k9J9kNXBWRLQMLXyVtlOG\nHyzKpwK3pJTmU9xNHiAilqWULqI09b0ZuLA4gVx1EbEmpXQ2pZPXLZc6PFeLupRLKX0aOAV4JqX0\ne0o/p/OBy4E7U0rjgRcobljcmZ9PlVxG12zH14HbUko9gecpXSLQoyu1JSIeTylNB35f1Ov3wI+A\nHbpCO1JKPwMOAXZKKb0ITKL07+muSta9nr63KsW7OkiSspP1sKckKU+GnyQpO4afJCk7hp8kKTuG\nnyQpO4afJCk7hp9UYSmlScUKNpLqhOEnVd4kSospSKoTXuQuVVBK6VrgLOAPlG6m+gLwV0r3U9wJ\n+DWllTiaUko3Ubqx8jDgw5TWoZwBXEhpbcWrI+IHVW+E1A3Z85MqKCLOLh5+MiJGAq9Tuq/i3wEf\npXS3gS+X7fJRSvdS+yilJd9OiYiDgYOAKcVthSRtJcNPqo7yhYnviIi3ixsp38x7NxAF+M/iZqRv\nA0Fxj8nivnRLee+Gy5K2guEn1Zd3yh6vafd8LS5GL3UKw0+qvBXAjmXPT0gpbV/MAP0iMLs21ZLy\n5W+RUuX9G/CrlNJbwEJK91X8JbAL8Cvgx8V2m7q7uLPTpE7ibE+piooZnXMj4rpa10XKmcOeUnX5\n26ZUB+z5SZKyY89PkpQdw0+SlB3DT5KUHcNPkpQdw0+SlB3DT5KUnf8PRl3iPlVq1qMAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "sns.jointplot(s10_kallisto['tpm'], s13_kallisto['tpm'])" ] @@ -432,7 +947,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": { "collapsed": false, "deletable": false, @@ -444,9 +959,100 @@ "solution": false } }, - "outputs": [], - "source": [ - "s10_kallisto['log2_tpm1000'] = np.log2(s10_kallisto['tpm']+10000)\n", + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
lengtheff_lengthest_countstpmlog2_tpm
target_id
ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMUSG00000026353.2|OTTMUST00000065166.1|Xkr4-001|Xkr4|3634|UTR5:1-150|CDS:151-2094|UTR3:2095-3634|36343389.58000
ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127194.1|Rp1-002|Rp1|3047|UTR5:1-54|CDS:55-912|UTR3:913-3047|30472802.58000
ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127195.2|Rp1-001|Rp1|6869|UTR5:1-127|CDS:128-6415|UTR3:6416-6869|68696624.58000
ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127245.2|Sox17-001|Sox17|3127|UTR5:1-1082|CDS:1083-2342|UTR3:2343-3127|31272882.58000
ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127249.1|Sox17-005|Sox17|1977|UTR5:1-635|CDS:636-1511|UTR3:1512-1977|19771732.58000
\n", + "
" + ], + "text/plain": [ + " length eff_length \\\n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 3634 3389.58 \n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 3047 2802.58 \n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 6869 6624.58 \n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 3127 2882.58 \n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 1977 1732.58 \n", + "\n", + " est_counts tpm log2_tpm \n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 0 0 0 \n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 0 0 0 \n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 0 0 0 \n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 0 0 0 \n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 0 0 0 " + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s10_kallisto['log2_tpm'] = np.log2(s10_kallisto['tpm']+1)\n", "s10_kallisto.head()" ] }, @@ -468,7 +1074,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": { "collapsed": false, "deletable": false, @@ -481,16 +1087,115 @@ }, "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
lengtheff_lengthest_countstpmlog2_tpm
target_id
ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMUSG00000026353.2|OTTMUST00000065166.1|Xkr4-001|Xkr4|3634|UTR5:1-150|CDS:151-2094|UTR3:2095-3634|36343395.2420.039670.056126
ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127194.1|Rp1-002|Rp1|3047|UTR5:1-54|CDS:55-912|UTR3:913-3047|30472808.2400.000000.000000
ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127195.2|Rp1-001|Rp1|6869|UTR5:1-127|CDS:128-6415|UTR3:6416-6869|68696630.2400.000000.000000
ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127245.2|Sox17-001|Sox17|3127|UTR5:1-1082|CDS:1083-2342|UTR3:2343-3127|31272888.2400.000000.000000
ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127249.1|Sox17-005|Sox17|1977|UTR5:1-635|CDS:636-1511|UTR3:1512-1977|19771738.2400.000000.000000
\n", + "
" + ], + "text/plain": [ + " length eff_length \\\n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 3634 3395.24 \n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 3047 2808.24 \n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 6869 6630.24 \n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 3127 2888.24 \n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 1977 1738.24 \n", + "\n", + " est_counts tpm \\\n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 2 0.03967 \n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 0 0.00000 \n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 0 0.00000 \n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 0 0.00000 \n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 0 0.00000 \n", + "\n", + " log2_tpm \n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 0.056126 \n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 0.000000 \n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 0.000000 \n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 0.000000 \n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 0.000000 " + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# YOUR CODE HERE\n", - "\n", + "s13_kallisto['log2_tpm'] = np.log2(s13_kallisto['tpm']+1)\n", "s13_kallisto.head()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": { "collapsed": false, "deletable": false, @@ -529,7 +1234,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": { "collapsed": false, "deletable": false, @@ -541,14 +1246,44 @@ "solution": true } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py:892: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n", + " warnings.warn(self.msg_depr % (key, alt_key))\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAGpCAYAAADGJ5LWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8lNWdP/DPM7dMMsnEhJAgqCgCR4waUFH7k1eturXU\narGrrbVa1vpru7hrbattqdaurGWr1NWF0l341e1FxG7ZLWu71v6srbb0h1aNAhEQDlRAkZCQkJBJ\nJpn7/P6YC/M888w1c3lm5vN+vXyZuZ/JkOcz55zvc44SDodBRERkFKZyN4CIiCgRg4mIiAyFwURE\nRIbCYCIiIkNhMBERkaEwmIiIyFAs5W5AgbH2nYgqjVLuBhhNtQVTTZH7D8Lr88cvnz6jAy2nNJex\nRUREk8dgqmD73j0Oq6Mtfjkc7mMwEVHF4xwTEREZCoOJiIgMhcFERESGwmAiIiJDYTAREZGhMJiI\niMhQGExERGQoDCYiIjIUBhMRERkKg4mIiAyFwURERIbCYCIiIkNhMBERkaEwmIiIyFAYTEREZCgM\nJiIiMhQGExERGQqDiYiIDIXBREREhsJgIiIiQ2EwERGRoTCYiIjIUBhMRERkKAwmIiIyFAYTEREZ\nCoOJiIgMhcFERESGwmAiIiJDYTAREZGhMJiIiMhQGExERGQoDCYiIjIUBhMRERkKg4mIiAyFwURE\nRIbCYCIiIkNhMBERkaEwmIiIyFAYTEREZCgMJiIiMhQGExERGQqDiYiIDIXBREREhsJgIiIiQ2Ew\nERGRoTCYiIjIUBhMRERkKAwmIiIyFEu5G0CFEQ6HMTo6ipGRkfh1TqcTiqKUsVVERLmrmmASQlhe\nfPHFcjejpIaOD8AyHgAATIyPYf/+/dj29hEAgNfrwRUXn4WmpqZyNpGoLCrp3/3VV199JoD3pZSB\ncrfFKJRwOFzuNhSEEOJMAAfL3Q4iojycJaU8VO5GGEXV9JgAvB/9/1llbUVpHURtvV+g9t5zrb1f\noPbe80GcPH4RqqjHBABCiLCUsmYmVWrt/QK1955r7f0Ctfeea+39ZoNVeUREZCgMJiIiMhQGExER\nGUrJih+EEKcB2ACgA0AIwBNSyu8LIVoAbAIwE8AhAJ+SUo6kfKL0/rEQba0gtfZ+gdp7z7X2foHa\ne8+19n4zKlnxgxBiGoBpUsodQohGAG8CWALgcwCOSym/J4RYDqBFSvnNkjSKiIgMp2RDeVLKPinl\njujPYwD2ADgNkXB6Mnq3JwHcUKo2ERGR8ZRljil6Mux8AK8C6JBS9gOR8ALQXo42ERGRMZT8BNvo\nMN4vAHxZSjkmhNCOJeY1tiiEsCDSA+PSHkRUVWrt+FbSYIr+cn8B4Ckp5a+iV/cLITqklP3Reahj\nWTzPCgAP6t1Wa+vlEVHFU51cW0PHt5QnFZe6x/RjAG9LKdckXPc/AG4HsArA3wD4lc7jVKSUKwCs\nSLyOa+URUTXg8a205eKXA7gVwE4hxHZEhuzuRySQ/lMIcQeAdwF8qlRtIiIi4ylZMEkpXwZgTnHz\nX5WqHUREZGxc+YGIiAyFwURERIbCYCIiIkNhMBERkaEwmIiIyFAYTERUVn/605+wePFifOQjH8EP\nf/jDtPd966230NnZiRdeeAEAcPDgQdxwww34xCc+gRtuuAEXXXQRNmzYUIpmJ1m5ciWuueYaLFmy\nBHv27ClLG6pFyZckIqLyCAaDMJtTnbGRv1AoBJMpv++4oVAI3/nOd/DTn/4U7e3tuOmmm3D11Vfj\n7LPP1r3vY489hkWLFsWvO+uss/DLX/4yfvsHP/hBfPjDH87vjUzCli1b8N577+GFF15AT08PHnzw\nQfznf/5nydtRLRhMRAZz5MgRfP7zn0dnZyfefvttzJkzB9/73vdQV1eH3bt345FHHsH4+DhaWlrw\nyCOPoK2tDf/1X/+FTZs2IRAI4IwzzsCjjz6Kuro63HfffbDZbNizZw8uuugiXHXVVfinf/onKIoC\nRVGwceNGNDQ0YNWqVdi6dSsURcGyZctw7bXX4vXXX8fatWvR0tKC/fv347zzzsOjjz4KALjqqqtw\n7bXX4pVXXsHnP/95XHvttXm917feegszZ87EjBkzAAAf+9jH8OKLL+oG01NPPYWPfOQj2Llzp+5z\nvfLKKzjjjDNw6qmnAgB+/vOfQ1EU3Hzzzar7PfPMM/jd736H0dFRHDt2DNdffz3uuuuuvNof8+KL\nL+KGGyIbI3R1dWF0dBSDg4Noa2ub1PPWKgYTkQEdPHgQDz/8MObPn4/7778fP/vZz/DZz34W3/nO\nd7Bu3Tq0tLTgN7/5DR5//HF897vfxTXXXINPfvKTAIDVq1fjF7/4BW699VYAQH9/f/zb+7Jly/Dg\ngw9iwYIFmJiYgM1mwwsvvIB9+/bh2WefxfHjx3HTTTfhkksuAQDs3bsXzz33HKZOnYpbbrkF27Zt\nw4UXXggAaGlpwX//938ntf3ZZ5/Fj370IyiKeim0M844A2vWrFFd19/fHw8SAOjo6NANnv7+fvz+\n97/HU089hfvuu0/3d/ab3/wGH/vYx+KXP/3pT6f8/e7cuRPPPfcc6urqcNNNN+HKK69EZ2en6j5f\n/epXcejQoaTH3n777ViyZInqumPHjmHatGmq99Hf389gyhODiciApk+fjvnz5wMAPv7xj2Pjxo1Y\ntGgR9u/fjzvuuAPhcBihUAjt7ZFdYqSUWLNmDVwuFyYmJlTDXYsXL47/fOGFF+Lhhx/G9ddfj2uu\nuQYdHR1488034wf0KVOm4JJLLsHOnTvhcDhwwQUXxF/jnHPOwZEjR+LBlKqXdP311+P6668v6O/j\nu9/9Lr7+9a/HL2s3OPX7/XjppZfwta99Lavnu/zyy+F0OgEAH/7wh/Hmm28mBdO//Mu/TLLVlC8G\nE1EFUBQF4XAYc+bMwc9//vOk2++77z6sW7cOc+fOxTPPPIPXX389fltDQ0P85y9+8Yu48sor8cc/\n/hG33HIL/v3f/z3puRIP+larNf6z2WxGMBiMX66vr9dta6zHpDVz5sykHlNHRwd6e3vjl/v7++NB\nmGjXrl346le/inA4jOHhYfzpT3+CxWLB1VdfDSBSQNHZ2YnW1lbdNmlpe3Pay0Ckx3Tw4MGk++n1\nmNrb29HX1xe/3NfXh46OjqzaQskYTEQG1Nvbi56eHnR1deHXv/41LrroIpx11lkYHh7Gjh07MH/+\nfAQCARw6dAizZ8/G+Pg42tra4Pf78eyzz6Y8KB4+fBhz5szBnDlzsHPnThw8eBAXX3wxNm3ahBtu\nuAEnTpzAG2+8geXLl+Odd97Jq+259JjOP/98vPfeezhy5AimTp2K5557Do8//njS/RK3e7jvvvtw\n5ZVXxkMJAJ577jlcd911qsc8/fTTABAf0kz08ssvw+VywWaz4fe//z0efvjhpPvk0mO6+uqr8fTT\nT+Paa6/Fjh074HQ6OYw3CQwmIgM666yz8PTTT+O+++7D7Nmzccstt8BqtWLNmjVYuXIlRkdHEQqF\nsHTpUsyePRt33303PvnJT2LKlCm44IIL4Ha7dZ/3ySefxGuvvQaTyYTZs2fjgx/8IKxWK3bs2IEl\nS5ZAURR84xvfwJQpU5KCKbFXodfDyIfZbMa3v/3t+PDkTTfdFC98SFW8oDUxMYFXXnkFDz30kOr6\nAwcO4KKLLtJ9zAUXXIC77roL/f39WLJkSdIwXq6uuOIKbNmyBR/+8IdRX1+vG3SUPUU7VlupYvuV\nvPjiizjttNPK3RyivB05cgTLli3Ds88+W+6mVLRly5bhBz/4ASwW9ffvZ555Brt378YDDzxQppYl\nyZjyVXp8M8xGgUREJbF+/fpyN4HyxGAiMpgZM2awt1REn/jEJ/CJT3yi3M2gNLgkERERGQqDiYiI\nDIXBREREhsJgIiIiQ2EwERGRoTCYiIjIUBhMRERkKAwmIiIyFAYTEREZCld+IKKURtw+rN/cg/6h\ncXS0NuDOG7vgdNjK3SyqcgwmIkpp/eYebO2J7Je0//AJAMDypQvL2SSqARzKI6KU+ofG014mKgYG\nExGl1NHakPYyUTFwKI+IUrrzxi4AUM0xERUbg4mIUnI6bJxTopLjUB4RERkKg4mIiAyFwURERIbC\nYCIiIkNhMBERkaEwmIiIyFAYTEREZCgMJiIiMhQGExERGQqDiYiIDIXBREREhsJgIiIiQ2EwERGR\noTCYiIjIUBhMRERkKAwmIiIyFAYTEREZCoOJiIgMhcFERESGwmAiIiJDYTAREZGhMJiIiMhQLKV6\nISHEjwBcB6BfSnlB9LoHAXwBwLHo3e6XUj5fqjYREZHxlCyYAPwEwFoAGzTXPy6lfLyE7aASG3H7\nsH5zD/qHxtHR2oA7b+yC02Erd7OIyKBKNpQnpdwKYFjnJqVUbaDyWL+5B1t7erH/8Als7enFus09\n5W4SERlYKXtMqdwlhPgsgDcA3CulHCl3g6iw+ofG014mIkpU7uKHfwMwS0o5H0AfAA7pVaGO1oa0\nl4mIEpW1xySlHEi4+ASAZ7N5nBBiBYAHi9EmKrw7b+wCANUcE1UnzidOHo9vpQ8mBQlzSkKIaVLK\nvujFvwawK5snkVKuALAi8TohxJkADhaikVRYTocNy5cuLHczqARi84kAsP/wCQDgZ58jHt9KWy7+\nMwAfAjBFCPEeIt8IrhRCzAcQAnAIwN+Wqj1EVHicT6RCKFkwSSk/o3P1T0r1+kRUfB2tDfGeUuwy\nUa6MUJVHRFWC84lUCOWuyiOiKhKbT3zwCx8AAKx44s9YtaEbLrevzC2jSsIeExEVHIsgaDLYYyKi\ngmMRBE0Gg4mICo4nVdNkcCiPiAqORRA0GQwmIio4nlRNk8FgIiqiUi/RU8rX4/JDVCwMJqIiKnV1\nWilfT/taew8NYc29VzKcaNJY/EBURKWuTkv3eiNuH1Zt6MY9q7cU5Nwi7WsNjni41xYVBHtMREVU\n6iV60r1err2pTEN12tcCWBZOhcFgIspTNnMspa5OS/d6ufbeMgXZnTd2Ye+hIQyOeOLXsSycCoHB\nRJSnVAfuchYFpKuGy7X3linInA4b1tx7JdZp3ivRZDGYiPKU6sBt1OV4cu29ZRNkiUE44vYlhRQL\nISgfDCaiPKU6cBt1OZ5czy3KNciMGshUeRhMRHlKdeCulj2Jcg0yowYyVR4GE1GeUh24a3U5nmoJ\nZCo/BhNRgdXqcjx6gczVISgfDCYiKgi9QF61oZvzTpQzrvxAREXDeSfKB4OJiIqG+zJRPjiUR0RF\nU6uFIDQ5DCaiGlfMAoVaLQShyWEwEdU4ve0rWpx2VtFR2TCYiGqc3vYVgyOeglTRsVyc8sFgIqpx\nettXxEy2io7LFFE+GExEVUTbQ7l18Tw8/fyerLfmGHZ5CrqNBcvFKR8MJiKDy2U4bO2m7Xhtdx+A\nSA/l7YPHMeTyxi8DyT2WxAIFl84K4ZPBZYooHwwmIoPTDodt33cMC+a26wbUrgODqssnRr2qy5l6\nLIWuomO5OOWDwUQFw4nu4tCGiXsiEA8qbYgoUNSXFQUIh+OXh10e3LN6S/zzCQNF/cxYLk75YDBR\nwdTyRHcxQzlVcYJe76dzVite290fv9w1Zwoa7DbV/FFixR2Amv3MyLgYTFQwtTzRXcxQvm3xPOw9\nNIQhlwehk50f3fmau2++MOUusves3qIqbND7fAr9mbEXTflgMFHB1PJEdzFDeePze1SB0lhvxfy5\nU3Hr4nlYtaE76aCfKhBTfT7F/MxquRdN+WMwUcHU8kS33kE/n97C+8fG8O31L2N03IemBhtWLrs8\nKeRObXNg+dKFSVtK7Ng3gPlzp6Z8nXSfT7E+s1ruRVP+GExUMLU80a096N+2eB6+8tgf4j2dTL2F\nWIj9eedRBKPjdd4RDx5Y/zLOObNVFXpHB91YtaEbvQNjqucYm/Bja09vyiWFUn0+xfzMarkXTflj\nMBEVgPagv2pDt2r4DUjfW0gc8ko0Ou6Lh972fcfgngjEA6it2a77XIVcUmiyarkXTfljMBEVgV4I\npestpAqtpgZbPPTuWb1F1ftocthwzpmt8cDK5XlLpZZ70ZQ/BhPFsYKqcLRDWG3N9rS9Bb2ScJvF\nhJXLLk95nxlTG7F86UIcOTaGB6LzUuEw4AuEVI/Rw8+ajIzBRHGsoCocvSGs2IFfLxTuvLErqecz\n81QnZrQ36j5nq7MOgUAI96zekrS+XVuzXTXHpIefNRkZg4niWEGVXrpeht5tqQ70qUJhwdx21TyT\ntreTcAoT3nl/JGkOK6bFacfjX7ki7XvhZ01GxmCiOFZQpZeul5FLDyRVKGQqFEhVIKE1xalfFJEo\n02fNoT4qJwYTxbGCKj29QIkdwLvf7kt730SpQiFToUC2vZq3/jKAVRu604ZJLiHIoT4qNQZTBSrW\nt1lWUKWnDZRhlwdrN21TrU2XeN+YxM+r1VmHCV8QZpOCUDiMUxptuG3xvLxeHwBMCtBgt2Jswh+/\nbtwbTLnIa0yuIcihPiolBlMF4rfZ8rjzxi7sPTQUn9sZHPHA4wuq7qMoQIPdAn8gBJfbB6fDptoj\nSWt41IeNz+/B8qULkwJMgYLjLo+qQCLxBFwgEkrz507VHeKbTJhwWJfKicFUgfhttnS0vdMmh01V\ndBBWlSREdphwTwTw2u4+rNvcg+VLFybtkaQV+/xSzSElfvm4eF67qofWOas16QTcmMmECYd1qZwY\nTBWo1VmX9jIVjrZ3ql1t4fxZbbBYTDgyMIb3+kZVvZlY4Gj3SNKKrau3XR5LeZ/t+47hntVb0Oq0\n49LODgy5vEkLtxZy91kO61I5MZgqUNJmcBkOfJXCiJVg2t6oM7ragraNqzZ042CvS3XfWI9Fu0dS\njKIAl5zbgTtv7MK6zT1we/RXbwAivbBYz2lR13Q8/pUrMKITRMtu7Ir/Dtdt7jHE75AoVwymCnTc\n5Ul7uVIZce5MO9cyPbragpY2wBrrrfEeS2yPpB37BlRFCpdfMD3+XKmGYx31FihQVI/TG/rbf/gE\n9h4awuzTTsGr0fkso/wOiXLFYKpARpyYzqa3k+k+Rpw7y3auRfuZzJ87NWlV73RDbal2qQ0EQmhq\nsKmCadjlgcvtS/r9DI54MOFTz2cZ4XdIlCsGUwXKdWK6FENket/etVsvZOoRGTFwE+da9IbOYr/H\n2GdwZGAMo24fDveP4nMP/RZNDhvaWxoAhDHk8qLVWYcpTnvSUNudN3YhEAihe0+/ap7K6w/BO+KB\nzWKKr4E3OOLBus09umE2rlnMlfOPVIkYTBUo1cR0qgAqxRCZ3rd37dYLmXpERq8E0/s9Js7pdLQ2\noKOlAQd7XaqScu3cU8z+wyfgDwTxpZsvxPrNPTju8uDiee0IBELYtm8A4YSCv0AwpHps99t9mD+3\nHS1NNgyP+uLXq2sEgV3vHM94si2R0TCYqkiqACrFEFmqoajE18vUIzJ6JZje71H7O3fU5/YntfvA\nUFKZeFuzXRVKABDSXPb6Q3htdx8u65wGi8WE/qFx9A6OJW1/4fYEMp5sS2Q0JQsmIcSPAFwHoF9K\neUH0uhYAmwDMBHAIwKeklCOlalO1SRVApRgiS+ztaFe7jr2e0XtEmej9HrW/8/E0lXV6wggnPcfo\nuC/FvZMdd3niC7YmbrWuxbkmqiSl7DH9BMBaABsSrvsmgN9LKb8nhFgO4L7odZSGdsjutsXzsPH5\nPTg66FbdLzEQ/IEQdh0YhAIF/kAwvipBoST2dlJN8hu9R5TK+8fG8K11WzE86gUA1NtM6JrTHi/z\nTgyrWE/HYbegvs6CJocNHS0NeGNvPwJB7UAb4PMF8c776p6m3v1SSfySEfmcg9h9YAgT3oBqrsoI\n83VE2SpZMEkptwohZmquXgIgtj7/kwD+CAZTRtrho9d396k2h3PUW7BgbrsqEKwWU3yY57Xd/fFV\nCYqhUgMolW+vfxlDLm/88oQvBIvFFC9aACJzPl7/yc9g+tRG1dYTn/7WcwgET/amTApgNinw64RQ\nUDtup+GwWzB9amNSr9PpsOGBOy4DkPrLAVElKPccU7uUsh8ApJR9Qoj2MrenIvQOjKkuJ4YSAExv\nSz7Xxoil2Lkq9Qm4sdc7rrPvUffbffGiguVLFyYNo2XqodTXWTDuTT/sZ1IAq8WUtCvtAtGuqhRc\ntaE76XdSbV8OqLaUO5i0sh/DqGEud/o5iNgSN4kHcW3ZcCUO7RSiujCXcEu3/5HXH1IVFWSaP7NZ\nTXAn5JvPH0wqcNAKhRHvhZlNCux1Zpw/q0313EY8KZlossodTP1CiA4pZb8QYhqA1IuFJRBCrADw\nYFFbZmD1dgugKRHRbqe9TnPAuqxzGhZ1Ta/ooZ1C9PqyKfmOhVU2zx+7T6YeSlODuqzbHwzDpCRX\n26USDIXhngjEhxC1r5/qMlWeWj++AaUPJiX6X8z/ALgdwCoAfwPgV9k8iZRyBYAVidcJIc4EcHDy\nTTS+CU3ll81iwpp7r0x7wEqs3qpUhaguzKbkG4j0OrSv11iv3vco1ga9YpSf/Ho3dr0zCI83gFS1\nDHU2Eya8If0bUzgyMKYautP2hIddHtyzeoth1hqk3NX68Q0obbn4zwB8CMAUIcR7iHwjeATAfwkh\n7gDwLoBPlao9lcyp2XrhtPZGOB021QHy+MiE6jHHRyYKXolXavmUmycPaapXB9cr+e6NHvyPDIyh\nrdkOp8OG6VMb4Q8EVYuxtjXbdXunuw8MqnpHqZgUE9qabbDbzOg77kZsGklRkHKY78ixsfgJu9qe\ncKxMX3tiM1GlKWVV3mdS3PRXpWpDtZg+tREHElYTmD61EUD6OZEhlzdeiWfEVbyzkc+EvrY3dGln\nR9KQprbk2+X24UDvyd/j2ac1AwAGhifQ1mxHg92CcU8ATQ4b1m3uwbt96pUdTmQRSkDk5Fe9FcXN\nChBICKbYMK32/DBA3RO+Z/UW1e0c1qNKVe45JsrDkivOxuu7++APhGC1mHDDFWdjxO3Djn0DaR+X\nalVqoHq/WWsPzkMub9KQprYndmRgTHWA331gSDWEZ3NH1q2LLTdks5hUzzfZCp5ACLBaFASCYZgU\nBWdMa8K9t16MFU/8OSmY3j3qwpFjY5jR3phxqLNSv5BQ7WEwVaBVT3bHy4d9gRAeebIb55zZmjT/\noRU7UE1mwrwUB7dCvcaI24dhzZYgevNSTodNVQAxqql6HPeof6/a8nx/MLd5omz4o12mYDiMbXIg\n5aKtvkAID6x/GT/5h49kHOqspS8kVNkYTBVIe7AddnnShkvihnTA5IoISnFwK9RrrN/co+phxOaE\n9KzdtB2vRfcx0spUOZep7LsQ+ofGseILHwAAvNzTq+qVxZYwyjTUyQo+qhSmzHcho9EeKEPh9OFy\n+QXT8cAdl6m2aFjUNR1zTj8Fi7qm51Q6ns/BLXYS6D2rt2DVhu6M52EV6gCqfVyL056y57XrwKDu\n9UbR0doQD54pmu3dA8FwVr9X7b+RSjyXjWpD1j0mIUQ9gFsAzE58nJTyG0VoF6Wh/YIeRiRstDuk\n1llNWHjutKTgmcyqAPn0tnLtARVq0VltKXW6vYlKuT292aSkXXaooc4Me50FXl8QiqKgc1ar6jNc\nuexyPLD+ZQy5PAiFI+c4ZbOCeKahPs5BkVHkMpT33wBCAN4E4M1wXyqxdZt7ENZEVoPdgh37BvDF\nh3+H82a14e6bF+S8q6xWPiXbufaACrUKuTZs0oVP56xWVSl4IWlPpLXbzEnVeIoCzD7tlLS7/yae\nv7Tm3iux4ok/qwI80+810xcSzkGRUeQSTGdIKTuL1hLKmskEhDTz7Yll4maTguZGm2rh0dd29+ku\n3JrrwSif3lauPaBcN0JMdR/tauvHXclr3sXcffOF+P6mbdj1znHdEu7J0PaN6nSCaYrTnvYEaL3P\nqdDbmXAOiowil2DaJYQ4VUp5tGitoazYLGZ4fMGUtwdD4fgWDYleeasXtzzwG3TOasXnrjsPG5/f\ng+631RP+xTgYFaoHlOv27VqpDtyxMBtyebFAtOPdPhcO94/p3jdXVrN6BXFFgeoLg6JEQmnlsstT\nPseI24ft+9SrdUV2sJ2Kyzqn4bjLk/L3mkuP2Ihb21NtyiWY/hHAa0KIHQDiXz2llFytocR8aUIp\nRq9SLBQGxib8eG13P955fyTpnBigOAejQq10nW77dn8giAfuuEw3WBvrrZg/d6rugfv9Y2P48mN/\niJeA7z98Ium8pMkIaOaStJ+LxWyCy+3Dl/75RTQ3RgJqRnuj6j7rN/ck7Uwb2cG2H4u6pufc00r1\nWVT6Ro5UPXIJpg2IrG23DUDmIyMVTSHOmtHukpqqUEJPMSfJ0z13uu3bdx8YSnmfcDiyS+y6zT1J\nbf32+peTzkvyBUJoddZhwhvAhHdy/9QzlZL7E157cMQTPycpUbpebKYebi7Dc9wqg4wil2CySSnv\nKlpLqGj0qsCaGmzwJvSYFp47LeuDUi4rdOcq3Tf8xG/0B46MqN5TrPDjzhu7kjZOdHsC2H/4RHwd\nu7ZTGuJtTLWN+cioN+uVvwtJrz3pAjlTD5fDc1SJcgmmV4UQ50spdxatNVQU2iowh92Cby5diEc2\ndGN03IemBhtuWzxP97F6PZhcVujOVbpv+LFv9CNuH+7+55dUczXnz2qLtzUcTt2nHB71YXjUF5+j\nctRb4fUnz8flsLt5XKuzDmed6sSuAwPwpl+EIyV7nQWfe+i38c9l5bLLceeNXdh7aEg19JpueDIR\nh+eoEuUSTJcAeEMIIaGeY7qk4K2ivDnqLTjnjBYcPOqCe8KPpgYbzpjWhG3y5Dp6C0Q7fvmnd+IH\nOu+IBz/59W5YLaakHo9e4OidH1Soiq5svuHHChVi2prt+NLNC1SrfGdDb44tVyYFUBQFjQ0WTHj9\neFOmX68wk5Gxkz0mb8LQXovTrmrvqW2OrIKfw3NUiXIJpi8XrRU0aXNOP3kOzLqEA7d3xINQOIzG\neivCCMd3QF3xxJ9Vj991YDA+wZ7Y49ELnCmarSMUKEmBku++QNl8w9e2KbbKt7bCMN32EYXgsFtw\n3tlteH1bLiK2AAAgAElEQVR3H0bG8uwiZRAb2uOQHNWSrINJSrkFAIQQjdHLhamnpYJwOmwpd15N\n7F3EdkDVHui0J5/GnkPvgKh9/u49/TitvRFtzXY0OWwYdfvy3hcom3OYtGsFjrp92Nqb3FO65NyO\nopyXFOPxBVOur5eKo96CQCAU3zI9k6aGk8tIARySo9qQy5JE5wB4CsD5AMJCiJ0Alkop9xarcZS9\nN/cew5f++SWs/dpVSZvhJep+uw+rNnTH55RiBzrtJnixb+R6B0Tt/kXBUBjv9o0CAM45sxX95nHV\nsNOOfQPx3tOti+fh6ef35FwksXbTNlX7Wpps8SKGw/2jqtezRcP32PAE6ussRQumdMsKpVJvs8CD\nYFbBZLOY4uc3cUiOgEiFaS3IZSjvpwDWIhJOAHBr9LrLCtskyteQy4tb/+H/pr2P1x/C1p7e+Hk/\nQKQ38oNN2+Got0CBem02vT8DvXX5YmKBkxhcYxP+eFVcYsVcLr2pWDl4jD8Qjp+/87mHfqu+LRiK\n99iAzGvTlYrZpGQ9r9XWbMeae69UhfaI24e1m7Zh94EhhBFOucyUHq6DVx3GxmpjoCqXYGqUUm5I\nuLxRCLG80A2i0nhjz7F4L0bbW7JazPGDVqrVFuw2s24wJQ4z9Q+No3dwTHVyqPacoWyLJLTrACZe\nrrdbgJGE25JWXy9/KAFAfZ0l455ZMU6HLSk41m/uUX1OqZaZApKDKBAI4dXosGM1r4PHAK4OuZzi\n/qYQYlHsghDicgBvFL5JVArBUBj7D5/A1p7epN5I/9B4fNFQbUFBbN5ocMSDtmY7Tu9ohM1igs1i\nQluzHbctnhcfdnr8K1dgwdz2tO0YdnkybtcAAOfNalNdPj/h8kSGobpi5ZKS5YLkjfVWLOqajs5Z\nrVk/94FeF1b++DXV70YvxFMFe+wLRewz3qnZ1qNa18HTvu91m3vK3STKQy7B1AVgixBCRkvGtwBY\nIIR4XQjxenGaR4WQaYUd7bh1R2tD/A883VxIi9OOmdOc8AVC8a3GNz6/R7X/kj8QTCovT1zyZ3DE\nozp4pNq76e6bF2BR13ScNd2JtmY7jg2Px28v1zfibALPZjHh/9z3V1i+dCHuvvlCLOqannWgxXpE\nMXqVeKmq87TBoy1uqdaqvmpfiJZzTMlYLl6hzGYTAtrlyBPU2cxYINpVwx/acnIFgNViUg3F6VXo\naU+2jbFZTDi1zYFpUxqw653jqufZ2tOL0XUvw15nVlXR7T98AuPeABrqLPG2dbQ04GCvC4MjHhzo\ndQEApk9tjP9cCtnOWSkK8K07LokHZ6wn+an7n8WEN7uqvMTf7503dsEfCMbnmGKl/3q083yds1ph\ntZirvqqPZfXVIZdgOl1KuTHxCiHEbdrryHi08zpaXl8waSxe+wcexsk15Lz+IBQo0d6QugJw2OVB\nMJj8er5ACO4JP6yW5C0fAKDnL/o7yO7Ydyy+xcf+wydgVpLL2ld84QPYvu9Y0kKnxdLSVJdVEUM4\nDKzdtAOr771SNe9RZ7NgwntyiM5sUnDxvHbsP3xCVdoPqA+sToctXrCSiV41ZS3MtVR7Wb2SbXe7\nwuUSTPcA0IaQ3nVkMJl6/25PAGs3bce37rg0fl3sD7r77T7VcJ7XH4wHwGu7+3FpZwfamk+uSpDu\ngD067st5aEXb0Qtq3swUpx1hRMqwE4PJpundFVIuK0aMjvuSCkjMJvXBZea0Jjxwx2VwuX34fkLV\nXboeUSbpysuruUCAZfXVIWMwCSEuBnApgDYhxN8l3NQMoDr+NdcQk4LoN3Z170I7OR77A1+1oVs1\nLDeu6e0MubxJy+U0OWw458xW/HnnUdWQV1ND8om9k7VjXz/ueOi3qhBqa45sH3H/uq1JPZBSC4eB\nIwPqEl/tMOD0qZFtLnLpEU0Gd6olo8um+GEGgIsBOAAsTPhvGoDbi9YyKopQGEmhBKTedvzOG7uw\nqGs6HPWR7zDa3ldHa0PSOP6MqY1YvnQh/vXrV6Gt2Y46a6Ri75t/sxD+QBCN9VY01FlgTnjJeps5\nqQWN9VY0N1rTvh+PP5zUM2px2jGjvRG+LFdXKLTE9+ELhHDoaOr5r8Z6a8mHm6q9QKCasfghSkr5\nKwC/EkJcI6V8IdX9hBB3SCl/XNDWUcmkKmWO9ZzuWb1F1dPR278pNjR02+J5WLWhG/1D4zjnzNb4\nUNGqDd2q83Aa6swIBCPBMqGz+eH8uVNx2+J5uO/f/h+GRzOXlMfEglJ77tNkZbv2nr3OpCpuSPeY\n+XOnTnoYLdehuXQFAtU8zEeVI5e18lKGUtRdABhMFait2Y7brzsvHiZ6ByRtkYMj+k0/dp/YUNCI\n24evPPaH+NBe7HyShjpz0uuO62zC56i3YHpbIzpaG7Dkg2fjgfUvq1bczsSkAIFACPes3oI6q7mg\nBRGntzfi6HE3/IH06WQ2mZFuO0ebxYQZ7Y2YMbWxIL2lXIfm0hUIcJjP2Fj8kLva+I1VAatFgc1q\nji8/dPfNF6q2jNA7IPkD6hAZcnl1Vx1Yv7lHtzhAL4T0uCcCOHBkBE0NVjz85Os5zxGZFMRXOAAA\nswnQKRLMy7gngNPbmzKWpofD4bS9K18gFB/uLIRch+bSFQhwmI+MoJDBVBuDnxWu1VmH7965CDPa\nG+PXjbh92LFPvY+Q9oAk3xtOeq5cViKIic1VpevJBENh1f5RuUguxFOQ7T/NTEN1gyMeDI9mDsps\nFo1N9XvKZyitkOfu8DwgY+McE1WlsfHktdrWb+5JWsOtd3AMqzZ0xw+MesURqVYiSFd1V2+zYOWy\ny7Hx+T3YLo8VbeXvmEIv3pru+XLZ/ynVAT+fobRCnrtjxPOAOO9VeziUV2N8gRD+/tGX8IHzT025\nfxMQ6dHEDpDLly5E56xWVeHCKU02jHv8+NT9z8LnD8NuM+O8s9vwues6k7YBTxRbtkivoKLccvky\nqrf6Q7aPT1eJl89QWiHP3THieUCc9zqJc0y5u72Az0VFFAyFVaGTrpezfV9kFfJWpx2XdnZgyOXV\nXZHc7Qngtd19sFpMSec11VlNqpN0U21CmEuPQwFw7qzWpAVoSyUYCsOkRMrvY+osQGIlfqpBxM5Z\nrVin6QGEETkA9w6qz3niUBrnvWpRNifY1gH4GoCZAH4lpXwu4ba1UsovAYCUksv4VpgjA2NY+ePX\nsOudQZhNCmxWBfV1VlXBgXsiEA+PRV3T43sgffmxP+g+5/Z9x3DOTHXpuXbbidiK4tphoxuuOBuP\nPNmN0XEfwuH0SymFATTW2+Cot5RsKSItRZOkgZCCtuY6NDlsmDG1Edv29icVfbQ12xEIhOKhvv/w\nCbx98DjmnH6KKugb662YP3dq/HdUy8NZnPc6qVbmmLI5wfbfENm1di+AVUKI1Qm3XV6UVlFJjLp9\neG13H9yeAIKhMCa8IcyIbpFeZzUlLZ0T2/32yLExvH9Mf8OySFWduvelLa8eHPHgy4/9Ib5Q7D2f\nuQj+QAjLf7AVgyMeeP2R1cptGZZF33VgsGyhBAB2m7oEPhgKY3DEE6+4O392W9Jjmhw27NivXmVj\nyOVN6vmd2ubA8qULk/bFqsXtHGInec85/RQs6ppuiHkvKq5shvIWSikvAAAhxDoA/yGE+BGAz4Pz\nShXpjI5GnDHNid6BsaS5oLcPDKWc4I/tfrv30FDa3syJLE6Gje0wG9t8UG9OKtN3w2xDKZchwkys\nFgWntzdh+tTGpOHMmN54T/R40m2jbp/u71d7MrC2V1DLw1lGnPcql1qZY8qmxxQPLynlBIAbEVme\n6KksH08GMzoeGUaLrdGWSHvQNJuUpJ7L6Hj64Mk1A1I9n79Ai7AWIpQa6624tLMDF4kOmM2R38cn\nr5qLtmY7NB1LuBJ6ojEmJTKM56jXX2Lp/FltaXsF2qBqddbp7ltFVA2y6TH1CSG6YnNIUsqgEOIz\nAJ4EcF5RW0dFMTzqw52rfo/ZpzXDrADBhAO31azAn3BFMBROCqumBhu8Wa6w3dJkgzijFceGx3H4\n2Kjuqgm5PF+5+PxBbJcD8Z6iXk/PbFJgrzPrrkUYCuuvSm42KVg4rwNfunlB2jkj7XxcIBAqWKVa\nLc9fkTFlE0x/C0D1dUxKGRJCLAXwH0VpFRWdy+3HNnlyrqO+zgSH3Rb95p2+izE8ln2IjHsCsFhM\n+M6yy/HFh38Hf0B90L6scxpuv64Tf/foSwgV+JyjbGnDWI/e0OWI5vcQDIUzDi/GVl6PhcCti+fh\n6ef3YMUTf06q0NMGRWLw3LN6i+p5JzO0x3LsylErxQ/ZLOK6P8X1YQC/KXiLqCzMJnPW+wwFs1td\nCMDJeSlAfwXzfYeHce+aLWULJQCwWBRcet6pSXtPZaSkX1UiVjyS2OOMFUbEeilf//6f4ic3J1ae\nZQqKQlaq1fL8FRlT1ucxCSEGkPxXOALgzwC+IaXsS34UVQq94ad86W3S1/12X2R+ZUJ933LvlwQA\nHm8IO/YNIJCh15SordmOcU8gqQeYaNaMZqz4wgeSzlkCoLv9PJD9Mk+FXKGB5diVo1aKH3I5wfZf\nAZyCyAriCoClAAIAxgH8EMDHC946KhqzWQHCJ7/NF2rpHrNJ0R328vpD8Pq9WQ2blVoYSFqSKR0F\nwMpll+Nr3/9T2vt1tDaohuBG3L54SGlPpE18DICMQVHISjUjLkNEtS2XYPqolPLShMv3CiG6pZQL\nhRC7C90wKq5gjuHQaDdhzKM/zKUgMqoVCmcOOJvVjEvPa0f/0DgOHBkp+Fp2pRAGsPH5PUnLNCVq\na7YnHeBT9ZJitEsVlSooWI5dOTjHlKxFCNEqpRwCACHEFADO6G2sVa1yYuYUvNs3mvJ8o2z/Xsa9\nAfgDQUxx2tE7MFb0RVyLpX9oPD5Md2RgDO/1japCtsVpT6ps0w7JadfbS9w0sNKDgpV+NBm5BNP3\nAfQIIWIFDx8F8D0hRCOAlwveMjIU+d4JrPjCZVj+g62T6uWEw0jZy6gkicN0qzZ046Bmj6ajg26s\n/PGrUKDguMuDjtYGtDrrVPe5eF47rBZzVQ6hsdKvODjHpCGl/IEQ4k8Arohe9a9SyreiP99V8JaR\noYxN+CcdStXAbFLQNWdKfJfcjtYG9A4kzxeNTfhVAbz/8AlcdE472prtGB33oanBhs9dd55qX6xM\n8u2FlKP3wko/moxcVxd/G0CsWFgWuC1kcLUYStoVxGdOa8J7fWOqreOztffdofh5Tt4RD37y610A\nFOw6MKjaTThVaOTbCylH74WVfsVRK3NMWS8pJIS4GMA7AJ4B8EsA+4UQFxarYVQYVouCOaefEt85\nlpC0OG06pzSph99cbl/a873SLTyrPY9r94GhyNJFE4F4Dyvd4qz59kLK0Xvhwqs0GbkcrdYAuENK\n+SIACCGuArAWXGHc0PyBMILBEOpt2W8PUWc1oanBBnudJeUq4g11Znj9oYrsRdltZtTZzCnPoTKb\nFNTXWdA5qxWfu+48bHx+T3wY7IjOwreJZrQ3YsbURvQPjaPVWaeaY9Iu+qpduBVIHxr59kK0j2t1\n2rFqQ3dRh/ZY6VccnGNK5oiFEgBIKV8SQjxehDZRgR2ITsy3NdvR5LAlVZBpef0heEc8GbedqFRu\nTwDnn90Gi8WkGyDaA3XiAVav0CHRjKmNWHZjl2pOZ8UXPgCnI7LcU+LJtv5ACK/tVp+Xni5s8j3f\nSPs4fyDIwgQytFyCaVwI8SEp5R8BQAhxBSIn11KFcDpsWHPvlVi1oVv3fBpt+bIvEEq5ZYR2A7xK\nc9zliW96mEpi0UCr0w4gjL7j47BZTAiHQ2hssOH0jiYcOOJCGGGcP6sNd97YhXUp5nS0vQiX24e1\nm7ZjZ8IcU7qwybcXUsx19qi0amWOKZdg+jKAXwghYuMfNkS2wKAKcaDXhQd/+ApSre+mu09Qlf4d\nZDMMlumE2OFRHzpn1eE/Vl6ruj7bOR2nw4Zv3XGp7m3FxMIEMrpcysW7hRCzAYiTV8ns13EhQ9gm\nB8rdhLLLdjL+iE4ZuJZe6Bj9wJ84tNfqtMMfCMZL33kirLFxjilKCKH9qzoQ/b9VCGGVUnIcoIIV\ncndXI9K+v8Z6q2pYS+8cn9i2E+8dTT2XFONssCYVEty2eB72HhqKn6902+J5RXhn+Usc2ksc1uV8\nExlFNj2mMUTGfmJRHfszj635b55sI4QQhxBZqTwEwC+lvGSyz0nZWTC3DQd7XTgx5qvKgDql0Ybh\nhK3e555xiipIEivlYpv/nX1ac8rVKRx2i2oZpYNHXfHqvsReUqxyzzviwcbn9xT8YF+ok2Z5IiwZ\nUTb7MZWiNCsE4ENSyuESvBYhUhK+8NxpCARCqgN3PkwKAAUIFWYn9IIKhcNw2C2AEtm+PIywqoeg\nPadpcMQDjy91Ycf0qY2qAHJrViXPdtuKycr1pNlYkB0ZGMOo2wenw4bpUxuTlkkqx7Aj19XLXq0U\nPxilHliBcdpSExaeOw3Lly5E//DkD5qhsDFDCQBGxvxwewJwTwQQBrDzL4Oq2/UKPsa9+lOnCpIP\n3E0N6gNoR2tD0n2KcbDPtacTC7KDvS4MjnhwoNeFrT29UKCU/UTYWNv2Hz6BrT29aU8yptpglOUA\nwgB+J4QIAvihlPKJcjeoGikAZp9+imrC+0iKE2ir0Vt/OYYJb+YETRWyzU11SecE3bZ4nuoE3FJt\nW5FrgUWq4MqmbL7YOJyYPRY/lNblUsqjQoipiATUHinl1nI3qtqYTAo6WhsQCITwahWs8J0rn39y\nwyBeX6QnpR0y09sIMPHE2mLI9WRbbZAlXl9uRq9ipNIzRDBJKY9G/z8ghHgGwCUAUgaTEGIFgAdL\n07rqEQyFo8M3tUlvCaBcTHhDWLe5R3cuZ8Ttw1ce+0PS4q7FqnDL9WTbWHBp55iMsIYdd9BVS3d8\nq5U5prIHU7Qc3SSlHBNCOABcA+Af0z1GSrkCwArN85wJ4GBxWlldauOfdrLEIToFQIuzLuV6eSYF\nqK+zYMIbUK0unurcpvWbe5LW0DPSkJSR164zctvKgcc3AwQTgA4Azwghwoi052kp5QtlbhNVOwXw\n+VPPN/2vC6Zj+dKF+NxDv1UFzqhbv4Ix1Ym2RpdLRRyr58qPc0wlIqU8CGB+udtBtSUcjmzmp2Wz\nmOB02LDkirOx8sev4rhL3QtKdSDWzpO0NdsLPiRVjGDIpeycu9JSqZQ9mKj8LGYFgaDxB/jqrCYE\nguGCbrXhqLdgelsjhl0eDI544AuEMDjiwaonu3W3t3C5fbrL9+jNkxSiN5EYRrE2ApFg8AdCsEZX\nSM/3NXOpiGP1XPlxjolqRiWE0ilNNpw3qw3b9x3Lel+pbHW0NiAQDKmCaMilv+fS4EgkHLQ9hmzm\nSfLp8aRbSHbXgcH47yLfHkwuFXGsnqNSYTBRRTgx6ku70ne+3BMBbO3phdWiHrvPplO2Y98AXNEK\nt2zkMxSWrlei3RE3nx5MLhVxk62e4xzV5HGOiaiG+APhpP2oMhmb8KcsH9eTz1CYtpdis5jiu+Rq\nd8TNpweTS0XcZKvnOEdF2WIwEUXV11lUBRHZBFU24RLrKRwddKuuzyZI7ryxC3sPDcWHGX2BEGZM\nbcTypQuTdsQ1+vk/nKOibDGYqOKYFaAY02Kds1phtZjj81ixUDKbFNhtZtTZzPD6gqrVxfPZcNBR\nb8GCue1ZBYnTYUOL066a/4od0J0Om2ob93Wbewpa7l3ooTfOUU0eix+ISsBsimwpHg6HsfOdoawe\nY7OZMVHgrd0v65yGL928AE6HDfes3qI6gAZD4chCsJ4ALu3sgNVizqmXou0ZBAK5rXib7oBezHLv\nQg+9cYUHyhaDicpGUYBfPvpxAMDnHvpt1o9Ld2JsytdC+hUv3tzbhy8/9gesXHZ5ynXlAGDI5c1q\n0VNtmXcirz8UP+Bnc6BPd0BPNTym19vR3rf77T6s2tCdsidU6KE3rvAweSx+ICqycBjY++4QfrXl\nHRzXOWeooK+V4XZ/MFIK/sD6l7Hm3isBIOncISDz8NOI24e1m7bhjT3HVPNTbc12jI774E0I1WwP\n9OkO6Kl6U3q9He19MwVkup4aK+yomBhMVFbfWPv/dHfOVQCcf3Yrdh8cTipAqLOaMF7gobyY0XGf\nKghyLTBYv7lHd/fbFqcd55zZqpprKsQcS6relF5vZ8UXPgAg0lNKDMgjA2NJ28M7Hba0PTVW2JUH\n55iISiDV31kYwFsJc05mk4L6Ogs6Z7XCHwhhmxzI+NxmExDMcdQvEAypzk3S9lZG3L74QbzVWQcF\nCo67PCmHy2K0oVGoOZZUvSm93k7svqs2dKsCctTtw9be5JBJ11NjhR0VE4OJKsKsGc3xuZ2VP341\nq8fYbRYoiqIqAW+st+LUNgemOO0II4zut/tVJ9MGQ8C6zT24dfE8fHv9yxgd98FRb8VZpzrhGvcn\nDe3F7D98Aq/v7oPVkrwRs9mkxHshpepVpAtB7W29A2O6VX/psMKuPDjHRGQgsQPfiNuH3Qeyq94T\nM1tw6KgLmDh53XmzpuBbd1wav3zTN59VDWsBkQPzt9e/HD9Ye/1eDLky99B8gRB8OhV3jnpzVu3N\nRrZzO+lCUHvbqg3dONDril8ednkyrmjBCjsqJgYTlVyui8a2NdvRG50H8QeCuquCxzjqLehoaYDL\n7cPuAwPwau4q3xtSLcLa1GCDV9MD6mhtwHt9LhSKyx3A9zdtwwN3XJbzY7VBlLjaQ6HmdrQn8Q6O\neDKuaMEKu/LgHBNRkeS6aGxs4dQDvS401lvT3nfB3HYAwIFe/XX1hkd9GB71xQ/qK5ddjvvXbcWJ\nUS8URcH8OW24bfE8vL67L6u2ZbuMUaZeXqqekLbIQPv+05WHZ1sll+4kXqJyYDBRRRn3pO4tAcAr\nb2W/0Gv/0DhmtDfiyQcXq65ftaFbd0gOSA6ii+e1w2oxq7Ysd7l9SfNQmbZ1T1Xlpg0I7fOkKw/P\npUfDOaPKwDkmIgPK1DnJZaum3sEx3RNM0/UWmhttmHP6KRhyeeM9kzAiwdBvjvRWvvHZebh/3VbV\ntu3nz2pL25ZUVW7awDh/Vhssmj2Y0j0+W5wzIiNhMJFh5FPePRmxLS8CgZCqIEIbBopysqx9yOWF\n1WJWrf6QWH69//AJ7D00hO/euQgbn9+T9YE+VY8l2w0IJ9vj4ZwRGQmDiQyh3mYCFKXga+BlY+eB\nwfjPI24fAoGQashOO9+8fd8xuNy+eE+p+231fNTgiAcbn9+T04E+VY9FLzAS55NanXYAYQwMT6Ct\n2Y4mhw0zpjayx1OlWPxAVELzzmrFzr8cL8trxzbcG3H78JXH/qB7nlIi90QA6zb3AEDKzQtzGUrL\npXAhUxvPObOVPR+qeAwmMoS9h4bhL9MW752zWgFEej+ZQikmU/B0tDakDJx8SsBjj8m0tTyr6aob\nix+ISqhYa99ZzUrawLOaFShQcM/qLUkb+aUz7PLg7NOaVde1NdvR4rTHQ2hdikq5bEvAE2n3dEqF\n1XRUDRhMVFEybV8Rv58CTHHaMe4JwB9M3cOwWc14NctzlhINjngw4Q2grdkOp8OG6dF5nXTVfbHL\n2ZaA6z1Wq7nRinNmtqqqBKl6cY6JyICy+bO0WhSsvfcqbHx+T8bzmrRDI9rgS1cpGNs8MNW8TqpK\nuWxLwNM9V8y8meolloiqAYOJqo5JCeMnv96lu/1EIqs5sntu4v1anHWq84+aG9WX9aTqzaSqtMu2\nBFzvubRbVmzfdyztZn9UXTjHRFRi9TYTuua0Y/u+vqQ17nIRCCpZLfTqD4bx1l8GYDYpsNvMOP/s\nNhwbHk8KpnPPmoL+oXH0DozB7UkeFkw1r5Pq3KBczxlKLJbQru2X6264RJWAwUSGMeELYfu+YwiH\nTQDyP9M2GAqnXehV9ZreyOu4PQH85f0T8PjURRgzpjbGD/jafYwa662YP3dqxnmdyaxjp1cerrcb\n7vZ9x1SL07L3VJ04x0RUBtotKEop8eDvqLdgwdz2tPsYpQoAbRAFAqF4gUW269ilKw/X2w3XPRHA\n/sMnuJssVQUGE5GeMJKCJ9shuLWbtqnOS3LY1X9miXNS2awqrqVdI+/ooFvVQ+S5TNWLc0xEFaat\n2Z71CbJa2mo8tyeALz/2B6y598qch8W081va4cHEOSntOU17Dw2hxWlH7+CY7nO3NduTdsPVDjHy\nXCaqdAwmMiSrxQR/iq0nUnE6bAiFwxmr6BLFzneyWU3oHVT3NAZHPFmFk7bXEwypgygUCqOx3opg\nKIj6Omt808M7b+xK6t3E9p7SSpzP0rZFb4hxMvNaZFycYyIqoPo6Cya8qU901cpnwGL61EaEgZyC\nKRyOhEGrs0739sERD76/aTusCecZ3bp4Hp5OWDlcO4fU6qzDhPdkG8JAfKhtwuvFkMsb38o81flJ\nQGTvp1kzmjMGi94Qo3bFc4DzTlQ5GExUEuee2YId+wd1d3s1Kcn7KCVu1Je47UQqigJs29uf99JG\nwy4vWppscLn9SW3cdWAwXoAQG26L9Wr2Hz4BR736z+iUhBJz7fxPotd392GBaMeFog3b5GDS7fY6\n9fYaufSCstmfib2qylMrc0ymcjeAasObciDlFuTz57ZhUdf0pAN8TDajF+Fw6vX2LhJTcWlnB+zW\n1H/UYUS2Xb94Xjvamu2q2xRN/+24y5P29ulTG7Hsxi50tDakHXrxBUJ4bXcfDh0d1b1du7lgbD5q\n/+ET2NrTG1/hXI92nklv3imX5yMqJfaYqOwOHR3F2q9dhRVP/DnlsNZkWC1mWCwmePyZE27XgeN4\n7O4rVJv8jXt8qh6NNms6Z7XCajHjvT4Xjh534+We3qwWXI05MZo89HiRmIov3bxAdV0uu9RmsyPt\nZHe9JSoWBhOV3ZDLi+891Z12vmUytD2cdNwTAfzk17sAAL0DYzhwZAQhnV6PSYkMq4TDYew/fALf\nvQb+C/sAAA0eSURBVHMRHlj/MvyB3CenFc1YZWO9FSu++L8w4vZh1YbueLhENgU8qdVZp7o91bYa\nxdr1lkqPxQ9EJdSzfxBPP/RRjHt86Nl/POWwX6Js5p6AkwfcbENv94GhjCtHhMKIv/iQy4u/f/Sl\nnA4aNosJp7Y5cHpHU1KPzGpR4IqGS2IBw6WdHVjUNV1VdJHNthqx67Wy6VURlQODiQwjDGDXO0NZ\nhRIQObhnWikidt4PAPgDQXS/3Z9UaKHlD+S+UF+2bY7xBUI4vaMJy5cuhMvtw5cTlh0aHo1cHh33\nqR4z5PKqiiHuWb1FdXuqbTVSDdHlumYflR+LH4hKyGwC7v7nl1TVeJlks3yRo94Kp8OGMCJzTXab\nOYvnzboJkxILjDCQVEo/OOJJen+ZChoSt9VIdz8io2OPiQyh86xWvPVO6hXBzabIN8Vceybv9o3i\nhq//T86Pa2myweMNYMJXvLX7hl2e+JCd3qrliRJ7fjG5bKuRDsvGKwfnmIhKxGpRsCvDNhW5Bstk\nH+vzh1Bvt2LCl/3JurkaHPHgzlW/QzCLU69anPaksCjUthrZzkkRlQqDicoun0q2YovtTltsLnd2\nrzFFU5FXSCwbrxycYyIiw/AFiheSnJMio2GPiagC9Ow/DpfbV5S5H5aNVw7OMRFRWTjqLZjwBFRl\n7cFQGOs29xRl7odl42Q0HMojMpgFc9ux8NxpSddz7oc4x0REebNZTKivy+3Pq95mQluzHb0DYwDC\nSVtxcO6HagWH8oiKwBcIwWGxADh5HpTZpKhK15Mum83xjQIP9LpwWec0WBL2geLcD9UKBhNRkWjL\nzZsbbfD6gvD4gqizmlBnM2N49OSyQ2GoJ7aPuzyqJYgS8aTY2jQ6OopwOFz1Q3oMJqISSdxZd9wb\nxLg3iLZmO1qcdnS0NsAf3Z8pJt3QHU+KrU2v7uqDEC40NzeXuylFxWAiKqMmhy3eK3K5fVin6QWl\nwpNia1NDQ23MMzKYiMpo1H1yKC+Xsm3tXkpHB91YtaGbQ3pUFQwRTEKIxQBWI1Il+CMp5aoyN4mo\nJPINkVhvavu+Y3BPBDA24Y8P7XFIr3qdODGMEydOVPSJtlarFQ6HI+19yh5MQggTgB8AuBpAL4Bu\nIcSvpJR7y9syouKbPrUxr8fFelf3rN6i6jlxSK+62Ww2dMsTUJSRcjclbw1mDz561SVp71P2YAJw\nCYD9Usp3AUAI8XMASwAwmKhq1VlNWHjutEmXgHN79Noypa0DjU2VXfhgCWbeSsYIwTQDwOGEy+8j\nElZEVcvrD2G7PIpb/yEy/FZvM6PeboGj3oqxcR980U0CrRYTfP4gFJOC82a14fbrOvH083viBRK3\nLZ4HgOvcUXUxQjAR1SS35+Q8wYQviAlfUFVSrvXa7j688/6J+BbsLBOnamWEYDoC4IyEy6dFr0tJ\nCLECwINFbBORIY2O+1SXOadUfdId36Y0eDHV4SltgwrM6Tgl432MEEzdAGYLIWYCOArg0wBuSfcA\nKeUKACsSrxNCnAngYFFaSGQQTQ02eEdOHpg4p1R90h3fzjvnbJx22mllaFVplT2YpJRBIcRdAF7A\nyXLxPWVuFlFRmc0K7NaTw3n1dWbU1+nMMVlN8Pkic0znR+eYNibMMXFOiapR2YMJAKSUzwMQ5W5H\npXj2sSXlbgKVEeeUqNpx2wsiIjIUBhMRERkKg4mIiAyFwURERIbCYCIiIkNhMBERkaEwmIiIyFAY\nTEREZCgMJiIiMhQGExERGQqDiYiIDIXBREREhsJgIiIiQ2EwERGRoTCYiIjIUBhMRERkKAwmIiIy\nFAYTEREZCoOJiIgMhcFERESGwmAiIiJDYTAREZGhMJiIiMhQGExERGQoDCYiIjIUBhMRERkKg4mI\niAyFwURERIbCYCIiIkNhMBERkaEwmIiIyFAYTEREZCgMJiIiMhQGExERGQqDiYiIDIXBREREhsJg\nIiIiQ2EwERGRoTCYiIjIUBhMRERkKAwmIiIyFAYTEREZCoOJiIgMhcFERESGwmAiIiJDYTAREZGh\nMJiIiMhQGExERGQoDCYiIjIUBhMRERkKg4mIiAyFwURERIbCYCIiIkOxlPPFhRAPAvgCgGPRq+6X\nUj5fxiYREVGZlTWYoh6XUj5e7kYQEZExGGEoTyl3A4iIyDiM0GO6SwjxWQBvALhXSjlS7gYREVH5\nFD2YhBC/A9CRcJUCIAzgWwD+DcBDUsqwEGIlgMcB/O88X8oMAH19fZNoLRFRaV199dVnAnhfShko\nd1uMQgmHw+VuAwBACDETwLNSyguyuO8KAA8WvVFERKVxlpTyEJDx+Ba/XzUrazAJIaZJKfuiP38V\nwEIp5WfyfK46AB4AswEEC9dKQzsI4KxyN6LEau0919r7BWrvPR8EYE3XYxJCWACchhrpWZU7mDYA\nmA8gBOAQgL+VUvZP4vnCUsqaKaaotfcL1N57rrX3C9Tee66195uNshY/SCmXlvP1iYjIeIxQLk5E\nRBTHYCIiIkOptmD6x3I3oMRq7f0Ctfeea+39ArX3nmvt/WZkmHJxIiIioPp6TEREVOEYTEREZCgM\nJiIiMhQGExERGQqDiYiIDMUI214UVK3siiuEWAxgNSJfLn4kpVxV5iYVlRDiEIARRJav8kspLylr\ng4pACPEjANcB6I8tZiyEaAGwCcBMRJbt+lS1bA2T4v1W7d+vEOI0ABsQ2W0hBOAJKeX3q/kzzle1\n9pgel1JeGP2vKv5RJxJCmAD8AMBHAHQCuEUIcU55W1V0IQAfklIuqMZQivoJIp9pom8C+L2UUgB4\nCcB9JW9V8ei9X6B6/34DAO6RUnYC+ACAv4/+3VbzZ5yXag2mal8Q8RIA+6WU70op/QB+DmBJmdtU\nbAqq998rAEBKuRXAsObqJQCejP78JIAbStqoIkrxfoEq/fuVUvZJKXdEfx4DsAeRFcOr9jPOV7X+\nod8lhNghhPh3IURzuRtTBDMAHE64/H70umoWBvA7IUS3EOIL5W5MCbXHVtyPbhHTXub2lEK1//1C\nCHEmIjsrvAqgowY/47QqMpiEEL8TQryV8N/O6P+vR2RX3FlSyvkA+hDZFZcq3+VSygsBXIvIEMii\ncjeoTKp9qZaq//sVQjQC+AWAL0d7TtrPtNo/44wqsvhBSvnhLO/6BIBni9mWMjkC4IyEy6dFr6ta\nUsqj0f8PCCGeQWQ4c2t5W1US/UKIDillvxBiGk4WBVQlKeVAwsWq+/uNbvj3CwBPSSl/Fb26pj7j\nbFRkjymd6Acb89cAdpWrLUXUDWC2EGKmEMIG4NMA/qfMbSoaIURD9FsmhBAOANegOj9XIDK/kjjH\n8j8Abo/+/DcAfqV9QIVTvd8a+Pv9MYC3pZRrEq6r9s84Z1W3iGuhd8U1qmi5+BqcLBd/pMxNKhoh\nxFkAnkFkiMMC4OlqfL9CiJ8B+BCAKQD6ATwI4JcA/gvA6QDeRaSU+ES52lhIKd7vlajSv18hxOUA\n/gRgJyL/lsMA7gfwOoD/RBV+xvmqumAiIqLKVnVDeUREVNkYTEREZCgMJiIiMhQGExERGQqDiYiI\nDIXBREREhsJgIiIiQ6nIJYmIEgkhQgAapZTjeT5+DoD/A2AaIlsTdAP4OymlN81jlgA4IqV8I5/X\nJKLU2GOiajDZs8R9AL4qpTw3umGdA8DXMjzmBgCXTvJ1iUgHe0xUDRLXWluIyFJNDQDciKzg/Eb0\ntrsA3I3IHkD/F8DfSymnSinfRWQpmJjXAaTceFEIcQ2AjwO4WgjxvxFZAftw9HV7AFwEYAzA7VLK\nvUKIK6K3vQ7gMkSCcCkiS/CcB+A9AH8tpZyY5O+BqCqwx0RVQwhhRWTl5vuj2yb8A4DNQgiLEOIC\nAMsBXCalvBTAKdDpaQkh6gHcgTQLaUopX0Bk4c1HorusbozedD4i22Wfh8j2DU8lPGwegLXRHtmr\nAJ4H8JXobqYhALdM4q0TVRUGE1WDWMAIAF4p5R8BQEr5IgBv9PorAPxGSjkUve+PtU8ihDAD+A9E\ntrl+Lo92/CW6KysQCaXzY6uiR5ojd0Z/3gZgR2wrDwBvApidx+sRVSUGE1W7VNt0q64XQpgAPA3g\nuJTyKwV67cQemSfh56DOZQ6rE0UxmKgaxEJGArBF53QghLgKkQO+BLAFwEeFEFOi910ae7AQQgHw\nJCIVeZ/P8jVdALTbfp8d3doAAG4FsDO6QykR5YDf0qgahAFASukXQtwIYK0QIlb8cKOUMgDgLSHE\n9wC8IoRwAXgJwEj08R8F8BlENqXbJoQIA3hZSvmlNK/5FICfCiE+iZPFD7sAfF4IsT762kvTPJ6I\nUuB+TFQzhBCNsR6MEOJBAGdLKQsSHtFe2qNSyksK8XxEtYw9Jqolj0SH2mwA3gHwxTK3h4h0sMdE\nlIIQogvAT3GyiEGJ/vwDKWVSVR8RFQaDiYiIDIVVeUREZCgMJiIiMhQGExERGQqDiYiIDIXBRERE\nhvL/AeOAviWSm3/GAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# YOUR CODE HERE" + "# YOUR CODE HERE\n", + "sns.jointplot(s10_kallisto['log2_tpm'], s13_kallisto['log2_tpm'])" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 48, "metadata": { "collapsed": true, "deletable": false, @@ -584,7 +1319,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": { "collapsed": false, "deletable": false, @@ -596,7 +1331,36 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py:892: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n", + " warnings.warn(self.msg_depr % (key, alt_key))\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAGpCAYAAADGJ5LWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFWdP/53rV3d1Uu600vIQiCBHEIITZCwDDxfNn9O\ngoA+xi+MghmWYQZUkC84RhCGiCiGEQSCkyg/FwLoFzSikxGjDjJhwkBoTOiQ7SSShIR0ekt3urqr\nu/b6/lFL6t66t7au5VbV+/U8Pqb2U1X0fdc553PPMYXDYRARERmFudQNICIiSsRgIiIiQ2EwERGR\noTCYiIjIUBhMRERkKAwmIiIyFGupG5BnrH0nonJjKnUDjKbSgqmqyH0H4PX545dnzehA85SmEraI\niGjyGExlbO+Hx2BztsYvh8O9DCYiKnucYyIiIkNhMBERkaEwmIiIyFAYTEREZCgMJiIiMhQGExER\nGQqDiYiIDIXBREREhsJgIiIiQ2EwERGRoTCYiIjIUBhMRERkKAwmIiIyFAYTEREZCoOJiIgMhcFE\nRESGwmAiIiJDYTAREZGhMJiIiMhQGExERGQoDCYiIjIUBhMRERkKg4mIiAyFwURERIbCYCIiIkNh\nMBERkaEwmIiIyFAYTEREZCgMJiIiMhQGExERGQqDiYiIDIXBREREhsJgIiIiQ2EwERGRoTCYiIjI\nUBhMRERkKAwmIiIyFAYTEREZCoOJiIgMhcFERESGwmAiIiJDYTAREZGhMJiIiMhQGExERGQoDCYi\nIjIUBhMRERkKg4mIiAyFwURERIZiLXUDKD/C4TBGR0cxMjISv66xsREmk6mErSIiyl7FBJMQwvra\na6+VuhlFNXRsANbxAABgYnwM+/btw9ZdRwAAXq8Hl553KhoaGkrZRKKSKKf/7q+88spTAHwkpQyU\nui1GYQqHw6VuQ14IIU4BcKDU7SAiysGpUsqDpW6EUVRMjwnAR9H/P7WkrSiuA6iu9wtU33uutvcL\nVN97PoATxy9CBfWYAEAIEZZSVs2kSrW9X6D63nO1vV+g+t5ztb3fTLAqj4iIDIXBREREhsJgIiIi\nQyla8YMQYiaAdQA6AIQAPCulfFoI0QzgJQCzARwEcJ2UckT3iVL7Zj7aWkaq7f0C1feeq+39AtX3\nnqvt/aZVtOIHIcQ0ANOklO8JIeoB/AXApwDcDOCYlPIxIcQKAM1Syq8XpVFERGQ4RRvKk1L2Sinf\ni/57DMBuADMRCafnond7DsCni9UmIiIynpLMMUVPhj0HwNsAOqSUfUAkvAC0l6JNRERkDEU/wTY6\njPcrAF+RUo4JIdRjiTmNLQohrIj0wLi0BxFVlGo7vhU1mKIf7q8APC+l/G306j4hRIeUsi86D9Wf\nwfOsBPCQ1m3Vtl4eEZU9xcm1VXR80z2puNg9pp8A2CWlfCrhun8HcBOAVQD+HsBvNR6nIKVcCWBl\n4nVcK4+IKgGPb8UtF78YwA0A3hdCbENkyO5+RALpZSHELQA+BHBdsdpERETGU7RgklK+CcCic/PH\ni9UOIiIyNq78QEREhsJgIiIiQ2EwERGRoTCYiIjIUBhMRERkKAwmIjKsH/7wh/jEJz6BpUuXYvPm\nzbr3e/7557F06VJcc801+N73vlfEFp7wxhtvYMmSJfjbv/1b/OhHPypJGypF0ZckIqLSCgaDsFj0\nztzIr3A4DJMpt13DP/jgA/z+97/Hq6++it7eXtx888344x//mPR8W7Zsweuvv44NGzbAarViaGgo\nH03PSigUwre+9S387Gc/Q3t7Oz772c/iyiuvxNy5c4velkrAYCIygImJCdx9993o6+tDMBjEF7/4\nRSxduhRXXHEFli5dijfeeAO1tbV4/PHHMWvWLAwNDWHlypU4evQoAOD+++/HokWLsH37dnznO9+B\nz+dDTU0NHn30UZxyyil45ZVX8Mc//hHj4+MIhUK48847sXr1ajQ0NGDfvn1YsmQJ5s2bh3Xr1sHr\n9eIHP/gBZs2ahddffx1r1qxBIBDAlClT8L3vfQ8tLS145pln0NPTg8OHD6O3txfLly/HF77wBRw5\ncgS33norOjs7sWvXLvzoRz/CSSedlNNn8tprr+Gqq66C1WrFzJkzMXv2bGzfvh2dnZ2K+/3iF7/A\nbbfdBqs1cjhraWkBAPT39+PBBx/ED3/4w6TnXrRoEa677jq8+eabaGtrwxNPPIHm5uac2gkA27dv\nx+zZszFjxgwAwCc/+Um89tprDKYcMZiIDOC///u/0dHRET+Ijo2NxW9ramrChg0b8Jvf/Abf/va3\nsXbtWnz729/GTTfdhHPPPRdHjx7FrbfeildffRVz587Fz3/+c5jNZrz11lt44okn8PTTTwMAdu/e\njQ0bNqChoQHvvPMOpJT4/e9/j4aGBnz84x/Hddddh1/+8pdYt24dXnjhBdx3330477zz8PLLLwMA\nfvnLX+LZZ5/FihUrAAAHDhzA888/j9HRUSxZsgSf//znAQCHDh3CY489hrPPPjvpfT766KN45513\nkq6/6qqrcNtttymu6+vrwznnnBO/3NHRgb6+vqTHHjx4EO+++y6+//3vo6amBl/72tewcOFCtLe3\na4YSEPkhcPbZZ+O+++7DD37wAzzzzDN48MEHFffZsGEDfvzjHyf10E4++WQ89dRTiuv6+voUAdzR\n0YH3339f87UpPQYTkQHMmzcPq1atwuOPP45LL70U5513Xvy2q666CgBw9dVX47vf/S4A4K233sL+\n/fsR2+hzfHwcExMTGB0dxYoVK/Dhhx8CiAzbxfzN3/wNGhoa4pcXLlyIqVOnAogcbC+++OJ4W2Lh\ncfToUdx9993o7+9HIBDAzJkz44+/7LLLYLVa0dzcjNbWVgwODgIApk+frhlKAHDfffdN4lPSFgwG\nMTIygpdffhnbt2/H3XffnXaxU4vFgqVLlwIArr32Wtx1111J97nmmmtwzTXX5L29lB6DicgAYsNt\nmzZtwlNPPYWLLroIX/ziFwFA8Ys99u9QKISXX34ZNptN8TwPP/wwLrzwQjzzzDM4cuQIli9fHr+t\nrq5Ocd/Ex5pMJtjtdgCA2WxGIBDZWeFb3/oWbr31Vlx22WV455138Mwzz8QfE7t/7DGxEKytrdV9\nn48++ii2bNmiuM5kMmn2mDo6OuJDlQDQ29uLjo6OpOecNm0aPvGJTwAAzj77bJjNZgwPD2c1NKc1\nDxbrManNnj07qcfU0dGBnp6e+OW+vj60t3NruVwxmIgMoL+/H1OmTME111yDhoYG/OpXv4rf9uqr\nr+K2227D7373u/jQ1iWXXIJ169bh1ltvBQDs2bMHZ5xxBsbGxuIH71//+teTbpfb7Y4fYF955ZVJ\nP182PaYrrrgCX/3qV3HTTTehr68Phw4d0uyJffzjH8fbb7+N888/HwcOHEAgEEBzczP6+vqwYsUK\n/OxnP0t6TDAYxMaNG3HVVVdhw4YNOPfcc5Puk02PaeHChTh06BCOHDmCtrY2/O53v8MTTzyR8Xsl\nJQYTkQHs3bsXjz32GMxmM2w2G775zW/Gb3O5XLj22mtRU1MTP9h94xvfwMMPP4xrr70WoVAI5513\nHlauXIlbb70VK1aswJo1a3DppZdm/Pp6lXNf+tKXcNddd6GpqQkXXnghjhw5Mrk3moXTTjsNS5cu\nxSc/+UlYrVY89NBD8XY+8MAD+NznPocFCxbgM5/5DO6//35cc801sNlsWLVqFQBgYGAgXhChVltb\ni/fffx9r1qzB1KlT8f3vf39SbbVYLHjwwQdxyy23IBwO47Of/SwLHybBFBujLnex/Upee+01xTg4\nUTm74oor8Otf/xpTpkwpdVPKzosvvojp06fj8ssvT7pt0aJF2LZtWwlapSltPX2FHt8Ms1EgEWUh\n13OACLjhhht0b+PnamwMJiIDq7CttA1j69atpW4CpcAliYiIyFAYTEREZCgMJiIiMhQGExERGQqD\niYiIDIXBREREhsJgIiIiQ2EwERGRoTCYiIjIULjyAxHpGnH7sHZ9N/qGxtHRUoc7lnWi0WlP/0Ci\nSWAwEZGuteu7sbk7ss/QvsPHAQArli8uZZOoCnAoj4h09Q2Np7xMVAgMJiLS1dFSl/IyUSFwKI+I\ndN2xrBMAFHNMRIXGYCIiXY1OO+eUqOg4lEdERIbCYCIiIkNhMBERkaEwmIiIyFAYTEREZCgMJiIi\nMhQGExERGQqDiYiIDIXBREREhsJgIiIiQ2EwERGRoTCYiIjIUBhMRERkKAwmIiIyFAYTEREZCoOJ\niIgMhcFERESGwmAiIiJDYTAREZGhMJiIiMhQGExERGQoDCYiIjIUa7FeSAjxYwBXA+iTUp4dve4h\nALcB6I/e7X4p5cZitYmIiIynaMEE4KcAVgNYp7r+CSnlE0VsBxXZiNuHteu70Tc0jo6WOtyxrBON\nTnupm0VEBlW0oTwp5WYAwxo3mYrVBiqNteu7sbm7B/sOH8fm7h6sWd9d6iYRkYEVs8ek58tCiC8A\neBfAvVLKkVI3iPKrb2g85WUiokSlLn74NwBzpJTnAOgFwCG9CtTRUpfyMhFRopL2mKSUAwkXnwWw\nIZPHCSFWAnioEG2i/LtjWScAKOaYqDJxPnHyeHwrfjCZkDCnJISYJqXsjV78DIAdmTyJlHIlgJWJ\n1wkhTgFwIB+NpPxqdNqxYvniUjeDiiA2nwgA+w4fBwB+91ni8a245eI/B3AZgKlCiEOI/CK4XAhx\nDoAQgIMA/qlY7SGi/ON8IuVD0YJJSvl5jat/WqzXJ6LC62ipi/eUYpeJsmWEqjwiqhCcT6R8KHVV\nHhFVkNh84kO3XQQAWPnsW1i1rgsut6/ELaNywh4TEeUdiyBoMthjIqK8YxEETQaDiYjyjidV02Rw\nKI+I8o5FEDQZDCYiyjueVE2TwWAiKqBiL9FTzNfj8kNUKAwmogIqdnVaMV9P/Vp7Dg7hqXsvZzjR\npLH4gaiAil2dlur1Rtw+rFrXhXue3JSXc4vUrzU44uFeW5QX7DERFVCxl+hJ9XrZ9qbSDdWpXwtg\nWTjlB4OJKEeZzLEUuzot1etl23tLF2R3LOvEnoNDGBzxxK9jWTjlA4OJKEd6B+5SFgWkqobLtveW\nLsganXY8de/lWKN6r0STxWAiypHegduoy/Fk23vLJMgSg3DE7UsKKRZCUC4YTEQ50jtwG3U5nmzP\nLco2yIwayFR+GExEOdI7cFfKnkTZBplRA5nKD4OJKEd6B+5qXY6nUgKZSo/BRJRn1bocj1Ygc3UI\nygWDiYjyQiuQV63r4rwTZY0rPxBRwXDeiXLBYCKiguG+TJQLDuURUcFUayEITQ6DiajKFbJAoVoL\nQWhyGExEVU5r+4rmRger6KhkGExEVU5r+4rBEU9equhYLk65YDARVTmt7StiJltFx2WKKBcMJqIK\nou6h3LBkPl7cuDvjrTmGXZ68bmPBcnHKBYOJyOCyGQ5b/dI2bNnZCyDSQ9l14BiGXN74ZSC5x5JY\noODSWCF8MrhMEeWCwURkcOrhsG17+7FoXrtmQO3YP6i4fHzUq7icrseS7yo6lotTLhhMlDec6C4M\ndZi4JwLxoFKHiAkm5WWTCQiH45eHXR7c8+Sm+PcTBgr6nbFcnHLBYKK8qeaJ7kKGsl5xglbvZ8Gc\nFmzZ2Re/3Hn6VNQ57Ir5o8SKOwBV+52RcTGYKG+qeaK7kKF845L52HNwCEMuD0InOj+a8zV3XX+u\n7i6y9zy5SVHYoPX95Ps7Yy+acsFgoryp5onuQobyCxt3KwKlvtaGc+a14YYl87FqXVfSQV8vEPW+\nn0J+Z9Xci6bcMZgob6p5olvroJ9Lb+Gj/jE8uPZNjI770FBnxyO3X5wUcie1OrFi+eKkLSXe2zuA\nc+a16b5Oqu+nUN9ZNfeiKXcMJsqbap7oVh/0b1wyH3c//nq8p5OutxALsbfeP4pgdLzOO+LBA2vf\nxBmntChC7+igG6vWdaFnYEzxHGMTfmzu7tFdUkjv+ynkd1bNvWjKHYOJKA/UB/1V67oUw29A6t5C\n4pBXotFxXzz0tu3th3siEA+g1iaH5nPlc0mhyarmXjTljsFEVABaIZSqt6AXWg119njo3fPkJkXv\no8FpxxmntMQDK5vnLZZq7kVT7hhMFMcKqvxRD2G1NjlS9ha0SsLtVjMeuf1i3fvMaKvHiuWLcaR/\nDA9E56XCYcAXCCkeo4XfNRkZg4niWEGVP1pDWLEDv1Yo3LGsM6nnM/ukRsxor9d8zpbGGgQCIdzz\n5Kak9e1amxyKOSYt/K7JyBhMFMcKqtRS9TK0btM70OuFwqJ57Yp5JnVvJ+EUJnzw0UjSHFZMc6MD\nT9x9acr3wu+ajIzBRHGsoEotVS8jmx6IXiikKxTQK5BQm9qoXRSRKN13zaE+KiUGE8Wxgio1rUCJ\nHcC7dvWmvG8ivVBIVyiQaa9m+18HsGpdV8owySYEOdRHxcZgKkOF+jXLCqrU1IEy7PJg9UtbFWvT\nJd43JvH7ammswYQvCIvZhFA4jCn1dty4ZH5Orw8AZhNQ57BhbMIfv27cG9Rd5DUm2xDkUB8VE4Op\nDPHXbGncsawTew4Oxed2Bkc88PiCivuYTECdwwp/IASX24dGp12xR5La8KgPL2zcjRXLFycFmAkm\nHHN5FAUSiSfgApFQOmdem+YQ32TChMO6VEoMpjLEX7PFo+6dNjjtiqKDsKIkIbLDhHsigC07e7Fm\nfTdWLF+ctEeSWuz705tDSvzxcd78dkUPbcGclqQTcGMmEyYc1qVSYjCVoZbGmpSXKX/UvVP1agsL\n57TCajXjyMAYDvWOKnozscBR75GkFltXb5vs173Ptr39uOfJTWhpdOCCBR0YcnmTFm7N5+6zHNal\nUmIwlaGkzeDSHPjKhRErwdS90cboagvqNq5a14UDPS7FfWM9FvUeSTEmE3D+mR24Y1kn1qzvhtuj\nvXoDEOmFxXpOl3ROxxN3X4oRjSC6fVln/DNcs77bEJ8hUbYYTGXomMuT8nK5MuLcmXquZXp0tQU1\ndYDV19riPZbYHknv7R1QFClcfPb0+HPpDcc6a60wwaR4nNbQ377Dx7Hn4BBOmzkFb0fns4zyGRJl\ni8FUhow4MZ1JbyfdfYw4d5bpXIv6OzlnXlvSqt6phtr0dqkNBEJoqLMrgmnY5YHL7Uv6fAZHPJjw\nKeezjPAZEmWLwVSGsp2YLsYQmdavd/XWC+l6REYM3MS5Fq2hs9jnGPsOjgyMYdTtw+G+Udz88B/Q\n4LSjvbkOQBhDLi9aGmswtdGRNNR2x7JOBAIhdO3uU8xTef0heEc8sFvN8TXwBkc8WLO+WzPMxlWL\nuXL+kcoRg6kM6U1M6wVQMYbItH69q7deSNcjMnolmNbnmDin09FSh47mOhzocSlKytVzTzH7Dh+H\nPxDEndefi7Xru3HM5cF589sRCISwde8AwgkFf4FgSPHYrl29OGdeO5ob7Bge9cWvV9YIAjs+OJb2\nZFsio2EwVRC9ACrGEJneUFTi66XrERm9Ekzrc1R/5s7a7P6kdu4fSioTb21yKEIJAEKqy15/CFt2\n9uLCBdNgtZrRNzSOnsGxpO0v3J5A2pNtiYymaMEkhPgxgKsB9Ekpz45e1wzgJQCzARwEcJ2UcqRY\nbao0egFUjCGyxN6OerXr2OsZvUeUjtbnqP7Mx1NU1mkJI5z0HKPjPp17Jzvm8sQXbE3cal2Nc01U\nTorZY/opgNUA1iVc93UA/ymlfEwIsQLAfdHrKAX1kN2NS+bjhY27cXTQrbhfYiD4AyHs2D8IE0zw\nB4LxVQnyJbG3ozfJb/QekZ6P+sfwjTWbMTzqBQDU2s3oPL09XuadGFaxno7TYUVtjRUNTjs6muvw\n7p4+BILqgTbA5wvig4+UPU2t++lJ/JER+Z6D2Ll/CBPegGKuygjzdUSZKlowSSk3CyFmq67+FIDY\n+vzPAfgvMJjSUg8fvbOzV7E5nLPWikXz2hWBYLOa48M8W3b2xVclKIRyDSA9D659E0Mub/zyhC8E\nq9UcL1oAInM+Xv+J72B6W71i64m/+8bvEAie6E2ZTYDFbIJfI4SC6nE7FafDiult9Um9zkanHQ/c\nciEA/R8HROWg1HNM7VLKPgCQUvYKIdpL3J6y0DMwpricGEoAML01+VwbI5ZiZ6vYJ+DGXu+Yxr5H\nXbt640UFK5YvThpGS9dDqa2xYtybetjPbAJsVnPSrrSLRLuiUnDVuq6kz6TSfhxQdSl1MKllPoZR\nxVzu1HMQsSVuEg/i6rLhchzayUd1YTbhlmr/I68/pCgqSDd/ZreZ4U7IN58/mFTgoBYKI94Ls5hN\ncNRYsHBOq+K5jXhSMtFklTqY+oQQHVLKPiHENAD6i4UlEEKsBPBQQVtmYLUOK6AqEVFvp71GdcC6\ncME0XNI5vayHdvLR68uk5DsWVpk8f+w+6XooDXXKsm5/MAyzKbnaTk8wFIZ7IhAfQlS/vt5lKj/V\nfnwDih9Mpuj/Yv4dwE0AVgH4ewC/zeRJpJQrAaxMvE4IcQqAA5NvovFNqCq/7FYznrr38pQHrMTq\nrXKVj+rCTEq+gUivQ/169bXKfY9ibdAqRvnpf+zEjg8G4fEGoFfLUGM3Y8Ib0r5Rx5GBMcXQnbon\nPOzy4J4nNxlmrUHKXrUf34Dilov/HMBlAKYKIQ4h8ovguwB+KYS4BcCHAK4rVnvKWaNq64WZ7fVo\ndNoVB8hjIxOKxxwbmch7JV6x5VJunjykqVwdXKvkuyd68D8yMIbWJgcanXZMb6uHPxBULMba2uTQ\n7J3u3D+o6B3pMZvMaG2yw2G3oPeYG7FpJJMJusN8R/rH4ifsqnvCsTJ99YnNROWmmFV5n9e56ePF\nakOlmN5Wj/0JqwlMb6sHkHpOZMjljVfiGXEV70zkMqGv7g1dsKAjaUhTXfLtcvuwv+fE5zh3ZhMA\nYGB4Aq1NDtQ5rBj3BNDgtGPN+m582Ktc2eF4BqEERE5+1VpR3GICAgnBFBumVZ8fBih7wvc8uUlx\nO4f1qFyVeo6JcvCpS+finZ298AdCsFnN+PSlczHi9uG9vQMpH6e3KjVQub+s1QfnIZc3aUhT3RM7\nMjCmOMDv3D+kGMKzuyPr1sWWG7JbzYrnm2wFTyAE2KwmBIJhmE0mnDytAffecB5WPvtWUjB9eNSF\nI/1jmNFen3aos1x/kFD1YTCVoVXPdcXLh32BEL77XBfOOKUlaf5DLXagmsyEeTEObvl6jRG3D8Oq\nLUG05qUanXZFAcSoqupx3KP8XNXl+f5gdvNEmfBHu0zBcBhb5YDuoq2+QAgPrH0TP/2Xv0071FlN\nP0iovDGYypD6YDvs8qQMl8QN6YDJFREU4+CWr9dYu75b0cOIzQlpWf3SNmyJ7mOklq5yLl3Zdz70\nDY1j5W0XAQDe7O5R9MpiSxilG+pkBR+VC3P6u5DRqA+UoXDqcLn47Ol44JYLFVs0XNI5HafPmoJL\nOqdnVTqey8EtdhLoPU9uwqp1XWnPw8rXAVT9uOZGh27Pa8f+Qc3rjaKjpS4ePFNV27sHguGMPlf1\nfyPleC4bVYeMe0xCiFoAnwNwWuLjpJRfK0C7KAX1D/QwImGj3iG1xmbG4jOnJQXPZFYFyKW3lW0P\nKF+LzqpLqVPtTVTM7ektZlPKZYfqaixw1Fjh9QVhMpmwYE6L4jt85PaL8cDaNzHk8iAUjpzjlMkK\n4umG+jgHRUaRzVDerwGEAPwFgDfNfanI1qzvRlgVWXUOK97bO4B/fPRPOGtOK+66flHWu8qq5VKy\nnW0PKF+rkKvDJlX4LJjToigFzyf1ibQOuyWpGs9kAk6bOSXl7r+J5y89de/lWPnsW4oAT/e5pvtB\nwjkoMopsgulkKeWCgrWEMmY2AyHVfHtimbjFbEJTvV2x8OiWnb2aC7dmezDKpbeVbQ8o240Q9e6j\nXm39mCt5zbuYu64/F0+/tBU7PjimWcI9Geq+UY1GME1tdKQ8AVrre8r3diacgyKjyCaYdgghTpJS\nHi1YaygjdqsFHl9Q9/ZgKBzfoiHR/2zvweceeBUL5rTg5qvPwgsbd6Nrl3LCvxAHo3z1gLLdvl1N\n78AdC7MhlxeLRDs+7HXhcN+Y5n2zZbMoVxA3maD4wWAyRULpkdsv1n2OEbcP2/YqV+uK7GDbhgsX\nTMMxl0f3c82mR2zEre2pOmUTTN8EsEUI8R6A+E9PKSVXaygyX4pQitGqFAuFgbEJP7bs7MMHH40k\nnRMDFOZglK+VrlNt3+4PBPHALRdqBmt9rQ3nzGvTPHB/1D+Grzz+erwEfN/h40nnJU1GQDWXpP5e\nrBYzXG4f7vzea2iqjwTUjPZ6xX3Wru9O2pk2soNtHy7pnJ51T0vvuyj3jRypcmQTTOsQWdtuK4D0\nR0YqmHycNaPeJVWvUEJLISfJUz13qu3bd+4f0r1POBzZJXbN+u6ktj649s2k85J8gRBaGmsw4Q1g\nwju5/9TTlZL7E157cMQTPycpUapebLoebjbDc9wqg4wim2CySym/XLCWUMFoVYE11NnhTegxLT5z\nWsYHpWxW6M5Wql/4ib/o9x8ZUbynWOHHHcs6kzZOdHsC2Hf4eHwdu9YpdfE26m1jPjLqzXjl73zS\nak+qQE7Xw+XwHJWjbILpbSHEQinl+wVrDRWEugrM6bDi68sX47vrujA67kNDnR03Lpmv+VitHkw2\nK3RnK9Uv/Ngv+hG3D3d978+KuZqFc1rjbQ2H9fuUw6M+DI/64nNUzlobvP7k+bgsdjePa2mswakn\nNWLH/gF4Uy/CoctRY8XND/8h/r08cvvFuGNZJ/YcHFIMvaYankzE4TkqR9kE0/kA3hVCSCjnmM7P\ne6soZ85aK844uRkHjrrgnvCjoc6Ok6c1YKs8sY7eItGO37zxQfxA5x3x4Kf/sRM2qzmpx6MVOFrn\nB+WroiuTX/ixQoWY1iYH7rx+kWKV70xozbFly2wCTCYT6uusmPD68ReZer3CdEbGTvSYvAlDe82N\nDkV7T2p1ZhT8HJ6jcpRNMH2lYK2gSTt91olzYNYkHLi9Ix6EwmHU19oQRji+A+rKZ99SPH7H/sH4\nBHtij0dE/DR8AAAgAElEQVQrcKaqto4wwZQUKLnuC5TJL3x1m2KrfKsrDFNtH5EPTocVZ81txTs7\nezEylmMXKY3Y0B6H5KiaZBxMUspNACCEqI9ezk89LeVFo9Ouu/NqYu8itgOq+kCnPvk09hxaB0T1\n83ft7sPM9nq0NjnQ4LRj1O3LeV+gTM5hUq8VOOr2YXNPck/p/DM7CnJeUozHF9RdX0+Ps9aKQCAU\n3zI9nYa6E8tIARySo+qQzZJEZwB4HsBCAGEhxPsAlksp9xSqcZS5v+zpx53f+zNWf/WKpM3wEnXt\n6sWqdV3xOaXYgU69CV7sF7nWAVG9f1EwFMaHvaMAgDNOaUGfZVwx7PTe3oF47+mGJfPx4sbdWRdJ\nrH5pq6J9zQ32eBHD4b5RxevZo+HbPzyB2hprwYIp1bJCemrtVngQzCiY7FZz/PwmDskREKkwrQbZ\nDOX9DMBqRMIJAG6IXndhfptEuRpyeXHDv/w+5X28/hA2d/fEz/sBIr2RZ17aBmetFSYo12bT+jPQ\nWpcvJhY4icE1NuGPV8UlVsxl05uKlYPH+APh+Pk7Nz/8B+VtwVC8xwakX5uuWCxmU8bzWq1NDjx1\n7+WK0B5x+7D6pa3YuX8IYYR1l5nSwnXwKsPYWHUMVGUTTPVSynUJl18QQqzId4OoON7d3R/vxah7\nSzarJX7Q0lttwWG3aAZT4jBT39A4egbHFCeHqs8ZyrRIQr0OYOLlWocVGEm4LWn19dKHEgDU1ljT\n7pkV0+i0JwXH2vXdiu9Jb5kpIDmIAoEQ3o4OO1byOngM4MqQzSnufxFCXBK7IIS4GMC7+W8SFUMw\nFMa+w8exubsnqTfSNzQeXzRUXVAQmzcaHPGgtcmBWR31sFvNsFvNaG1y4MYl8+PDTk/cfSkWzWtP\n2Y5hlyftdg0AcNacVsXlhQmXJ9IM1RUql0wZLkheX2vDJZ3TsWBOS8bPvb/HhUd+skXx2WiFuF6w\nx35QxL7j91XbelTqOnjq971mfXepm0Q5yCaYOgFsEkLIaMn4JgCLhBDvCCHeKUzzKB/SrbCjHrfu\naKmL/4GnmgtpbnRg9rRG+AKh+FbjL2zcrdh/yR8IJpWXJy75MzjiURw89PZuuuv6RbikczpOnd6I\n1iYH+ofH47eX6hdxJoFnt5rxw/s+jhXLF+Ou68/FJZ3TMw60WI8oRqsST686Tx086uKWSq3qq/SF\naDnHlIzl4mXKYjEjoF6OPEGN3YJFol0x/KEuJzcBsFnNiqE4rQo99cm2MXarGSe1OjFtah12fHBM\n8Tybu3swuuZNOGosiiq6fYePY9wbQF2NNd62juY6HOhxYXDEg/09LgDA9Lb6+L+LIdM5K5MJ+MYt\n58eDM9aTvO7+DZjwZlaVl/j53rGsE/5AMD7HFCv916Ke51swpwU2q6Xiq/pYVl8ZsgmmWVLKFxKv\nEELcqL6OjEc9r6Pm9QWTxuLVf+BhnFhDzusPwgRTtDekrAAcdnkQDCa/ni8QgnvCD5s1ecsHAOj+\nq/YOsu/t7Y9v8bHv8HFYTMll7Stvuwjb9vYnLXRaKM0NNRkVMYTDwOqX3sOT916umPeosVsx4T0x\nRGcxm3De/HbsO3xcUdoPKA+sjU57vGAlHa1qymqYa6n0snpTpt3tMpdNMN0DQB1CWteRwaTr/bs9\nAax+aRu+ccsF8etif9Bdu3oVw3lefzAeAFt29uGCBR1obTqxKkGqA/bouC/roRV1Ry+oejNTGx0I\nI1KGnRhMdlXvLp+yWTFidNyXVEBiMSsPLrOnNeCBWy6Ey+3D0wlVd6l6ROmkKi+v5AIBltVXhrTB\nJIQ4D8AFAFqFEF9MuKkJQGX811xFzCZEf7ErexfqyfHYH/iqdV2KYblxVW9nyOVNWi6nwWnHGae0\n4K33jyqGvBrqkk/snaz39vbhlof/oAih1qbI9hH3r9mc1AMptnAYODKgLPFVDwNOb4tsc5FNj2gy\nuFMtGV0mxQ8zAJwHwAlgccL/pgG4qWAto4IIhZEUSoD+tuN3LOvEJZ3T4ayN/IZR9746WuqSxvFn\ntNVjxfLF+ME/X4HWJgdqbJGKva///WL4A0HU19pQV2OFJeEla+2WpBbU19rQVG9L+X48/nBSz6i5\n0YEZ7fXwZbi6Qr4lvg9fIISDR/Xnv+prbUUfbqr0AoFKxuKHKCnlbwH8VgjxCSnlH/XuJ4S4RUr5\nk7y2jopGr5Q51nO658lNip6O1v5NsaGhG5fMx6p1XegbGscZp7TEh4pWretSnIdTV2NBIBgJlgmN\nzQ/PmdeGG5fMx33/9t8YHk1fUh4TC0r1uU+Tlenae44as6K4IdVjzpnXNulhtGyH5lIVCFTyMB+V\nj2zWytMNpagvA2AwlaHWJgduuvqseJhoHZDURQ7O6C/92H1iQ0Ejbh/ufvz1+NBe7HySuhpL0uuO\na2zC56y1YnprPTpa6vCp/zUXD6x9U7HidjpmExAIhHDPk5tQY7PktSBiVns9jh5zwx9InU4WswWp\ntnO0W82Y0V6PGW31eektZTs0l6pAgMN8xsbih+xVxydWAWxWE+w2S3z5obuuP1exZYTWAckfUIbI\nkMuruerA2vXdmsUBWiGkxT0RwP4jI2ios+HR597Jeo7IbEJ8hQMAsJgBjSLBnIx7ApjV3pC2ND0c\nDqfsXfkCofhwZz5kOzSXqkCAw3xkBPkMpuoY/CxzLY01+M4dl2BGe338uhG3D+/tVe4jpD4gyUPD\nSc+VzUoEMbG5qlQ9mWAorNg/KhvJhXgmZPqfZrqhusERD4ZH0wdlJovG6n1OuQyl5fPcHZ4HZGyc\nY6KKNDaevFbb2vXdSWu49QyOYdW6rviBUas4Qm8lglRVd7V2Kx65/WK8sHE3tsn+gq38HZPvxVtT\nPV82+z/pHfBzGUrL57k7RjwPiPNe1YdDeVXGFwjhS//6Z1y08CTd/ZuASI8mdoBcsXwxFsxpURQu\nTGmwY9zjx3X3b4DPH4bDbsFZc1tx89ULkrYBTxRbtkiroKLUsvkxqrX6Q6aPT1WJl8tQWj7P3THi\neUCc9zqBc0zZuymPz0UFFAyFFaGTqpezbW9kFfKWRgcuWNCBIZdXc0VytyeALTt7YbOak85rqrGZ\nFSfp6m1CmE2PwwTgzDktSQvQFkswFIbZFCm/j6mxAomV+HqDiAvmtGCNqgcQRuQA3DOoPOeJQ2mc\n96pGmZxgWwPgqwBmA/itlPJ3CbetllLeCQBSSi7jW2aODIzhkZ9swY4PBmExm2C3mVBbY1MUHLgn\nAvHwuKRzenwPpK88/rrmc27b248zZitLz9XbTsRWFFcPG3360rn47nNdGB33IRxOvZRSGEB9rR3O\nWmvRliJSM6mSNBAyobWpBg1OO2a01WPrnr6koo/WJgcCgVA81PcdPo5dB47h9FlTFEFfX2vDOfPa\n4p9RNQ9ncd7rhGqZY8rkBNt/Q2TX2j0AVgkhnky47eKCtIqKYtTtw5advXB7AgiGwpjwhjAjukV6\njc2ctHRObPfbI/1j+Khfe8OySFWdsvelLq8eHPHgK4+/Hl8o9p7Pfwz+QAgrntmMwREPvP7IauX2\nNMui79g/WLJQAgCHXVkCHwyFMTjiiVfcLTytNekxDU473tunXGVjyOVN6vmd1OrEiuWLk/bFqsbt\nHGIneZ8+awou6ZxuiHkvKqxMhvIWSynPBgAhxBoAvxBC/BjAP4DzSmXp5I56nDytET0DY0lzQbv2\nD+lO8Md2v91zcChlb+Z4BifDxnaYjW0+qDUnle63YaahlM0QYTo2qwmz2hswva0+aTgzpifeEz2W\ndNuo26f5+apPBlb3Cqp5OMuI816lUi1zTJn0mOLhJaWcALAMkeWJns/w8WQwo+ORYbTYGm2J1AdN\ni9mU1HMZHU8dPNlmgN7z+fO0CGs+Qqm+1oYLFnTgY6IDFkvk8/jfV8xDa5MDqo4lXAk90RizKTKM\n56zVXmJp4ZzWlL0CdVC1NNZo7ltFVAky6TH1CiE6Y3NIUsqgEOLzAJ4DcFZBW0cFMTzqwx2r/hOn\nzWyCxQQEEw7cNosJ/oQrgqFwUlg11NnhzXCF7eYGO8TJLegfHsfh/lHNVROyeb5S8fmD2CYH4j1F\nrZ6exWyCo8aiuRZhKKy9KrnFbMLi+R248/pFKeeM1PNxgUAob5Vq1Tx/RcaUSTD9EwDFzzEpZUgI\nsRzALwrSKio4l9uPrfLEXEdtjRlOhz36yzt1F2N4LPMQGfcEYLWa8a3bL8Y/Pvon+APKg/aFC6bh\npqsX4Iv/+meE8nzOUabUYaxFa+hyRPU5BEPhtMOLsZXXYyFww5L5eHHjbqx89q2kCj11UCQGzz1P\nblI872SG9liOXT6qpfghk0Vc9+lcHwbwat5bRCVhMVsy3mcomNnqQgBOzEsB2iuY7z08jHuf2lSy\nUAIAq9WEC846KWnvqbRMqVeViBWPJPY4Y4URsV7KPz/9Rvzk5sTKs3RBkc9KtWqevyJjyvg8JiHE\nAJL/CkcAvAXga1LK3uRHUbnQGn7KldYmfV27eiPzKxPK+5Z6vyQA8HhDeG/vAAJpek2JWpscGPcE\nknqAiebMaMLK2y5KOmcJgOb280Dmyzzlc4UGlmOXj2opfsjmBNsfAJiCyAriJgDLAQQAjAP4EYBr\n8946KhiLxQSET/yaz9fSPRazSXPYy+sPwev3ZjRsVmxhIGlJplRMAB65/WJ89ek3Ut6vo6VOMQQ3\n4vbFQ0p9Im3iYwCkDYp8VqoZcRkiqm7ZBNNSKeUFCZfvFUJ0SSkXCyF25rthVFjBLMOh3mHGmEd7\nmMuEyKhWKJw+4Ow2Cy44qx19Q+PYf2Qk72vZFUMYwAsbdyct05SotcmRdIDX6yXFqJcqKlZQsBy7\nfHCOKVmzEKJFSjkEAEKIqQAao7exVrXCidlT8WHvqO75Rpn+vYx7A/AHgpja6EDPwFjBF3EtlL6h\n8fgw3ZGBMRzqHVWEbHOjI6myTT0kp15vL3HTwHIPClb60WRkE0xPA+gWQsQKHpYCeEwIUQ/gzby3\njAxFHjqOlbddiBXPbJ5ULycchm4vo5wkDtOtWteFA6o9mo4OuvHIT96GCSYcc3nQ0VKHlsYaxX3O\nm98Om9VSkUNorPQrDM4xqUgpnxFCvAHg0uhVP5BSbo/++8t5bxkZytiEf9KhVAksZhM6T58a3yW3\no6UOPQPJ80VjE35FAO87fBwfO6MdrU0OjI770FBnx81Xn6XYFyudXHshpei9sNKPJiPb1cV3AYgV\nC8s8t4UMrhpDSb2C+OxpDTjUO6bYOj5Tez4cip/n5B3x4Kf/sQOACTv2Dyp2E9YLjVx7IaXovbDS\nrzCqZY4p4yWFhBDnAfgAwCsAfgNgnxDi3EI1jPLDZjXh9FlT4jvHEpIWp01lSoNy+M3l9qU83yvV\nwrPq87h27h+KLF00EYj3sFItzpprL6QUvRcuvEqTkc3R6ikAt0gpXwMAIcQVAFaDK4wbmj8QRjAY\nQq098+0hamxmNNTZ4aix6q4iXldjgdcfKstelMNuQY3donsOlcVsQm2NFQvmtODmq8/CCxt3x4fB\njmgsfJtoRns9ZrTVo29oHC2NNYo5JvWir+qFW4HUoZFrL0T9uJZGB1at6yro0B4r/QqDc0zJnLFQ\nAgAp5Z+FEE8UoE2UZ/ujE/OtTQ40OO1JFWRqXn8I3hFP2m0nypXbE8DCua2wWs2aAaI+UCceYLUK\nHRLNaKvH7cs6FXM6K2+7CI3OyHJPiSfb+gMhbNmpPC89Vdjker6R+nH+QJCFCWRo2QTTuBDiMinl\nfwGAEOJSRE6upTLR6LTjqXsvx6p1XZrn06jLl32BkO6WEeoN8MrNMZcnvumhnsSigZZGB4Aweo+N\nw241IxwOob7OjlkdDdh/xIUwwlg4pxV3LOvEGp05HXUvwuX2YfVL2/B+whxTqrDJtRdSyHX2qLiq\nZY4pm2D6CoBfCSFi4x92RLbAoDKxv8eFh370P9Bb301zn6AK/TvIZBgs3Qmxw6M+LJhTg188cpXi\n+kzndBqddnzjlgs0byskFiaQ0WVTLt4lhDgNgDhxlcx8HRcyhK1yoNRNKLlMJ+OPaJSBq2mFjtEP\n/IlDey2NDvgDwXjpO0+ENTbOMUUJIdR/Vfuj/28TQtiklBwHKGP53N3ViNTvr77WphjW0jrHJ7bt\nxKGj+nNJMY11tqRCghuXzMeeg0Px85VuXDK/AO8sd4lDe4nDupxvIqPIpMc0hsjYTyyqY3/msTX/\nLZNthBDiICIrlYcA+KWU50/2OSkzi+a14kCPC8fHfBUZUFPq7RhO2Op93slTFEGSWCkX2/xv7swm\n3dUpnA6rYhmlA0dd8eq+xF5SrHLPO+LBCxt35/1gn6+TZnkiLBlRJvsxFaM0KwTgMinlcBFeixAp\nCV985jQEAiHFgTsXZhMAExDKz07oeRUKh+F0WAFTZPvyMMKKHoL6nKbBEQ88Pv3Cjult9YoAcqtW\nJc9024rJyvak2ViQHRkYw6jbh0anHdPb6pOWSSrFsCPX1ctctRQ/GKUe2ATjtKUqLD5zGlYsX4y+\n4ckfNENhY4YSAIyM+eH2BOCeCCAM4P2/Dipu1yr4GPdqT52akHzgbqhTHkA7WuqS7lOIg322PZ1Y\nkB3ocWFwxIP9PS5s7u6BCaaSnwgba9u+w8exubsn5UnGVB2MshxAGMCfhBBBAD+SUj5b6gZVIhOA\n02ZNUUx4H9E5gbYSbf9rPya86RNUL2SbGmqSzgm6ccl8xQm4xdq2ItsCC73gyqRsvtA4nJg5Fj8U\n18VSyqNCiDZEAmq3lHJzqRtVacxmEzpa6hAIhPB2BazwnS2ff3LDIF5fpCelHjLT2ggw8cTaQsj2\nZFt1kCVeX2pGr2Kk4jNEMEkpj0b/f0AI8QqA8wHoBpMQYiWAh4rTusoRDIWjwzfVSWsJoGxMeENY\ns75bcy5nxO3D3Y+/nrS4a6Eq3LI92TYWXOo5JiOsYccddJVSHd+qZY6p5MEULUc3SynHhBBOAJ8A\n8M1Uj5FSrgSwUvU8pwA4UJhWVpbq+E87WeIQnQlAc2ON7np5ZhNQW2PFhDegWF1c79ymteu7k9bQ\nM9KQlJHXrjNy20qBxzcDBBOADgCvCCHCiLTnRSnlH0vcJqp0JsDn159v+puzp2PF8sW4+eE/KAJn\n1K1dwah3oq3RZVMRx+q50uMcU5FIKQ8AOKfU7aDqEg5HNvNTs1vNaHTa8alL5+KRn7yNYy5lL0jv\nQKyeJ2ltcuR9SKoQwZBN2Tl3paViKXkwUelZLSYEgsYf4KuxmREIhvO61Yaz1orprfUYdnkwOOKB\nLxDC4IgHq57r0tzewuX2aS7fozVPko/eRGIYxdoIRILBHwjBFl0hPdfXzKYijtVzpcc5Jqoa5RBK\nUxrsOGtOK7bt7c94X6lMdbTUIRAMKYJoyKW959LgSCQc1D2GTOZJcunxpFpIdsf+wfhnkWsPJpuK\nOFbPUbEwmKgsHB/1pVzpO1fuiQA2d/fAZlWO3WfSKXtv7wBc0Qq3TOQyFJaqV6LeETeXHkw2FXGT\nrZ7jHNXkcY6JqIr4A+Gk/ajSGZvw65aPa8llKEzdS7FbzfFdctU74ubSg8mmIm6y1XOco6JMMZiI\nomprrIqCiEyCKpNwifUUjg66FddnEiR3LOvEnoND8WFGXyCEGW31WLF8cdKOuEY//4dzVJQpBhOV\nHYsJKMS02II5LbBZLfF5rFgoWcwmOOwW1Ngt8PqCitXFc9lw0FlrxaJ57RkFSaPTjuZGh2L+K3ZA\nb3TaFdu4r1nfnddy73wPvXGOavJY/EBUBBZzZEvxcDiM9z8YyugxdrsFE3ne2v3CBdNw5/WL0Oi0\n454nNykOoMFQOLIQrCeACxZ0wGa1ZNVLUfcMAoHsVrxNdUAvZLl3vofeuMIDZYrBRCVjMgG/+ddr\nAQA3P/yHjB+X6sRY3ddC6hUv/rKnF195/HU8cvvFuuvKAcCQy5vRoqfqMu9EXn8ofsDP5ECf6oCu\nNzym1dtR37drVy9WrevS7Qnle+iNKzxMHosfiAosHAb2fDiE3276AMc0zhnK62ulud0fjJSCP7D2\nTTx17+UAkHTuEJB++GnE7cPql7bi3d39ivmp1iYHRsd98CaEaqYH+lQHdL3elFZvR33fdAGZqqfG\nCjsqJAYTldTXVv+35s65JgAL57Zg54HhpAKEGpsZ43keyosZHfcpgiDbAoO167s1d79tbnTgjFNa\nFHNN+Zhj0etNafV2Vt52EYBITykxII8MjCVtD9/otKfsqbHCrjQ4x0RUBHp/Z2EA2xPmnCxmE2pr\nrFgwpwX+QAhb5UDa57aYgWCWo36BYEhxbpK6tzLi9sUP4i2NNTDBhGMuj+5wWYw6NPI1x6LXm9Lq\n7cTuu2pdlyIgR90+bO5JDplUPTVW2FEhMZioLMyZ0RSf23nkJ29n9BiH3QqTyaQoAa+vteGkViem\nNjoQRhhdu/oUJ9MGQ8Ca9d24Ycl8PLj2TYyO++CsteHUkxrhGvcnDe3F7Dt8HO/s7IXNmrwRs8Vs\nivdCitWrSBWC6tt6BsY0q/5SYYVdaXCOichAYge+EbcPO/dnVr0nZjfj4FEXMHHiurPmTMU3brkg\nfvmzX9+gGNYCIgfmB9e+GT9Ye/1eDLnS99B8gRB8GhV3zlpLRu3NRKZzO6lCUH3bqnVd2N/jil8e\ndnnSrmjBCjsqJAYTFV22i8a2NjnQE50H8QeCmquCxzhrrehoroPL7cPO/QPwqu4qDw0pFmFtqLPD\nq+oBdbTU4VCvC/nicgfw9Etb8cAtF2b9WHUQJa72kK+5HfVJvIMjnrQrWrDCrjQ4x0RUINkuGhtb\nOHV/jwv1tbaU9100rx0AsL9He1294VEfhkd98YP6I7dfjPvXbMbxUS9MJhPOOb0VNy6Zj3d29mbU\ntkyXMUrXy9PrCamLDNTvP1V5eKZVcqlO4iUqBQYTlZVxj35vCQD+Z3vmC732DY1jRns9nntoieL6\nVeu6NIfkgOQgOm9+O2xWi2LLcpfblzQPlW5bd70qN3VAqJ8nVXl4Nj0azhmVB84xERlQus5JNls1\n9QyOaZ5gmqq30FRvx+mzpmDI5Y33TMKIBEOfJdJb+doX5uP+NZsV27YvnNOasi16VW7qwFg4pxVW\n1R5MqR6fKc4ZkZEwmMgwcinvnozYlheBQEhREKEOA5PpRFn7kMsLm9WiWP0hsfx63+Hj2HNwCN+5\n4xK8sHF3xgd6vR5LphsQTrbHwzkjMhIGExlCrd0MmEx5XwMvE+/vH4z/e8TtQyAQUgzZqeebt+3t\nh8vti/eUunYp56MGRzx4YePurA70ej0WrcBInE9qaXQACGNgeAKtTQ40OO2Y0VbPHk+FYvEDURHN\nP7UF7//1WEleO7bh3ojbh7sff13zPKVE7okA1qzvBgDdzQuzGUrLpnAhXRvPOKWFPR8qewwmMoQ9\nB4fhL9EW7wvmtACI9H7ShVJMuuDpaKnTDZxcSsBjj0m3tTyr6Sobix+IiqhQa9/ZLKaUgWezmGCC\nCfc8uSlpI79Uhl0ezJ3ZpLiutcmB5kZHPITW6FTKZVoCnki9p5MeVtNRJWAwUVlJt31F/H4mYGqj\nA+OeAPxB/R6G3WbB2xmes5RocMSDCW8ArU0ONDrtmB6d10lV3Re7nGkJuNZj1ZrqbThjdouiSpAq\nF+eYiAwokz9Lm9WE1fdegRc27k57XpN6aEQdfKkqBWObB+rN6+hVymVaAp7quWLmz1YusURUCRhM\nVHHMpjB++h87NLefSGSzRHbPTbxfc2ON4vyjpnrlZS16vRm9SrtMS8C1nku9ZcW2vf0pN/ujysI5\nJqIiq7Wb0Xl6O7bt7U1a4y4bgaApo4Ve/cEwtv91ABazCQ67BQvntqJ/eDwpmM48dSr6hsbRMzAG\ntyd5WFBvXkfv3KBszxlKLJZQr+2X7W64ROWAwUSGMeELYdvefoTDZgC5n2kbDIVTLvSqeE1v5HXc\nngD++tFxeHzKIowZbfXxA756H6P6WhvOmdeWdl5nMuvYaZWHa+2Gu21vv2JxWvaeKhPnmIhKQL0F\nRTElHvydtVYsmteech8jvQBQB1EgEIoXWGS6jl2q8nCt3XDdEwHsO3ycu8lSRWAwEWkJIyl4Mh2C\nW/3SVsV5SU6H8s8scU4qk1XF1dRr5B0ddCt6iDyXqXJxjomozLQ2OTI+QVZNXY3n9gTwlcdfx1P3\nXp71sJh6fks9PJg4J6U+p2nPwSE0NzrQMzim+dytTY6k3XDVQ4w8l4nKHYOJDMlmNcOvs/WEnkan\nHaFwOG0VXaLY+U52mxk9g8qexuCIJ6NwUvd6giFlEIVCYdTX2hAMBVFbY4tvenjHss6k3k1s7ym1\nxPksdVu0hhgnM69FxsU5JqI8qq2xYsKrf6KrWi4DFtPb6hEGsgqmcDgSBi2NNZq3D4548PRL22BL\nOM/ohiXz8WLCyuHqOaSWxhpMeE+0IQzEh9omvF4Mubzxrcz1zk8CIns/zZnRlDZYtIYY1SueA5x3\novLBYKKiOPOUZry3b1Bzt1ezKXkfpcSN+hK3ndBjMgFb9/TlvLTRsMuL5gY7XG5/Uht37B+MFyDE\nhttivZp9h4/DWav8M5qSUGKunv9J9M7OXiwS7ThXtGKrHEy63VGj3F4jm15QJvszsVdVfqpljslc\n6gZQdfiLHNDdgvycea24pHN60gE+JpPRi3BYf729j4k2XLCgAw6b/h91GJFt18+b347WJofiNpOq\n/3bM5Ul5+/S2ety+rBMdLXUph158gRC27OzFwaOjmrerNxeMzUftO3wcm7t74iuca1HPM2nNO2Xz\nfETFxB4TldzBo6NY/dUrsPLZt3SHtSbDZrXAajXD40+fcDv2H8Pjd12q2ORv3ONT9GjUWbNgTgts\nVgsO9bpw9Jgbb3b3ZLTgaszx0eShx4+JNtx5/SLFddnsUpvJjrST3fWWqFAYTFRyQy4vHnu+K+V8\ny5qj9EAAAA1ISURBVGSoezipuCcC+Ol/7AAA9AyMYf+REYQ0ej1mU2RYJRwOY9/h4/jOHZfggbVv\nwh/IfnLapBqrrK+1YeU//g1G3D6sWtcVD5fIpoAntDTWKG7X21ajULveUvGx+IGoiLr3DeLFh5di\n3OND975jusN+iTKZewJOHHAzDb2d+4fSrhwRCiP+4kMuL770r3/O6qBht5pxUqsTszoaknpkNqsJ\nrmi4JBYwXLCgA5d0TlcUXWSyrUbserVMelVEpcBgIsMIA9jxwVBGoQREDu7pVoqInfcDAP5AEF27\n+pIKLdT8gewX6su0zTG+QAizOhqwYvliuNw+fCVh2aHh0cjl0XGf4jFDLq+iGOKeJzcpbtfbVkNv\niC7bNfuo9Fj8QFREFjNw1/f+rKjGSyeT5YuctTY0Ou0IIzLX5LBbMnjejJswKbHACANJpfSDI56k\n95euoCFxW41U9yMyOvaYyBAWnNqC7R/orwhuMUd+KWbbM/mwdxSf/ud/z/pxzQ12eLwBTPgKt3bf\nsMsTH7LTWrU8UWLPLyabbTVSYdl4+eAcE1GR2Kwm7EizTUW2wTLZx/r8IdQ6bJjwZX6ybrYGRzy4\nY9WfEMzg1KvmRkdSWORrW41M56SIioXBRCWXSyVbocV2py00lzuz15iqqsjLJ5aNlw/OMRGRYfgC\nhQtJzkmR0bDHRFQGuvcdg8vtK8jcD8vGywfnmIioJJy1Vkx4Aoqy9mAojDXruwsy98OycTIaDuUR\nGcyiee1YfOa0pOs590OcYyKinNmtZtTWZPfnVWs3o7XJgZ6BMQDhpK04OPdD1YJDeUQF4AuE4LRa\nAZw4D8piNilK15MuWyzxjQL397hw4YJpsCbsA8W5H6oWDCaiAlGXmzfV2+H1BeHxBVFjM6PGbsHw\n6Illh8JQTmwfc3kUSxAl4kmx1Wl0dBThcLjih/QYTERFkriz7rg3iHFvEK1NDjQ3OtDRUgd/dH+m\nmFRDdzwptjq9vaMXQrjQ1NRU6qYUFIOJqIQanPZ4r8jl9mGNqhekhyfFVqe6uuqYZ2QwEZXQqPvE\nUF42ZdvqvZSODrqxal0Xh/SoIhgimIQQSwA8iUiV4I+llKtK3CSiosg1RGK9qW17++GeCGBswh8f\n2uOQXuU6fnwYx48fL+sTbW02G5xOZ8r7lDyYhBBmAM8AuBJAD4AuIcRvpZR7StsyosKb3laf0+Ni\nvat7ntyk6DlxSK+y2e12dMnjMJlGSt2UnNVZPFh6xfkp71PyYAJwPoB9UsoPAUAI8X8BfAoAg4kq\nVo3NjMVnTpt0CTi3R68uU1s7UN9Q3oUP1mD6rWSMEEwzABxOuPwRImFFVLG8/hC2yaO44V8iw2+1\ndgtqHVY4a20YG/fBF90k0GY1w+cPwmQ24aw5rbjp6gV4cePueIHEjUvmA+A6d1RZjBBMRFXJ7Tkx\nTzDhC2LCF1SUlKtt2dmLDz46Ht+CnWXiVKmMEExHAJyccHlm9DpdQoiVAB4qYJuIDGl03Ke4zDml\nypPq+Da1zos2p6e4DcqzRueUtPcxQjB1AThNCDEbwFEAfwfgc6keIKVcCWBl4nVCiFMAHChIC4kM\noqHODu/IiQMT55QqT6rj21lnzMXMmTNL0KriKnkwSSmDQogvA/gjTpSL7y5xs4gKymIxwWE7MZxX\nW2NBbY3GHJPNDJ8vMse0MDrH9ELCHBPnlKgSlTyYAEBKuRGAKHU7ysWGxz9V6iZQCXFOiSodt70g\nIiJDYTAREZGhMJiIiMhQGExERGQoDCYiIjIUBhMRERkKg4mIiAyFwURERIbCYCIiIkNhMBERkaEw\nmIiIyFAYTEREZCgMJiIiMhQGExERGQqDiYiIDIXBREREhsJgIiIiQ2EwERGRoTCYiIjIUBhMRERk\nKAwmIiIyFAYTEREZCoOJiIgMhcFERESGwmAiIiJDYTAREZGhMJiIiMhQGExERGQoDCYiIjIUBhMR\nERkKg4mIiAyFwURERIbCYCIiIkNhMBERkaEwmIiIyFAYTEREZCgMJiIiMhQGExERGQqDiYiIDIXB\nREREhsJgIiIiQ2EwERGRoTCYiIjIUBhMRERkKAwmIiIyFAYTEREZCoOJiIgMhcFERESGwmAiIiJD\nYTAREZGhMJiIiMhQGExERGQoDCYiIjIUaylfXAjxEIDbAPRHr7pfSrmxhE0iIqISK2kwRT0hpXyi\n1I0gIiJjMMJQnqnUDSAiIuMwQo/py0KILwB4F8C9UsqRUjeIiIhKp+DBJIT4E4COhKtMAMIAvgHg\n3wA8LKUMCyEeAfAEgFtzfCkLAPT29k6itURExXXllVeeAuAjKWWg1G0xClM4HC51GwAAQojZADZI\nKc/O4L4rATxU8EYRERXHqVLKg0Da41v8fpWspMEkhJgmpeyN/vv/AFgspfx8js9VA8AD4DQAwfy1\n0tAOADi11I0osmp7z9X2foHqe88HANhS9ZiEEFYAM1ElPatSB9M6AOcACAE4COCfpJR9k3i+sJSy\naoopqu39AtX3nqvt/QLV956r7f1moqTFD1LK5aV8fSIiMh4jlIsTERHFMZiIiMhQKi2YvlnqBhRZ\ntb1foPrec7W9X6D63nO1vd+0DFMuTkREBFRej4mIiMocg4mIiAyFwURERIbCYCIiIkNhMBERkaEY\nYduLvKqWXXGFEEsAPInIj4sfSylXlbhJBSWEOAhgBJHlq/xSyvNL2qACEEL8GMDVAPpiixkLIZoB\nvARgNiLLdl1XKVvD6Lzfiv37FULMBLAOkd0WQgCelVI+Xcnfca4qtcf0hJTy3Oj/KuI/6kRCCDOA\nZwD8LYAFAD4nhDijtK0quBCAy6SUiyoxlKJ+ish3mujrAP5TSikA/BnAfUVvVeFovV+gcv9+AwDu\nkVIuAHARgC9F/24r+TvOSaUGU6UviHg+gH1Syg+llH4A/xfAp0rcpkIzoXL/ewUASCk3AxhWXf0p\nAM9F//0cgE8XtVEFpPN+gQr9+5VS9kop34v+ewzAbkRWDK/Y7zhXlfqH/mUhxHtCiP9fCNFU6sYU\nwAwAhxMufxS9rpKFAfxJCNElhLit1I0povbYivvRLWLaS9yeYqj0v18IIU5BZGeFtwF0VOF3nFJZ\nBpMQ4k9CiO0J/3s/+v/XILIr7hwp5TkAehHZFZfK38VSynMBXIXIEMglpW5QiVT6Ui0V//crhKgH\n8CsAX4n2nNTfaaV/x2mVZfGDlPL/y/CuzwLYUMi2lMgRACcnXJ4Zva5iSSmPRv9/QAjxCiLDmZtL\n26qi6BNCdEgp+4QQ03CiKKAiSSkHEi5W3N9vdMO/XwF4Xkr52+jVVfUdZ6Ise0ypRL/YmM8A2FGq\nthRQF4DThBCzhRB2AH8H4N9L3KaCEULURX9lQgjhBPAJVOb3CkTmVxLnWP4dwE3Rf/89gN+qH1Dm\nFO+3Cv5+fwJgl5TyqYTrKv07zlrFLeKa711xjSpaLv4UTpSLf7fETSoYIcSpAF5BZIjDCuDFSny/\nQoifA7gMwFQAfQAeAvAbAL8EMAvAh4iUEh8vVRvzSef9Xo4K/fsVQlwM4A0A7yPy33IYwP0A3gHw\nMirwO85VxQUTERGVt4obyiMiovLGYCIiIkNhMBERkaEwmIiIyFAYTEREZCgMJiIiMhQGExERGUpZ\nLklElEgIEQJQL6Ucz/HxpwP4IYBpiGxN0AXgi1JKb4rHfArAESnlu7m8JhHpY4+JKsFkzxL3Afg/\nUsozoxvWOQF8Nc1jPg3ggkm+LhFpYI+JKkHiWmuLEVmqqQ6AG5EVnN+N3vZlAHchsgfQ7wF8SUrZ\nJqX8EJGlYGLeAaC78aIQ4hMArgVwpRDiVkRWwD4cfd1uAB8DMAbgJinlHiHEpdHb3gFwISJBuByR\nJXjOAnAIwGeklBOT/ByIKgJ7TFQxhBA2RFZuvj+6bcK/AFgvhLAKIc4GsALAhVLKCwBMgUZPSwhR\nC+AWpFhIU0r5R0QW3vxudJfVF6I3LURku+yzENm+4fmEh80HsDraI3sbwEYAd0d3Mw0B+Nwk3jpR\nRWEwUSWIBYwA4JVS/hcASClfA+CNXn8pgFellEPR+/5E/SRCCAuAXyCyzfXvcmjHX6O7sgKRUFoY\nWxU90hz5fvTfWwG8F9vKA8BfAJyWw+sRVSQGE1U6vW26FdcLIcwAXgRwTEp5d55eO7FH5kn4d1Dj\nMofViaIYTFQJYiEjAdijczoQQlyByAFfAtgEYKkQYmr0vstjDxZCmAA8h0hF3j9k+JouAOptv+dG\ntzYAgBsAvB/doZSIssBfaVQJwgAgpfQLIZYBWC2EiBU/LJNSBgBsF0I8BuB/hBAuAH8GMBJ9/FIA\nn0dkU7qtQogwgDellHemeM3nAfxMCPG/caL4YQeAfxBCrI2+9vIUjyciHdyPiaqGEKI+1oMRQjwE\nYK6UMi/hEe2l/auU8vx8PB9RNWOPiarJd6NDbXYAHwD4xxK3h4g0sMdEpEMI0QngZzhRxGCK/vsZ\nKWVSVR8R5QeDiYiIDIVVeUREZCgMJiIiMhQGExERGQqDiYiIDIXBREREhvL/AJi2xvWaAj2jAAAA\nAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from scipy.stats import spearmanr\n", "\n", @@ -621,7 +1385,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 50, "metadata": { "collapsed": false, "deletable": false, @@ -633,7 +1397,69 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
s10s13
target_id
ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMUSG00000026353.2|OTTMUST00000065166.1|Xkr4-001|Xkr4|3634|UTR5:1-150|CDS:151-2094|UTR3:2095-3634|00.056126
ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127194.1|Rp1-002|Rp1|3047|UTR5:1-54|CDS:55-912|UTR3:913-3047|00.000000
ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127195.2|Rp1-001|Rp1|6869|UTR5:1-127|CDS:128-6415|UTR3:6416-6869|00.000000
ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127245.2|Sox17-001|Sox17|3127|UTR5:1-1082|CDS:1083-2342|UTR3:2343-3127|00.000000
ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127249.1|Sox17-005|Sox17|1977|UTR5:1-635|CDS:636-1511|UTR3:1512-1977|00.000000
\n", + "
" + ], + "text/plain": [ + " s10 s13\n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... 0 0.056126\n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... 0 0.000000\n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... 0 0.000000\n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... 0 0.000000\n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... 0 0.000000" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "kallisto_log2_tpm = pd.concat([s10_kallisto['log2_tpm'], s13_kallisto['log2_tpm']], axis=1, keys=['s10', 's13'])\n", "kallisto_log2_tpm.head()" @@ -657,7 +1483,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 51, "metadata": { "collapsed": false, "deletable": false, @@ -669,7 +1495,408 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
s10s13
target_id
ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMUSG00000026353.2|OTTMUST00000065166.1|Xkr4-001|Xkr4|3634|UTR5:1-150|CDS:151-2094|UTR3:2095-3634|FalseFalse
ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127194.1|Rp1-002|Rp1|3047|UTR5:1-54|CDS:55-912|UTR3:913-3047|FalseFalse
ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127195.2|Rp1-001|Rp1|6869|UTR5:1-127|CDS:128-6415|UTR3:6416-6869|FalseFalse
ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127245.2|Sox17-001|Sox17|3127|UTR5:1-1082|CDS:1083-2342|UTR3:2343-3127|FalseFalse
ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127249.1|Sox17-005|Sox17|1977|UTR5:1-635|CDS:636-1511|UTR3:1512-1977|FalseFalse
ENSMUST00000192650.5|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127247.2|Sox17-004|Sox17|3242|UTR5:1-1851|CDS:1852-2916|UTR3:2917-3242|FalseFalse
ENSMUST00000116652.7|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127246.1|Sox17-002|Sox17|1512|UTR5:1-249|CDS:250-1509|UTR3:1510-1512|FalseFalse
ENSMUST00000191647.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127267.2|Sox17-007|Sox17|406|UTR5:1-83|CDS:84-406|FalseFalse
ENSMUST00000191939.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127266.2|Sox17-006|Sox17|840|UTR5:1-329|CDS:330-840|FalseFalse
ENSMUST00000192913.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127248.2|Sox17-003|Sox17|1506|UTR5:1-997|CDS:998-1506|FalseFalse
ENSMUST00000130201.7|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072660.1|Mrpl15-002|Mrpl15|1894|UTR5:1-33|CDS:34-648|UTR3:649-1894|FalseFalse
ENSMUST00000156816.6|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072659.1|Mrpl15-001|Mrpl15|4203|UTR5:1-62|CDS:63-950|UTR3:951-4203|FalseFalse
ENSMUST00000045689.13|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072661.1|Mrpl15-003|Mrpl15|497|UTR5:1-21|CDS:22-180|UTR3:181-497|FalseFalse
ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072662.2|Mrpl15-004|Mrpl15|1569|UTR5:1-62|CDS:63-569|UTR3:570-1569|FalseTrue
ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051163.2|Lypla1-002|Lypla1|1136|UTR5:1-126|CDS:127-801|UTR3:802-1136|FalseTrue
ENSMUST00000027036.10|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051162.1|Lypla1-001|Lypla1|2507|UTR5:1-91|CDS:92-784|UTR3:785-2507|TrueTrue
ENSMUST00000150971.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051164.3|Lypla1-003|Lypla1|877|UTR5:1-84|CDS:85-750|UTR3:751-877|FalseFalse
ENSMUST00000119612.8|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051170.2|Lypla1-009|Lypla1|529|UTR5:1-18|CDS:19-297|UTR3:298-529|FalseFalse
ENSMUST00000137887.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051168.2|Lypla1-007|Lypla1|444|UTR5:1-16|CDS:17-444|FalseFalse
ENSMUST00000115529.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051169.1|Lypla1-008|Lypla1|930|UTR5:1-3|CDS:4-594|UTR3:595-930|FalseFalse
ENSMUST00000131119.1|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051167.3|Lypla1-006|Lypla1|660|UTR5:1-234|CDS:235-660|FalseFalse
ENSMUST00000155020.1|ENSMUSG00000104217.1|OTTMUSG00000050100.1|OTTMUST00000127419.1|Gm37988-001|Gm37988|825|UTR5:1-22|CDS:23-211|UTR3:212-825|FalseFalse
ENSMUST00000081551.13|ENSMUSG00000033813.15|OTTMUSG00000042348.1|OTTMUST00000111602.1|Tcea1-001|Tcea1|2547|UTR5:1-100|CDS:101-1006|UTR3:1007-2547|TrueTrue
ENSMUST00000165720.2|ENSMUSG00000033813.15|OTTMUSG00000042348.1|OTTMUST00000111603.1|Tcea1-002|Tcea1|2854|UTR5:1-370|CDS:371-1309|UTR3:1310-2854|FalseFalse
ENSMUST00000002533.14|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072687.1|Rgs20-002|Rgs20|1778|UTR5:1-160|CDS:161-880|UTR3:881-1778|TrueTrue
ENSMUST00000118000.7|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072688.2|Rgs20-001|Rgs20|2125|UTR5:1-108|CDS:109-1227|UTR3:1228-2125|FalseFalse
ENSMUST00000119256.7|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072706.2|Rgs20-005|Rgs20|883|UTR5:1-184|CDS:185-811|UTR3:812-883|FalseFalse
ENSMUST00000170566.1|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000092053.1|Rgs20-007|Rgs20|577|CDS:1-120|UTR3:121-577|FalseFalse
ENSMUST00000147158.1|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072705.2|Rgs20-004|Rgs20|707|UTR5:1-105|CDS:106-707|FalseFalse
ENSMUST00000192847.5|ENSMUSG00000033793.12|OTTMUSG00000050145.9|OTTMUST00000127492.1|Atp6v1h-003|Atp6v1h|1662|UTR5:1-161|CDS:162-1487|UTR3:1488-1662|TrueFalse
.........
ENSMUST00000178889.1|ENSMUSG00000095650.2|OTTMUSG00000042966.1|-|Gm20854-201|Gm20854|1002|UTR5:1-175|CDS:176-859|UTR3:860-1002|FalseFalse
ENSMUST00000181549.1|ENSMUSG00000095650.2|OTTMUSG00000042966.1|OTTMUST00000112802.1|Gm20854-001|Gm20854|1156|UTR5:1-335|CDS:336-1019|UTR3:1020-1156|FalseFalse
ENSMUST00000188754.1|ENSMUSG00000100240.1|OTTMUSG00000047031.1|OTTMUST00000121805.1|Gm20820-001|Gm20820|921|UTR5:1-58|CDS:59-727|UTR3:728-921|FalseFalse
ENSMUST00000189543.6|ENSMUSG00000094399.7|OTTMUSG00000047083.1|OTTMUST00000121876.1|Gm21477-001|Gm21477|924|UTR5:1-58|CDS:59-727|UTR3:728-924|FalseFalse
ENSMUST00000179970.1|ENSMUSG00000094399.7|OTTMUSG00000047083.1|-|Gm21477-201|Gm21477|498|CDS:1-498|FalseFalse
ENSMUST00000186493.1|ENSMUSG00000099856.1|OTTMUSG00000047138.1|OTTMUST00000121968.1|Gm20906-001|Gm20906|923|UTR5:1-58|CDS:59-727|UTR3:728-923|FalseFalse
ENSMUST00000187146.1|ENSMUSG00000101915.1|OTTMUSG00000047149.1|OTTMUST00000121980.1|Gm28102-001|Gm28102|924|UTR5:1-58|CDS:59-727|UTR3:728-924|FalseFalse
ENSMUST00000186443.1|ENSMUSG00000102045.1|OTTMUSG00000047309.1|OTTMUST00000122306.1|Gm21294-001|Gm21294|934|UTR5:1-73|CDS:74-742|UTR3:743-934|FalseFalse
ENSMUST00000188269.1|ENSMUSG00000100608.1|OTTMUSG00000047316.1|OTTMUST00000122318.1|Gm21996-001|Gm21996|931|UTR5:1-58|CDS:59-727|UTR3:728-931|FalseFalse
ENSMUST00000190558.6|ENSMUSG00000096178.7|OTTMUSG00000047352.1|OTTMUST00000122361.1|Gm20837-001|Gm20837|844|UTR5:1-73|CDS:74-640|UTR3:641-844|FalseFalse
ENSMUST00000178446.1|ENSMUSG00000096178.7|OTTMUSG00000047352.1|-|Gm20837-201|Gm20837|498|CDS:1-498|FalseFalse
ENSMUST00000177893.1|ENSMUSG00000095366.1|-|-|Gm21860-201|Gm21860|309|CDS:1-309|FalseFalse
ENSMUST00000179483.7|ENSMUSG00000096768.7|-|-|Erdr1-204|Erdr1|688|UTR5:1-70|CDS:71-688|FalseFalse
ENSMUST00000177591.1|ENSMUSG00000096768.7|-|-|Erdr1-201|Erdr1|774|UTR5:1-229|CDS:230-757|UTR3:758-774|FalseFalse
ENSMUST00000177671.7|ENSMUSG00000096768.7|-|-|Erdr1-202|Erdr1|708|UTR5:1-159|CDS:160-528|UTR3:529-708|FalseFalse
ENSMUST00000179077.1|ENSMUSG00000096768.7|-|-|Erdr1-203|Erdr1|887|UTR5:1-74|CDS:75-512|UTR3:513-887|FalseFalse
ENSMUST00000179623.1|ENSMUSG00000096850.1|-|-|Gm21748-201|Gm21748|309|CDS:1-309|FalseFalse
ENSMUST00000082392.1|ENSMUSG00000064341.1|-|-|mt-Nd1-201|mt-Nd1|957|CDS:1-957|TrueTrue
ENSMUST00000082396.1|ENSMUSG00000064345.1|-|-|mt-Nd2-201|mt-Nd2|1038|CDS:1-1038|TrueTrue
ENSMUST00000082402.1|ENSMUSG00000064351.1|-|-|mt-Co1-201|mt-Co1|1545|CDS:1-1545|TrueTrue
ENSMUST00000082405.1|ENSMUSG00000064354.1|-|-|mt-Co2-201|mt-Co2|684|CDS:1-684|TrueTrue
ENSMUST00000082407.1|ENSMUSG00000064356.3|-|-|mt-Atp8-201|mt-Atp8|204|CDS:1-204|TrueTrue
ENSMUST00000082408.1|ENSMUSG00000064357.1|-|-|mt-Atp6-201|mt-Atp6|681|CDS:1-681|TrueTrue
ENSMUST00000082409.1|ENSMUSG00000064358.1|-|-|mt-Co3-201|mt-Co3|784|CDS:1-784|TrueTrue
ENSMUST00000082411.1|ENSMUSG00000064360.1|-|-|mt-Nd3-201|mt-Nd3|348|CDS:1-348|TrueTrue
ENSMUST00000084013.1|ENSMUSG00000065947.3|-|-|mt-Nd4l-201|mt-Nd4l|297|CDS:1-297|TrueTrue
ENSMUST00000082414.1|ENSMUSG00000064363.1|-|-|mt-Nd4-201|mt-Nd4|1378|CDS:1-1378|TrueTrue
ENSMUST00000082418.1|ENSMUSG00000064367.1|-|-|mt-Nd5-201|mt-Nd5|1824|CDS:1-1824|TrueTrue
ENSMUST00000082419.1|ENSMUSG00000064368.1|-|-|mt-Nd6-201|mt-Nd6|519|CDS:1-519|TrueTrue
ENSMUST00000082421.1|ENSMUSG00000064370.1|-|-|mt-Cytb-201|mt-Cytb|1144|CDS:1-1144|TrueTrue
\n", + "

56504 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " s10 s13\n", + "target_id \n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMU... False False\n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTM... False False\n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTM... False False\n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTM... False False\n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTM... False False\n", + "ENSMUST00000192650.5|ENSMUSG00000025902.13|OTTM... False False\n", + "ENSMUST00000116652.7|ENSMUSG00000025902.13|OTTM... False False\n", + "ENSMUST00000191647.1|ENSMUSG00000025902.13|OTTM... False False\n", + "ENSMUST00000191939.1|ENSMUSG00000025902.13|OTTM... False False\n", + "ENSMUST00000192913.1|ENSMUSG00000025902.13|OTTM... False False\n", + "ENSMUST00000130201.7|ENSMUSG00000033845.13|OTTM... False False\n", + "ENSMUST00000156816.6|ENSMUSG00000033845.13|OTTM... False False\n", + "ENSMUST00000045689.13|ENSMUSG00000033845.13|OTT... False False\n", + "ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTM... False True\n", + "ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTM... False True\n", + "ENSMUST00000027036.10|ENSMUSG00000025903.14|OTT... True True\n", + "ENSMUST00000150971.7|ENSMUSG00000025903.14|OTTM... False False\n", + "ENSMUST00000119612.8|ENSMUSG00000025903.14|OTTM... False False\n", + "ENSMUST00000137887.7|ENSMUSG00000025903.14|OTTM... False False\n", + "ENSMUST00000115529.7|ENSMUSG00000025903.14|OTTM... False False\n", + "ENSMUST00000131119.1|ENSMUSG00000025903.14|OTTM... False False\n", + "ENSMUST00000155020.1|ENSMUSG00000104217.1|OTTMU... False False\n", + "ENSMUST00000081551.13|ENSMUSG00000033813.15|OTT... True True\n", + "ENSMUST00000165720.2|ENSMUSG00000033813.15|OTTM... False False\n", + "ENSMUST00000002533.14|ENSMUSG00000002459.17|OTT... True True\n", + "ENSMUST00000118000.7|ENSMUSG00000002459.17|OTTM... False False\n", + "ENSMUST00000119256.7|ENSMUSG00000002459.17|OTTM... False False\n", + "ENSMUST00000170566.1|ENSMUSG00000002459.17|OTTM... False False\n", + "ENSMUST00000147158.1|ENSMUSG00000002459.17|OTTM... False False\n", + "ENSMUST00000192847.5|ENSMUSG00000033793.12|OTTM... True False\n", + "... ... ...\n", + "ENSMUST00000178889.1|ENSMUSG00000095650.2|OTTMU... False False\n", + "ENSMUST00000181549.1|ENSMUSG00000095650.2|OTTMU... False False\n", + "ENSMUST00000188754.1|ENSMUSG00000100240.1|OTTMU... False False\n", + "ENSMUST00000189543.6|ENSMUSG00000094399.7|OTTMU... False False\n", + "ENSMUST00000179970.1|ENSMUSG00000094399.7|OTTMU... False False\n", + "ENSMUST00000186493.1|ENSMUSG00000099856.1|OTTMU... False False\n", + "ENSMUST00000187146.1|ENSMUSG00000101915.1|OTTMU... False False\n", + "ENSMUST00000186443.1|ENSMUSG00000102045.1|OTTMU... False False\n", + "ENSMUST00000188269.1|ENSMUSG00000100608.1|OTTMU... False False\n", + "ENSMUST00000190558.6|ENSMUSG00000096178.7|OTTMU... False False\n", + "ENSMUST00000178446.1|ENSMUSG00000096178.7|OTTMU... False False\n", + "ENSMUST00000177893.1|ENSMUSG00000095366.1|-|-|G... False False\n", + "ENSMUST00000179483.7|ENSMUSG00000096768.7|-|-|E... False False\n", + "ENSMUST00000177591.1|ENSMUSG00000096768.7|-|-|E... False False\n", + "ENSMUST00000177671.7|ENSMUSG00000096768.7|-|-|E... False False\n", + "ENSMUST00000179077.1|ENSMUSG00000096768.7|-|-|E... False False\n", + "ENSMUST00000179623.1|ENSMUSG00000096850.1|-|-|G... False False\n", + "ENSMUST00000082392.1|ENSMUSG00000064341.1|-|-|m... True True\n", + "ENSMUST00000082396.1|ENSMUSG00000064345.1|-|-|m... True True\n", + "ENSMUST00000082402.1|ENSMUSG00000064351.1|-|-|m... True True\n", + "ENSMUST00000082405.1|ENSMUSG00000064354.1|-|-|m... True True\n", + "ENSMUST00000082407.1|ENSMUSG00000064356.3|-|-|m... True True\n", + "ENSMUST00000082408.1|ENSMUSG00000064357.1|-|-|m... True True\n", + "ENSMUST00000082409.1|ENSMUSG00000064358.1|-|-|m... True True\n", + "ENSMUST00000082411.1|ENSMUSG00000064360.1|-|-|m... True True\n", + "ENSMUST00000084013.1|ENSMUSG00000065947.3|-|-|m... True True\n", + "ENSMUST00000082414.1|ENSMUSG00000064363.1|-|-|m... True True\n", + "ENSMUST00000082418.1|ENSMUSG00000064367.1|-|-|m... True True\n", + "ENSMUST00000082419.1|ENSMUSG00000064368.1|-|-|m... True True\n", + "ENSMUST00000082421.1|ENSMUSG00000064370.1|-|-|m... True True\n", + "\n", + "[56504 rows x 2 columns]" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "kallisto_log2_tpm > 1" ] @@ -692,7 +1919,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "metadata": { "collapsed": false, "deletable": false, @@ -704,7 +1931,20 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "s10 6121\n", + "s13 6380\n", + "dtype: int64" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "(kallisto_log2_tpm > 1).sum()" ] @@ -727,7 +1967,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "metadata": { "collapsed": false, "deletable": false, @@ -739,7 +1979,80 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "target_id\n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMUSG00000026353.2|OTTMUST00000065166.1|Xkr4-001|Xkr4|3634|UTR5:1-150|CDS:151-2094|UTR3:2095-3634| 0\n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127194.1|Rp1-002|Rp1|3047|UTR5:1-54|CDS:55-912|UTR3:913-3047| 0\n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127195.2|Rp1-001|Rp1|6869|UTR5:1-127|CDS:128-6415|UTR3:6416-6869| 0\n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127245.2|Sox17-001|Sox17|3127|UTR5:1-1082|CDS:1083-2342|UTR3:2343-3127| 0\n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127249.1|Sox17-005|Sox17|1977|UTR5:1-635|CDS:636-1511|UTR3:1512-1977| 0\n", + "ENSMUST00000192650.5|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127247.2|Sox17-004|Sox17|3242|UTR5:1-1851|CDS:1852-2916|UTR3:2917-3242| 0\n", + "ENSMUST00000116652.7|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127246.1|Sox17-002|Sox17|1512|UTR5:1-249|CDS:250-1509|UTR3:1510-1512| 0\n", + "ENSMUST00000191647.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127267.2|Sox17-007|Sox17|406|UTR5:1-83|CDS:84-406| 0\n", + "ENSMUST00000191939.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127266.2|Sox17-006|Sox17|840|UTR5:1-329|CDS:330-840| 0\n", + "ENSMUST00000192913.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127248.2|Sox17-003|Sox17|1506|UTR5:1-997|CDS:998-1506| 0\n", + "ENSMUST00000130201.7|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072660.1|Mrpl15-002|Mrpl15|1894|UTR5:1-33|CDS:34-648|UTR3:649-1894| 0\n", + "ENSMUST00000156816.6|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072659.1|Mrpl15-001|Mrpl15|4203|UTR5:1-62|CDS:63-950|UTR3:951-4203| 0\n", + "ENSMUST00000045689.13|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072661.1|Mrpl15-003|Mrpl15|497|UTR5:1-21|CDS:22-180|UTR3:181-497| 0\n", + "ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072662.2|Mrpl15-004|Mrpl15|1569|UTR5:1-62|CDS:63-569|UTR3:570-1569| 1\n", + "ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051163.2|Lypla1-002|Lypla1|1136|UTR5:1-126|CDS:127-801|UTR3:802-1136| 1\n", + "ENSMUST00000027036.10|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051162.1|Lypla1-001|Lypla1|2507|UTR5:1-91|CDS:92-784|UTR3:785-2507| 2\n", + "ENSMUST00000150971.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051164.3|Lypla1-003|Lypla1|877|UTR5:1-84|CDS:85-750|UTR3:751-877| 0\n", + "ENSMUST00000119612.8|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051170.2|Lypla1-009|Lypla1|529|UTR5:1-18|CDS:19-297|UTR3:298-529| 0\n", + "ENSMUST00000137887.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051168.2|Lypla1-007|Lypla1|444|UTR5:1-16|CDS:17-444| 0\n", + "ENSMUST00000115529.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051169.1|Lypla1-008|Lypla1|930|UTR5:1-3|CDS:4-594|UTR3:595-930| 0\n", + "ENSMUST00000131119.1|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051167.3|Lypla1-006|Lypla1|660|UTR5:1-234|CDS:235-660| 0\n", + "ENSMUST00000155020.1|ENSMUSG00000104217.1|OTTMUSG00000050100.1|OTTMUST00000127419.1|Gm37988-001|Gm37988|825|UTR5:1-22|CDS:23-211|UTR3:212-825| 0\n", + "ENSMUST00000081551.13|ENSMUSG00000033813.15|OTTMUSG00000042348.1|OTTMUST00000111602.1|Tcea1-001|Tcea1|2547|UTR5:1-100|CDS:101-1006|UTR3:1007-2547| 2\n", + "ENSMUST00000165720.2|ENSMUSG00000033813.15|OTTMUSG00000042348.1|OTTMUST00000111603.1|Tcea1-002|Tcea1|2854|UTR5:1-370|CDS:371-1309|UTR3:1310-2854| 0\n", + "ENSMUST00000002533.14|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072687.1|Rgs20-002|Rgs20|1778|UTR5:1-160|CDS:161-880|UTR3:881-1778| 2\n", + "ENSMUST00000118000.7|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072688.2|Rgs20-001|Rgs20|2125|UTR5:1-108|CDS:109-1227|UTR3:1228-2125| 0\n", + "ENSMUST00000119256.7|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072706.2|Rgs20-005|Rgs20|883|UTR5:1-184|CDS:185-811|UTR3:812-883| 0\n", + "ENSMUST00000170566.1|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000092053.1|Rgs20-007|Rgs20|577|CDS:1-120|UTR3:121-577| 0\n", + "ENSMUST00000147158.1|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072705.2|Rgs20-004|Rgs20|707|UTR5:1-105|CDS:106-707| 0\n", + "ENSMUST00000192847.5|ENSMUSG00000033793.12|OTTMUSG00000050145.9|OTTMUST00000127492.1|Atp6v1h-003|Atp6v1h|1662|UTR5:1-161|CDS:162-1487|UTR3:1488-1662| 1\n", + " ..\n", + "ENSMUST00000178889.1|ENSMUSG00000095650.2|OTTMUSG00000042966.1|-|Gm20854-201|Gm20854|1002|UTR5:1-175|CDS:176-859|UTR3:860-1002| 0\n", + "ENSMUST00000181549.1|ENSMUSG00000095650.2|OTTMUSG00000042966.1|OTTMUST00000112802.1|Gm20854-001|Gm20854|1156|UTR5:1-335|CDS:336-1019|UTR3:1020-1156| 0\n", + "ENSMUST00000188754.1|ENSMUSG00000100240.1|OTTMUSG00000047031.1|OTTMUST00000121805.1|Gm20820-001|Gm20820|921|UTR5:1-58|CDS:59-727|UTR3:728-921| 0\n", + "ENSMUST00000189543.6|ENSMUSG00000094399.7|OTTMUSG00000047083.1|OTTMUST00000121876.1|Gm21477-001|Gm21477|924|UTR5:1-58|CDS:59-727|UTR3:728-924| 0\n", + "ENSMUST00000179970.1|ENSMUSG00000094399.7|OTTMUSG00000047083.1|-|Gm21477-201|Gm21477|498|CDS:1-498| 0\n", + "ENSMUST00000186493.1|ENSMUSG00000099856.1|OTTMUSG00000047138.1|OTTMUST00000121968.1|Gm20906-001|Gm20906|923|UTR5:1-58|CDS:59-727|UTR3:728-923| 0\n", + "ENSMUST00000187146.1|ENSMUSG00000101915.1|OTTMUSG00000047149.1|OTTMUST00000121980.1|Gm28102-001|Gm28102|924|UTR5:1-58|CDS:59-727|UTR3:728-924| 0\n", + "ENSMUST00000186443.1|ENSMUSG00000102045.1|OTTMUSG00000047309.1|OTTMUST00000122306.1|Gm21294-001|Gm21294|934|UTR5:1-73|CDS:74-742|UTR3:743-934| 0\n", + "ENSMUST00000188269.1|ENSMUSG00000100608.1|OTTMUSG00000047316.1|OTTMUST00000122318.1|Gm21996-001|Gm21996|931|UTR5:1-58|CDS:59-727|UTR3:728-931| 0\n", + "ENSMUST00000190558.6|ENSMUSG00000096178.7|OTTMUSG00000047352.1|OTTMUST00000122361.1|Gm20837-001|Gm20837|844|UTR5:1-73|CDS:74-640|UTR3:641-844| 0\n", + "ENSMUST00000178446.1|ENSMUSG00000096178.7|OTTMUSG00000047352.1|-|Gm20837-201|Gm20837|498|CDS:1-498| 0\n", + "ENSMUST00000177893.1|ENSMUSG00000095366.1|-|-|Gm21860-201|Gm21860|309|CDS:1-309| 0\n", + "ENSMUST00000179483.7|ENSMUSG00000096768.7|-|-|Erdr1-204|Erdr1|688|UTR5:1-70|CDS:71-688| 0\n", + "ENSMUST00000177591.1|ENSMUSG00000096768.7|-|-|Erdr1-201|Erdr1|774|UTR5:1-229|CDS:230-757|UTR3:758-774| 0\n", + "ENSMUST00000177671.7|ENSMUSG00000096768.7|-|-|Erdr1-202|Erdr1|708|UTR5:1-159|CDS:160-528|UTR3:529-708| 0\n", + "ENSMUST00000179077.1|ENSMUSG00000096768.7|-|-|Erdr1-203|Erdr1|887|UTR5:1-74|CDS:75-512|UTR3:513-887| 0\n", + "ENSMUST00000179623.1|ENSMUSG00000096850.1|-|-|Gm21748-201|Gm21748|309|CDS:1-309| 0\n", + "ENSMUST00000082392.1|ENSMUSG00000064341.1|-|-|mt-Nd1-201|mt-Nd1|957|CDS:1-957| 2\n", + "ENSMUST00000082396.1|ENSMUSG00000064345.1|-|-|mt-Nd2-201|mt-Nd2|1038|CDS:1-1038| 2\n", + "ENSMUST00000082402.1|ENSMUSG00000064351.1|-|-|mt-Co1-201|mt-Co1|1545|CDS:1-1545| 2\n", + "ENSMUST00000082405.1|ENSMUSG00000064354.1|-|-|mt-Co2-201|mt-Co2|684|CDS:1-684| 2\n", + "ENSMUST00000082407.1|ENSMUSG00000064356.3|-|-|mt-Atp8-201|mt-Atp8|204|CDS:1-204| 2\n", + "ENSMUST00000082408.1|ENSMUSG00000064357.1|-|-|mt-Atp6-201|mt-Atp6|681|CDS:1-681| 2\n", + "ENSMUST00000082409.1|ENSMUSG00000064358.1|-|-|mt-Co3-201|mt-Co3|784|CDS:1-784| 2\n", + "ENSMUST00000082411.1|ENSMUSG00000064360.1|-|-|mt-Nd3-201|mt-Nd3|348|CDS:1-348| 2\n", + "ENSMUST00000084013.1|ENSMUSG00000065947.3|-|-|mt-Nd4l-201|mt-Nd4l|297|CDS:1-297| 2\n", + "ENSMUST00000082414.1|ENSMUSG00000064363.1|-|-|mt-Nd4-201|mt-Nd4|1378|CDS:1-1378| 2\n", + "ENSMUST00000082418.1|ENSMUSG00000064367.1|-|-|mt-Nd5-201|mt-Nd5|1824|CDS:1-1824| 2\n", + "ENSMUST00000082419.1|ENSMUSG00000064368.1|-|-|mt-Nd6-201|mt-Nd6|519|CDS:1-519| 2\n", + "ENSMUST00000082421.1|ENSMUSG00000064370.1|-|-|mt-Cytb-201|mt-Cytb|1144|CDS:1-1144| 2\n", + "dtype: int64" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "(kallisto_log2_tpm > 1).sum(axis=1)" ] @@ -762,7 +2075,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, "metadata": { "collapsed": false, "deletable": false, @@ -774,7 +2087,80 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "target_id\n", + "ENSMUST00000070533.4|ENSMUSG00000051951.5|OTTMUSG00000026353.2|OTTMUST00000065166.1|Xkr4-001|Xkr4|3634|UTR5:1-150|CDS:151-2094|UTR3:2095-3634| False\n", + "ENSMUST00000194992.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127194.1|Rp1-002|Rp1|3047|UTR5:1-54|CDS:55-912|UTR3:913-3047| False\n", + "ENSMUST00000027032.5|ENSMUSG00000025900.10|OTTMUSG00000049985.2|OTTMUST00000127195.2|Rp1-001|Rp1|6869|UTR5:1-127|CDS:128-6415|UTR3:6416-6869| False\n", + "ENSMUST00000027035.9|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127245.2|Sox17-001|Sox17|3127|UTR5:1-1082|CDS:1083-2342|UTR3:2343-3127| False\n", + "ENSMUST00000195555.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127249.1|Sox17-005|Sox17|1977|UTR5:1-635|CDS:636-1511|UTR3:1512-1977| False\n", + "ENSMUST00000192650.5|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127247.2|Sox17-004|Sox17|3242|UTR5:1-1851|CDS:1852-2916|UTR3:2917-3242| False\n", + "ENSMUST00000116652.7|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127246.1|Sox17-002|Sox17|1512|UTR5:1-249|CDS:250-1509|UTR3:1510-1512| False\n", + "ENSMUST00000191647.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127267.2|Sox17-007|Sox17|406|UTR5:1-83|CDS:84-406| False\n", + "ENSMUST00000191939.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127266.2|Sox17-006|Sox17|840|UTR5:1-329|CDS:330-840| False\n", + "ENSMUST00000192913.1|ENSMUSG00000025902.13|OTTMUSG00000050014.7|OTTMUST00000127248.2|Sox17-003|Sox17|1506|UTR5:1-997|CDS:998-1506| False\n", + "ENSMUST00000130201.7|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072660.1|Mrpl15-002|Mrpl15|1894|UTR5:1-33|CDS:34-648|UTR3:649-1894| False\n", + "ENSMUST00000156816.6|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072659.1|Mrpl15-001|Mrpl15|4203|UTR5:1-62|CDS:63-950|UTR3:951-4203| False\n", + "ENSMUST00000045689.13|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072661.1|Mrpl15-003|Mrpl15|497|UTR5:1-21|CDS:22-180|UTR3:181-497| False\n", + "ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072662.2|Mrpl15-004|Mrpl15|1569|UTR5:1-62|CDS:63-569|UTR3:570-1569| True\n", + "ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051163.2|Lypla1-002|Lypla1|1136|UTR5:1-126|CDS:127-801|UTR3:802-1136| True\n", + "ENSMUST00000027036.10|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051162.1|Lypla1-001|Lypla1|2507|UTR5:1-91|CDS:92-784|UTR3:785-2507| True\n", + "ENSMUST00000150971.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051164.3|Lypla1-003|Lypla1|877|UTR5:1-84|CDS:85-750|UTR3:751-877| False\n", + "ENSMUST00000119612.8|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051170.2|Lypla1-009|Lypla1|529|UTR5:1-18|CDS:19-297|UTR3:298-529| False\n", + "ENSMUST00000137887.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051168.2|Lypla1-007|Lypla1|444|UTR5:1-16|CDS:17-444| False\n", + "ENSMUST00000115529.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051169.1|Lypla1-008|Lypla1|930|UTR5:1-3|CDS:4-594|UTR3:595-930| False\n", + "ENSMUST00000131119.1|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051167.3|Lypla1-006|Lypla1|660|UTR5:1-234|CDS:235-660| False\n", + "ENSMUST00000155020.1|ENSMUSG00000104217.1|OTTMUSG00000050100.1|OTTMUST00000127419.1|Gm37988-001|Gm37988|825|UTR5:1-22|CDS:23-211|UTR3:212-825| False\n", + "ENSMUST00000081551.13|ENSMUSG00000033813.15|OTTMUSG00000042348.1|OTTMUST00000111602.1|Tcea1-001|Tcea1|2547|UTR5:1-100|CDS:101-1006|UTR3:1007-2547| True\n", + "ENSMUST00000165720.2|ENSMUSG00000033813.15|OTTMUSG00000042348.1|OTTMUST00000111603.1|Tcea1-002|Tcea1|2854|UTR5:1-370|CDS:371-1309|UTR3:1310-2854| False\n", + "ENSMUST00000002533.14|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072687.1|Rgs20-002|Rgs20|1778|UTR5:1-160|CDS:161-880|UTR3:881-1778| True\n", + "ENSMUST00000118000.7|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072688.2|Rgs20-001|Rgs20|2125|UTR5:1-108|CDS:109-1227|UTR3:1228-2125| False\n", + "ENSMUST00000119256.7|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072706.2|Rgs20-005|Rgs20|883|UTR5:1-184|CDS:185-811|UTR3:812-883| False\n", + "ENSMUST00000170566.1|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000092053.1|Rgs20-007|Rgs20|577|CDS:1-120|UTR3:121-577| False\n", + "ENSMUST00000147158.1|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072705.2|Rgs20-004|Rgs20|707|UTR5:1-105|CDS:106-707| False\n", + "ENSMUST00000192847.5|ENSMUSG00000033793.12|OTTMUSG00000050145.9|OTTMUST00000127492.1|Atp6v1h-003|Atp6v1h|1662|UTR5:1-161|CDS:162-1487|UTR3:1488-1662| True\n", + " ... \n", + "ENSMUST00000178889.1|ENSMUSG00000095650.2|OTTMUSG00000042966.1|-|Gm20854-201|Gm20854|1002|UTR5:1-175|CDS:176-859|UTR3:860-1002| False\n", + "ENSMUST00000181549.1|ENSMUSG00000095650.2|OTTMUSG00000042966.1|OTTMUST00000112802.1|Gm20854-001|Gm20854|1156|UTR5:1-335|CDS:336-1019|UTR3:1020-1156| False\n", + "ENSMUST00000188754.1|ENSMUSG00000100240.1|OTTMUSG00000047031.1|OTTMUST00000121805.1|Gm20820-001|Gm20820|921|UTR5:1-58|CDS:59-727|UTR3:728-921| False\n", + "ENSMUST00000189543.6|ENSMUSG00000094399.7|OTTMUSG00000047083.1|OTTMUST00000121876.1|Gm21477-001|Gm21477|924|UTR5:1-58|CDS:59-727|UTR3:728-924| False\n", + "ENSMUST00000179970.1|ENSMUSG00000094399.7|OTTMUSG00000047083.1|-|Gm21477-201|Gm21477|498|CDS:1-498| False\n", + "ENSMUST00000186493.1|ENSMUSG00000099856.1|OTTMUSG00000047138.1|OTTMUST00000121968.1|Gm20906-001|Gm20906|923|UTR5:1-58|CDS:59-727|UTR3:728-923| False\n", + "ENSMUST00000187146.1|ENSMUSG00000101915.1|OTTMUSG00000047149.1|OTTMUST00000121980.1|Gm28102-001|Gm28102|924|UTR5:1-58|CDS:59-727|UTR3:728-924| False\n", + "ENSMUST00000186443.1|ENSMUSG00000102045.1|OTTMUSG00000047309.1|OTTMUST00000122306.1|Gm21294-001|Gm21294|934|UTR5:1-73|CDS:74-742|UTR3:743-934| False\n", + "ENSMUST00000188269.1|ENSMUSG00000100608.1|OTTMUSG00000047316.1|OTTMUST00000122318.1|Gm21996-001|Gm21996|931|UTR5:1-58|CDS:59-727|UTR3:728-931| False\n", + "ENSMUST00000190558.6|ENSMUSG00000096178.7|OTTMUSG00000047352.1|OTTMUST00000122361.1|Gm20837-001|Gm20837|844|UTR5:1-73|CDS:74-640|UTR3:641-844| False\n", + "ENSMUST00000178446.1|ENSMUSG00000096178.7|OTTMUSG00000047352.1|-|Gm20837-201|Gm20837|498|CDS:1-498| False\n", + "ENSMUST00000177893.1|ENSMUSG00000095366.1|-|-|Gm21860-201|Gm21860|309|CDS:1-309| False\n", + "ENSMUST00000179483.7|ENSMUSG00000096768.7|-|-|Erdr1-204|Erdr1|688|UTR5:1-70|CDS:71-688| False\n", + "ENSMUST00000177591.1|ENSMUSG00000096768.7|-|-|Erdr1-201|Erdr1|774|UTR5:1-229|CDS:230-757|UTR3:758-774| False\n", + "ENSMUST00000177671.7|ENSMUSG00000096768.7|-|-|Erdr1-202|Erdr1|708|UTR5:1-159|CDS:160-528|UTR3:529-708| False\n", + "ENSMUST00000179077.1|ENSMUSG00000096768.7|-|-|Erdr1-203|Erdr1|887|UTR5:1-74|CDS:75-512|UTR3:513-887| False\n", + "ENSMUST00000179623.1|ENSMUSG00000096850.1|-|-|Gm21748-201|Gm21748|309|CDS:1-309| False\n", + "ENSMUST00000082392.1|ENSMUSG00000064341.1|-|-|mt-Nd1-201|mt-Nd1|957|CDS:1-957| True\n", + "ENSMUST00000082396.1|ENSMUSG00000064345.1|-|-|mt-Nd2-201|mt-Nd2|1038|CDS:1-1038| True\n", + "ENSMUST00000082402.1|ENSMUSG00000064351.1|-|-|mt-Co1-201|mt-Co1|1545|CDS:1-1545| True\n", + "ENSMUST00000082405.1|ENSMUSG00000064354.1|-|-|mt-Co2-201|mt-Co2|684|CDS:1-684| True\n", + "ENSMUST00000082407.1|ENSMUSG00000064356.3|-|-|mt-Atp8-201|mt-Atp8|204|CDS:1-204| True\n", + "ENSMUST00000082408.1|ENSMUSG00000064357.1|-|-|mt-Atp6-201|mt-Atp6|681|CDS:1-681| True\n", + "ENSMUST00000082409.1|ENSMUSG00000064358.1|-|-|mt-Co3-201|mt-Co3|784|CDS:1-784| True\n", + "ENSMUST00000082411.1|ENSMUSG00000064360.1|-|-|mt-Nd3-201|mt-Nd3|348|CDS:1-348| True\n", + "ENSMUST00000084013.1|ENSMUSG00000065947.3|-|-|mt-Nd4l-201|mt-Nd4l|297|CDS:1-297| True\n", + "ENSMUST00000082414.1|ENSMUSG00000064363.1|-|-|mt-Nd4-201|mt-Nd4|1378|CDS:1-1378| True\n", + "ENSMUST00000082418.1|ENSMUSG00000064367.1|-|-|mt-Nd5-201|mt-Nd5|1824|CDS:1-1824| True\n", + "ENSMUST00000082419.1|ENSMUSG00000064368.1|-|-|mt-Nd6-201|mt-Nd6|519|CDS:1-519| True\n", + "ENSMUST00000082421.1|ENSMUSG00000064370.1|-|-|mt-Cytb-201|mt-Cytb|1144|CDS:1-1144| True\n", + "dtype: bool" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "(kallisto_log2_tpm > 1).sum(axis=1) >= 1" ] @@ -797,7 +2183,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "metadata": { "collapsed": false, "deletable": false, @@ -810,7 +2196,408 @@ }, "scrolled": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
s10s13
target_id
ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072662.2|Mrpl15-004|Mrpl15|1569|UTR5:1-62|CDS:63-569|UTR3:570-1569|0.0000003.952259
ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051163.2|Lypla1-002|Lypla1|1136|UTR5:1-126|CDS:127-801|UTR3:802-1136|0.2786692.769812
ENSMUST00000027036.10|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051162.1|Lypla1-001|Lypla1|2507|UTR5:1-91|CDS:92-784|UTR3:785-2507|3.1747842.992448
ENSMUST00000081551.13|ENSMUSG00000033813.15|OTTMUSG00000042348.1|OTTMUST00000111602.1|Tcea1-001|Tcea1|2547|UTR5:1-100|CDS:101-1006|UTR3:1007-2547|6.9473511.058026
ENSMUST00000002533.14|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072687.1|Rgs20-002|Rgs20|1778|UTR5:1-160|CDS:161-880|UTR3:881-1778|2.7950654.141637
ENSMUST00000192847.5|ENSMUSG00000033793.12|OTTMUSG00000050145.9|OTTMUST00000127492.1|Atp6v1h-003|Atp6v1h|1662|UTR5:1-161|CDS:162-1487|UTR3:1488-1662|1.7744900.000000
ENSMUST00000159906.7|ENSMUSG00000025907.14|OTTMUSG00000033467.12|OTTMUST00000084214.2|Rb1cc1-009|Rb1cc1|656|UTR5:1-375|CDS:376-656|0.0000007.568701
ENSMUST00000088658.10|ENSMUSG00000025912.16|OTTMUSG00000034736.3|OTTMUST00000088260.1|Mybl1-001|Mybl1|4980|UTR5:1-255|CDS:256-2511|UTR3:2512-4980|0.7755181.389170
ENSMUST00000052843.11|ENSMUSG00000046101.16|OTTMUSG00000021854.3|OTTMUST00000051859.1|Mcmdc2-001|Mcmdc2|2826|UTR5:1-97|CDS:98-1141|UTR3:1142-2826|2.0367280.237117
ENSMUST00000118098.2|ENSMUSG00000046101.16|OTTMUSG00000021854.3|OTTMUST00000078010.2|Mcmdc2-003|Mcmdc2|2072|UTR5:1-405|CDS:406-1482|UTR3:1483-2072|0.2344142.070753
ENSMUST00000183059.1|ENSMUSG00000046101.16|OTTMUSG00000021854.3|OTTMUST00000113822.1|Mcmdc2-005|Mcmdc2|749|CDS:1-77|UTR3:78-749|7.0792718.468359
ENSMUST00000027050.9|ENSMUSG00000025917.9|OTTMUSG00000029459.3|OTTMUST00000072996.2|Cops5-001|Cops5|1698|UTR5:1-315|CDS:316-1320|UTR3:1321-1698|6.7233260.000000
ENSMUST00000186528.6|ENSMUSG00000025917.9|OTTMUSG00000029459.3|OTTMUST00000118982.1|Cops5-006|Cops5|962|UTR5:1-129|CDS:130-276|UTR3:277-962|4.8561290.246389
ENSMUST00000191012.6|ENSMUSG00000056763.16|OTTMUSG00000027401.8|OTTMUST00000118986.2|Cspp1-019|Cspp1|345|UTR5:1-135|CDS:136-345|4.3753310.000000
ENSMUST00000122156.7|ENSMUSG00000056763.16|OTTMUSG00000027401.8|OTTMUST00000067947.1|Cspp1-006|Cspp1|2535|UTR5:1-117|CDS:118-1077|UTR3:1078-2535|3.4666140.000000
ENSMUST00000155974.7|ENSMUSG00000056763.16|OTTMUSG00000027401.8|OTTMUST00000067949.4|Cspp1-008|Cspp1|445|UTR5:1-139|CDS:140-445|3.0358260.000000
ENSMUST00000188449.6|ENSMUSG00000056763.16|OTTMUSG00000027401.8|OTTMUST00000118993.1|Cspp1-024|Cspp1|538|CDS:1-317|UTR3:318-538|6.6190770.000000
ENSMUST00000088615.10|ENSMUSG00000067851.11|OTTMUSG00000033923.2|OTTMUST00000085577.1|Arfgef1-002|Arfgef1|6978|UTR5:1-176|CDS:177-5717|UTR3:5718-6978|6.2235232.219540
ENSMUST00000027056.11|ENSMUSG00000048960.13|OTTMUSG00000047927.1|OTTMUST00000123246.1|Prex2-001|Prex2|11053|UTR5:1-328|CDS:329-5125|UTR3:5126-11053|1.7368470.056283
ENSMUST00000188154.1|ENSMUSG00000048960.13|OTTMUSG00000047927.1|OTTMUST00000123253.1|Prex2-006|Prex2|843|CDS:1-122|UTR3:123-843|1.5475195.895499
ENSMUST00000171690.8|ENSMUSG00000057715.13|OTTMUSG00000033915.2|-|A830018L16Rik-201|A830018L16Rik|6158|UTR5:1-464|CDS:465-1331|UTR3:1332-6158|1.5973932.705801
ENSMUST00000188454.6|ENSMUSG00000025938.16|OTTMUSG00000022327.2|OTTMUST00000053228.2|Slco5a1-001|Slco5a1|8463|UTR5:1-591|CDS:592-3144|UTR3:3145-8463|0.0562843.506221
ENSMUST00000136197.7|ENSMUSG00000025938.16|OTTMUSG00000022327.2|OTTMUST00000053230.2|Slco5a1-003|Slco5a1|5123|UTR5:1-640|CDS:641-2617|UTR3:2618-5123|0.0271346.674800
ENSMUST00000027068.10|ENSMUSG00000025935.10|OTTMUSG00000049113.1|OTTMUST00000125384.1|Tram1-001|Tram1|2938|UTR5:1-188|CDS:189-1313|UTR3:1314-2938|5.4310710.201256
ENSMUST00000027071.6|ENSMUSG00000025937.6|OTTMUSG00000021599.3|OTTMUST00000051280.2|Lactb2-001|Lactb2|4494|UTR5:1-96|CDS:97-963|UTR3:964-4494|3.9405994.778224
ENSMUST00000041447.4|ENSMUSG00000032769.4|OTTMUSG00000049207.1|OTTMUST00000125545.1|Trpa1-001|Trpa1|4263|UTR5:1-27|CDS:28-3405|UTR3:3406-4263|0.0000002.086301
ENSMUST00000188371.6|ENSMUSG00000025925.14|OTTMUSG00000047984.2|OTTMUST00000123359.2|Terf1-001|Terf1|2268|UTR5:1-32|CDS:33-1298|UTR3:1299-2268|0.5358475.333087
ENSMUST00000115367.7|ENSMUSG00000067795.13|OTTMUSG00000022165.2|OTTMUST00000052635.1|4930444P10Rik-003|4930444P10Rik|868|UTR5:1-163|CDS:164-721|UTR3:722-868|3.5914044.592032
ENSMUST00000058437.13|ENSMUSG00000043716.13|OTTMUSG00000016936.3|OTTMUST00000041073.2|Rpl7-001|Rpl7|1163|UTR5:1-284|CDS:285-1097|UTR3:1098-1163|9.5577499.656554
ENSMUST00000149566.1|ENSMUSG00000043716.13|OTTMUSG00000016936.3|OTTMUST00000041075.2|Rpl7-003|Rpl7|838|CDS:1-838|8.0276357.302383
.........
ENSMUST00000112172.3|ENSMUSG00000049775.16|OTTMUSG00000019572.3|OTTMUST00000046738.1|Tmsb4x-001|Tmsb4x|768|UTR5:1-225|CDS:226-360|UTR3:361-768|13.76828814.830347
ENSMUST00000112176.7|ENSMUSG00000049775.16|OTTMUSG00000019572.3|OTTMUST00000046739.2|Tmsb4x-002|Tmsb4x|698|UTR5:1-139|CDS:140-292|UTR3:293-698|4.3587346.675759
ENSMUST00000112175.1|ENSMUSG00000049775.16|OTTMUSG00000019572.3|OTTMUST00000046740.1|Tmsb4x-003|Tmsb4x|864|UTR5:1-502|CDS:503-655|UTR3:656-864|0.6531298.543295
ENSMUST00000112137.1|ENSMUSG00000031358.17|OTTMUSG00000019558.2|OTTMUST00000046702.2|Msl3-002|Msl3|2316|UTR5:1-163|CDS:164-1564|UTR3:1565-2316|0.0943841.071969
ENSMUST00000112129.7|ENSMUSG00000031355.16|OTTMUSG00000019560.4|OTTMUST00000046950.1|Arhgap6-006|Arhgap6|2487|UTR5:1-211|CDS:212-1369|UTR3:1370-2487|2.2175632.394953
ENSMUST00000154638.8|ENSMUSG00000031352.10|OTTMUSG00000019596.2|OTTMUST00000046816.2|Hccs-003|Hccs|3310|UTR5:1-239|CDS:240-521|UTR3:522-3310|0.6934461.291150
ENSMUST00000033717.8|ENSMUSG00000031352.10|OTTMUSG00000019596.2|OTTMUST00000046815.1|Hccs-002|Hccs|2320|UTR5:1-207|CDS:208-1026|UTR3:1027-2320|5.2850360.090573
ENSMUST00000115894.2|ENSMUSG00000069053.11|OTTMUSG00000045273.1|-|Uba1y-201|Uba1y|3981|UTR5:1-102|CDS:103-3279|UTR3:3280-3981|2.2656623.909082
ENSMUST00000189069.6|ENSMUSG00000056673.14|OTTMUSG00000045277.1|OTTMUST00000118912.1|Kdm5d-004|Kdm5d|2177|UTR5:1-178|CDS:179-1609|UTR3:1610-2177|0.0000001.415645
ENSMUST00000055032.13|ENSMUSG00000056673.14|OTTMUSG00000045277.1|OTTMUST00000118913.1|Kdm5d-001|Kdm5d|7974|UTR5:1-176|CDS:177-4823|UTR3:4824-7974|3.0096523.433922
ENSMUST00000186726.6|ENSMUSG00000056673.14|OTTMUSG00000045277.1|OTTMUST00000118916.1|Kdm5d-002|Kdm5d|5916|UTR5:1-128|CDS:129-944|UTR3:945-5916|1.7155682.865436
ENSMUST00000143958.7|ENSMUSG00000068457.14|OTTMUSG00000032814.5|OTTMUST00000081730.2|Uty-002|Uty|2903|UTR5:1-126|CDS:127-363|UTR3:364-2903|1.1691300.000000
ENSMUST00000091190.11|ENSMUSG00000069045.11|OTTMUSG00000045279.1|OTTMUST00000118924.1|Ddx3y-001|Ddx3y|4600|UTR5:1-106|CDS:107-2083|UTR3:2084-4600|0.4201811.121188
ENSMUST00000091178.1|ENSMUSG00000069036.3|OTTMUSG00000045384.2|OTTMUST00000119113.2|Sry-001|Sry|1188|CDS:1-1188|2.3055091.958223
ENSMUST00000190391.1|ENSMUSG00000096706.2|OTTMUSG00000045647.2|OTTMUST00000119534.2|Gm21854-001|Gm21854|1480|UTR5:1-662|CDS:663-1361|UTR3:1362-1480|1.3864470.904086
ENSMUST00000185926.1|ENSMUSG00000096036.2|OTTMUSG00000045661.2|OTTMUST00000119556.2|Gm21778-001|Gm21778|1482|UTR5:1-660|CDS:661-1359|UTR3:1360-1482|3.4110560.000000
ENSMUST00000189201.1|ENSMUSG00000094484.2|OTTMUSG00000045867.2|OTTMUST00000119866.2|Gm21244-001|Gm21244|3115|UTR5:1-405|CDS:406-1089|UTR3:1090-3115|6.1084437.190151
ENSMUST00000082392.1|ENSMUSG00000064341.1|-|-|mt-Nd1-201|mt-Nd1|957|CDS:1-957|10.38611012.218548
ENSMUST00000082396.1|ENSMUSG00000064345.1|-|-|mt-Nd2-201|mt-Nd2|1038|CDS:1-1038|9.12867211.083306
ENSMUST00000082402.1|ENSMUSG00000064351.1|-|-|mt-Co1-201|mt-Co1|1545|CDS:1-1545|14.11068713.061822
ENSMUST00000082405.1|ENSMUSG00000064354.1|-|-|mt-Co2-201|mt-Co2|684|CDS:1-684|13.67325413.407600
ENSMUST00000082407.1|ENSMUSG00000064356.3|-|-|mt-Atp8-201|mt-Atp8|204|CDS:1-204|13.96062614.381415
ENSMUST00000082408.1|ENSMUSG00000064357.1|-|-|mt-Atp6-201|mt-Atp6|681|CDS:1-681|13.43556613.835251
ENSMUST00000082409.1|ENSMUSG00000064358.1|-|-|mt-Co3-201|mt-Co3|784|CDS:1-784|13.36691013.871424
ENSMUST00000082411.1|ENSMUSG00000064360.1|-|-|mt-Nd3-201|mt-Nd3|348|CDS:1-348|10.29168910.614544
ENSMUST00000084013.1|ENSMUSG00000065947.3|-|-|mt-Nd4l-201|mt-Nd4l|297|CDS:1-297|10.23593011.969117
ENSMUST00000082414.1|ENSMUSG00000064363.1|-|-|mt-Nd4-201|mt-Nd4|1378|CDS:1-1378|10.38015811.326160
ENSMUST00000082418.1|ENSMUSG00000064367.1|-|-|mt-Nd5-201|mt-Nd5|1824|CDS:1-1824|9.93843610.430975
ENSMUST00000082419.1|ENSMUSG00000064368.1|-|-|mt-Nd6-201|mt-Nd6|519|CDS:1-519|9.17278310.414791
ENSMUST00000082421.1|ENSMUSG00000064370.1|-|-|mt-Cytb-201|mt-Cytb|1144|CDS:1-1144|12.19256412.669727
\n", + "

9383 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " s10 s13\n", + "target_id \n", + "ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTM... 0.000000 3.952259\n", + "ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTM... 0.278669 2.769812\n", + "ENSMUST00000027036.10|ENSMUSG00000025903.14|OTT... 3.174784 2.992448\n", + "ENSMUST00000081551.13|ENSMUSG00000033813.15|OTT... 6.947351 1.058026\n", + "ENSMUST00000002533.14|ENSMUSG00000002459.17|OTT... 2.795065 4.141637\n", + "ENSMUST00000192847.5|ENSMUSG00000033793.12|OTTM... 1.774490 0.000000\n", + "ENSMUST00000159906.7|ENSMUSG00000025907.14|OTTM... 0.000000 7.568701\n", + "ENSMUST00000088658.10|ENSMUSG00000025912.16|OTT... 0.775518 1.389170\n", + "ENSMUST00000052843.11|ENSMUSG00000046101.16|OTT... 2.036728 0.237117\n", + "ENSMUST00000118098.2|ENSMUSG00000046101.16|OTTM... 0.234414 2.070753\n", + "ENSMUST00000183059.1|ENSMUSG00000046101.16|OTTM... 7.079271 8.468359\n", + "ENSMUST00000027050.9|ENSMUSG00000025917.9|OTTMU... 6.723326 0.000000\n", + "ENSMUST00000186528.6|ENSMUSG00000025917.9|OTTMU... 4.856129 0.246389\n", + "ENSMUST00000191012.6|ENSMUSG00000056763.16|OTTM... 4.375331 0.000000\n", + "ENSMUST00000122156.7|ENSMUSG00000056763.16|OTTM... 3.466614 0.000000\n", + "ENSMUST00000155974.7|ENSMUSG00000056763.16|OTTM... 3.035826 0.000000\n", + "ENSMUST00000188449.6|ENSMUSG00000056763.16|OTTM... 6.619077 0.000000\n", + "ENSMUST00000088615.10|ENSMUSG00000067851.11|OTT... 6.223523 2.219540\n", + "ENSMUST00000027056.11|ENSMUSG00000048960.13|OTT... 1.736847 0.056283\n", + "ENSMUST00000188154.1|ENSMUSG00000048960.13|OTTM... 1.547519 5.895499\n", + "ENSMUST00000171690.8|ENSMUSG00000057715.13|OTTM... 1.597393 2.705801\n", + "ENSMUST00000188454.6|ENSMUSG00000025938.16|OTTM... 0.056284 3.506221\n", + "ENSMUST00000136197.7|ENSMUSG00000025938.16|OTTM... 0.027134 6.674800\n", + "ENSMUST00000027068.10|ENSMUSG00000025935.10|OTT... 5.431071 0.201256\n", + "ENSMUST00000027071.6|ENSMUSG00000025937.6|OTTMU... 3.940599 4.778224\n", + "ENSMUST00000041447.4|ENSMUSG00000032769.4|OTTMU... 0.000000 2.086301\n", + "ENSMUST00000188371.6|ENSMUSG00000025925.14|OTTM... 0.535847 5.333087\n", + "ENSMUST00000115367.7|ENSMUSG00000067795.13|OTTM... 3.591404 4.592032\n", + "ENSMUST00000058437.13|ENSMUSG00000043716.13|OTT... 9.557749 9.656554\n", + "ENSMUST00000149566.1|ENSMUSG00000043716.13|OTTM... 8.027635 7.302383\n", + "... ... ...\n", + "ENSMUST00000112172.3|ENSMUSG00000049775.16|OTTM... 13.768288 14.830347\n", + "ENSMUST00000112176.7|ENSMUSG00000049775.16|OTTM... 4.358734 6.675759\n", + "ENSMUST00000112175.1|ENSMUSG00000049775.16|OTTM... 0.653129 8.543295\n", + "ENSMUST00000112137.1|ENSMUSG00000031358.17|OTTM... 0.094384 1.071969\n", + "ENSMUST00000112129.7|ENSMUSG00000031355.16|OTTM... 2.217563 2.394953\n", + "ENSMUST00000154638.8|ENSMUSG00000031352.10|OTTM... 0.693446 1.291150\n", + "ENSMUST00000033717.8|ENSMUSG00000031352.10|OTTM... 5.285036 0.090573\n", + "ENSMUST00000115894.2|ENSMUSG00000069053.11|OTTM... 2.265662 3.909082\n", + "ENSMUST00000189069.6|ENSMUSG00000056673.14|OTTM... 0.000000 1.415645\n", + "ENSMUST00000055032.13|ENSMUSG00000056673.14|OTT... 3.009652 3.433922\n", + "ENSMUST00000186726.6|ENSMUSG00000056673.14|OTTM... 1.715568 2.865436\n", + "ENSMUST00000143958.7|ENSMUSG00000068457.14|OTTM... 1.169130 0.000000\n", + "ENSMUST00000091190.11|ENSMUSG00000069045.11|OTT... 0.420181 1.121188\n", + "ENSMUST00000091178.1|ENSMUSG00000069036.3|OTTMU... 2.305509 1.958223\n", + "ENSMUST00000190391.1|ENSMUSG00000096706.2|OTTMU... 1.386447 0.904086\n", + "ENSMUST00000185926.1|ENSMUSG00000096036.2|OTTMU... 3.411056 0.000000\n", + "ENSMUST00000189201.1|ENSMUSG00000094484.2|OTTMU... 6.108443 7.190151\n", + "ENSMUST00000082392.1|ENSMUSG00000064341.1|-|-|m... 10.386110 12.218548\n", + "ENSMUST00000082396.1|ENSMUSG00000064345.1|-|-|m... 9.128672 11.083306\n", + "ENSMUST00000082402.1|ENSMUSG00000064351.1|-|-|m... 14.110687 13.061822\n", + "ENSMUST00000082405.1|ENSMUSG00000064354.1|-|-|m... 13.673254 13.407600\n", + "ENSMUST00000082407.1|ENSMUSG00000064356.3|-|-|m... 13.960626 14.381415\n", + "ENSMUST00000082408.1|ENSMUSG00000064357.1|-|-|m... 13.435566 13.835251\n", + "ENSMUST00000082409.1|ENSMUSG00000064358.1|-|-|m... 13.366910 13.871424\n", + "ENSMUST00000082411.1|ENSMUSG00000064360.1|-|-|m... 10.291689 10.614544\n", + "ENSMUST00000084013.1|ENSMUSG00000065947.3|-|-|m... 10.235930 11.969117\n", + "ENSMUST00000082414.1|ENSMUSG00000064363.1|-|-|m... 10.380158 11.326160\n", + "ENSMUST00000082418.1|ENSMUSG00000064367.1|-|-|m... 9.938436 10.430975\n", + "ENSMUST00000082419.1|ENSMUSG00000064368.1|-|-|m... 9.172783 10.414791\n", + "ENSMUST00000082421.1|ENSMUSG00000064370.1|-|-|m... 12.192564 12.669727\n", + "\n", + "[9383 rows x 2 columns]" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "expressed_genes = (kallisto_log2_tpm > 1).sum(axis=1) >= 1\n", "kallisto_log2_tpm.loc[expressed_genes]" @@ -834,7 +2621,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "metadata": { "collapsed": false, "deletable": false, @@ -846,7 +2633,76 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(9383, 2)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
s10s13
target_id
ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072662.2|Mrpl15-004|Mrpl15|1569|UTR5:1-62|CDS:63-569|UTR3:570-1569|0.0000003.952259
ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051163.2|Lypla1-002|Lypla1|1136|UTR5:1-126|CDS:127-801|UTR3:802-1136|0.2786692.769812
ENSMUST00000027036.10|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051162.1|Lypla1-001|Lypla1|2507|UTR5:1-91|CDS:92-784|UTR3:785-2507|3.1747842.992448
ENSMUST00000081551.13|ENSMUSG00000033813.15|OTTMUSG00000042348.1|OTTMUST00000111602.1|Tcea1-001|Tcea1|2547|UTR5:1-100|CDS:101-1006|UTR3:1007-2547|6.9473511.058026
ENSMUST00000002533.14|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072687.1|Rgs20-002|Rgs20|1778|UTR5:1-160|CDS:161-880|UTR3:881-1778|2.7950654.141637
\n", + "
" + ], + "text/plain": [ + " s10 s13\n", + "target_id \n", + "ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTM... 0.000000 3.952259\n", + "ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTM... 0.278669 2.769812\n", + "ENSMUST00000027036.10|ENSMUSG00000025903.14|OTT... 3.174784 2.992448\n", + "ENSMUST00000081551.13|ENSMUSG00000033813.15|OTT... 6.947351 1.058026\n", + "ENSMUST00000002533.14|ENSMUSG00000002459.17|OTT... 2.795065 4.141637" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "kallisto_log2_tpm_expressed = kallisto_log2_tpm.loc[expressed_genes]\n", "print(kallisto_log2_tpm_expressed.shape)\n", @@ -871,7 +2727,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "metadata": { "collapsed": false, "deletable": false, @@ -883,7 +2739,36 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py:892: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n", + " warnings.warn(self.msg_depr % (key, alt_key))\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGoCAYAAADmTPpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X14VOWdP/73PCeZZGJCHhBQEJUjogIqtl35Vq1dy9r6\ncH1p67q1dutWF37fqi1+d62uVtrSWtqVgnYLax9lsVfZlnZb2i7d1rb0B1WMBSLycIMCCoSEhCQz\nyWQm83S+f0xmmHPmnHnKPJw5835dl5fMZGZyJoHznvu+P+dzW2RZBhERkRFYK30ARERECQwlIiIy\nDIYSEREZBkOJiIgMg6FERESGwVAiIiLDsFf6AIqIte1EVG0slT4Ao+FIiYiIDIOhREREhsFQIiIi\nw2AoERGRYZip0KGm/PfvX0EgbFPcNz42go/efgNsNpvOs4iIjI2hVKWsNhca6lsU90VlgA12iaia\ncfqOiIgMg6FERESGwVAiIiLDYCgREZFhMJSIiMgwGEpERGQYDCUiIjIMhhIRERkGQ4mIiAyDoURE\nRIbBUCIiIsNgKBERkWEwlIiIyDAYSkREZBgMJSIiMgyGEhERGQZDiYiIDIOhREREhsFQIiIiw2Ao\nERGRYTCUiIjIMBhKRERkGAwlIiIyDIYSEREZBkOJiIgMg6FERESGwVAiIiLDYCgREZFhMJSIiMgw\nGEpERGQYDCUiIjIMhhIRERkGQ4mIiAzDXukDoNKSZRk+n0/zax6PBxaLpcxHRESkj6Fkcj6fD7/4\n4wE0NLgV94+N+XH7jZejubm5QkdGRJSOoVQDGhrccDd6Kn0YRERZMZRqlCzL8Hq9afdzSo+IKomh\nZCKJoLHbz/1avV4vZMhpjx0bG8VvXh5Ea+uU5H1+/yhuvHqG5pQew4qIyoGhZCKBMT9+9adDcDc2\nJe8b6O+Du7EZjY3pj6+vV07r+f0j+M3LbymCKn5/eljJcjzotIKKAUZEhWIomUx9Q2Na0OT1/Pr0\n9SetsBro74PVZs8pwIDcgyrfakG9xzMYiaoTQ4lyojWqslodOQWYXlBpjba8Xi+27zmJhgbl0E7v\nNbQen8/344iPyFgYSlR0uU4Lao22EtONuYSd3uPz/X5aIz6WzBNVBkOJykJvWlA92so03aj3GpP9\nflojPq3qRI6qiEqPoUSkQas6MZ91NAYYUWEYSkQ6JrOOxgAjKowpQkmSJPtLL71U6cMoq7MDZyA7\nxhX3DQ8NwDvsg9d9rqXQ4OAArFYbgmPKCjWt+6vtsUY7NoscTd7nHT6bdl/isf9x7E00ec6Fktc7\nCKvFprgPAMbHg7jh2ovQ1NQEyl01/bxuvvnmWQBOCiEilT4Wo7AkPqVVM0mSZgE4VunjICIqwEVC\niOOVPgijMMVICcDJif9fVNGjKK9jqK33C9Tee6619wvU3ns+hnPnL4JJRkoAIEmSLISomcn3Wnu/\nQO2951p7v0Dtvedae7+54CZ/RERkGAwlIiIyDIYSEREZRlkKHSRJmgFgI4BOADEA3xZCPCtJUguA\nzQBmAjgO4KNCiPRNfnLzhWIcaxWptfcL1N57rrX3C9Tee66195tVWQodJEmaCmCqEGKvJEmNAP4C\n4A4AnwRwVgjxNUmSHgXQIoT4XMkPiIiIDKks03dCiF4hxN6JP48COAhgBuLB9MLEw14AcGc5joeI\niIyp7GtKExe6LgDwCoBOIUQfEA8uAB3lPh4iIjKOsl48OzF19xMADwshRiVJUs8dFjSXKEmSHfGR\nF9t1EJGp1Nr5rWyhNPGD/QmA/xBC/Hzi7j5JkjqFEH0T605ncnidlQCe0vparfW/I6Kqp7hwtsbO\nb5oXDZdzpPQ9AAeEEOtS7vsFgL8HsBrAJwD8XON5CkKIlQBWpt7H3ndEZAY8v5WvJPx6AB8DsE+S\npD2IT9M9jngY/ackSfcBeBvAR8txPEREZExlCSUhxE4ANp0vv78cx0BERMbHjg5ERGQYDCUiIjIM\nhhIRERkGQ4mIiAyDoURERIbBUCKirP70pz9hyZIl+MAHPoDnn39e93GrVq3CLbfcgjvuuAMHDhxI\n3v/444/jr/7qr3DbbbcpHr9u3TrcfvvtuPPOO/EP//AP6O/vL9l7yCSX97d161bcfvvtuP3223H3\n3Xfj0KFDya/pvT8qgCzLVf/fnDlzZs2ZM0c+ceKETFTNIpFISV43Go1O6rnvf//75ZMnT8qhUEi+\n/fbb5TfffDPtcX/84x/l+++/X5ZlWd67d6/8kY98JPm1rq4u+cCBA/KHPvQhxXNGR0eTf964caP8\n+c9/vuDjLFSu72/Pnj2yz+eTZVmWt2/fntP7y0Etn980329Ze98RmcWpU6fwqU99CvPmzcOBAwdw\n6aWX4mtf+xpcLhf279+Pr371qxgbG0NLSwu++tWvoq2tDT/+8Y+xefNmRCIRXHjhhfj6178Ol8uF\nxx57DE6nEwcPHsQ111yD973vffjyl78Mi8UCi8WCTZs2oaGhAatXr8aOHTtgsViwbNky3HrrrXj1\n1Vfx3HPPoaWlBUeOHMEVV1yBr3/96wCA973vfbj11lvx5z//GZ/61Kdw6623FvReX3/9dcycORPT\np08HAHzwgx/ESy+9hIsvvljxuJdeegl33hlv9D9//nyMjIxgYGAAbW1tuPbaa3Hq1Km013a73ck/\nBwIBWK3xyZszZ87gySefxL//+7+nPWfhwoX46Ec/ip07d6K9vR1r1qxBS0tLQe8tn/e3YMECxZ/7\n+vqSt/XeH+WPoURUoGPHjuHpp5/GggUL8Pjjj+OHP/whPv7xj+NLX/oS1q9fj5aWFvz617/GmjVr\n8JWvfAW33HILPvKRjwAA1q5di5/85Cf42Mc+BgDo6+vDf/7nfwIAli1bhqeeegoLFy5EIBCA0+nE\n//zP/+Dw4cPYunUrzp49iw9/+MO47rrrAACHDh3Cr371K7S3t+Puu+/G7t27cfXVVwMAWlpa8NOf\n/jTt2Ldu3Yrvfve7sFiU7ccuvPBCrFu3TnFfX18fzj///OTtzs5O7Nu3L+01z5w5g6lTpyoe19fX\nh7a2tow/x2984xv4+c9/jqamJmzcuBEA0NHRoRlIQDy8rrrqKjz22GP4t3/7N3zzm9/Ek08+WfL3\nl+rHP/4x3vve92Z8DBWGoURUoGnTpiU/Pd9+++3YtGkTFi9ejCNHjuC+++6DLMuIxWLo6IjvyCKE\nwLp16+Dz+RAIBLB48eLkay1ZsiT556uvvhpPP/00brvtNtxyyy3o7OzEX/7yF3zwgx8EAEyZMgXX\nXXcd9u3bB7fbjauuuir5PS677DKcOnUqGUp6o6PbbrvNMOsfn/3sZ/HZz34Wzz//PDZt2oQHH3ww\n4+NtNhv+5m/+BkD85/7QQw+lPaaU7++VV17BT3/6U/zwhz8syevXOoYSUZFYLBbIsoxLL70UP/rR\nj9K+/thjj2H9+vWYM2cOfvazn+HVV19Nfq2hoSH55wceeAA33XQT/vjHP+Luu+/Gd77znbTXklN2\njHY4HMk/22w2RKPR5O36+nrNY02MJNRmzpyZNpLo7OxET09P8nZfX18yBFN1dHSgt7c3ebu3txed\nnZ2a31/LbbfdhgceeCBrKKmpR0NAad4fEB+Vfv7zn8d3vvMdNDc353WclBuGElGBenp60N3djfnz\n5+OXv/wlrrnmGlx00UUYGhrC3r17sWDBAkQiERw/fhyXXHIJxsbG0NbWhnA4jK1bt+qesE+cOIFL\nL70Ul156Kfbt24djx47h2muvxebNm3HnnXdieHgYr732Gh599FG89dZbBR17PiOJK6+8Eu+88w5O\nnTqF9vZ2/OpXv8KaNWvSHnfzzTfjxRdfxK233oq9e/fC4/Eopu5SgzTh7bffxsyZMwEAv/vd7zB7\n9mwA8WB49NFH8YMf/CDtOdFoFNu2bcOtt96KrVu3JkeFpX5/PT09eOihh/C1r30NF154YdrXtd4f\n5Y+hRFSgiy66CC+++CIee+wxXHLJJbj77rvhcDiwbt06rFq1CiMjI4jFYrj33ntxySWX4KGHHsJH\nPvIRTJkyBVdddRX8fr/m677wwgvYtWsXrFYrLrnkErz3ve+Fw+HA3r17cccdd8BiseCf//mfMWXK\nlLRQSh01aI0gCmGz2fDkk08mpyQ//OEPJ4sAfvSjH8FiseCuu+7CDTfcgO3bt+Ov//qvUV9fj6ef\nfjr5Go888gh27dqF4eFh3HjjjXjwwQexdOlSPPPMMzh27BisViumTZuGL3zhCwCA/v5+2O3ap6f6\n+nrs27cP69evx5QpU/CNb3yjLO/vW9/6FrxeL77whS/Eq8TsdvzkJz/J+P4ofxYzpHtiv5GXXnoJ\nM2bMqPThUA04deoUli1bhq1bt1b6UEzpxRdfxLRp03DTTTelfW3hwoXYs2dPBY6qJLJ+cjDx+a3i\nm/wREeUkUZWopVgjQDImdnQgKsD06dM5SqqQ3bt3V/oQqIQYSkREZBgMJSIiMgyGEhERGQZDiYiI\nDIOhREREhsFQIiIiw2AoERGRYTCUiIjIMBhKRERkGGwzRESavP4QNmzpRt/gGDpbG7B86Xx43M5K\nHxaZHEOJiDRt2NKNHd3xfYaOnBgGADx676JKHhLVAE7fEZGmvsGxjLeJSoGhRESaOlsbMt4mKgVO\n3xGRpuVL5wOAYk2JqNQYSkSkyeN2cg2Jyo7Td0REZBgMJSIiMgyGEhERGQZDiYiIDIOhREREhsFQ\nIiIiw2AoERGRYTCUiIjIMBhKRERkGAwlIiIyDIYSEREZBkOJiIgMg6FERESGwVAiIiLDYCgREZFh\nMJSIiMgwGEpERGQYDCUiIjIMhhIRERkGQ4mIiAyDoURERIbBUCIiIsOwl+ObSJL0XQAfAtAnhLhq\n4r6nANwP4MzEwx4XQmwrx/EQEZExlSWUAHwfwHMANqruXyOEWFOmY6AK8PpD2LClG32DY+hsbcDy\npfPhcTsrfVhEZFBlmb4TQuwAMKTxJUs5vj9VzoYt3djR3YMjJ4axo7sH67d0V/qQiMjAyjVS0vNp\nSZI+DuA1AI8IIbwVPh4qsr7BsYy3iYhSVTKUvgXgi0IIWZKkVQDWAPiHbE+SJGklgKdKfGxUJJ2t\nDThyYlhxm4i08fxWwVASQvSn3Pw2gK05Pm8lgJWp90mSNAvAsSIdGhXR8qXzAUCxpkTmxPXDyeP5\nrbyhZEHKGpIkSVOFEL0TN/83gDfKeCxUJh63E4/eu6jSh0FlkFg/BJAcHfN3T/kqV0n4DwHcCGCK\nJEnvID48vUmSpAUAYgCOA/jHchwLEZUG1w+pGMoSSkKIv9O4+/vl+N5EVB5cP6RiqHT1HRGZBNcP\nqRjYZoiIiiKxfvjU/e8BAKz89stYvbELPn+owkdG1YQjJSIqKhY80GRwpERERcWCB5oMhhIRFZW6\nwIEFD8Uhy3KlD6EsOH1HREXFgofSGB0drfQhlAVDiYiKihdM02QwlIhKpNxtd8r5/dhSiEqFoURU\nIuWuQivn91N/r0PHB7HukZsYTDRpLHQgKpFyV6Fl+n5efwirN3ZhxdrtRbl2SP29BrxB7pVVYix0\nIKJJKXfbnUzfL99RVLbpOfX3Alj6TcXBUCIqQC5rKuWuQsv0/fIdtWULseVL5+PQ8UEMeIPJ+1j6\nXVoWS21s1M1QIiqA3km7kgUAmare8h21ZQsxj9uJdY/chPWq90o0WQwlogLonbSN2mIn31FbLiGW\nGoJefygtoFj0QIVgKBEVQO+kbdQWO/leO5RviBk1jKn6MJSICqB30jbLnkL5hphRw9hMGhsbK30I\nZcFQIiqA3km7VlvsmCWMjYyFDkSUt1ptsaMVxuz6QIVgKBHRpGmF8eqNXVxnoryxowMRlQTXmYqr\nVjo6MJSIqCS4r1JxcesKIqJJqNWiD5ochhJRDStlMUKtFn3Q5DCUiGqY1hYULZ66ogQUq++oEAwl\nohqmtQXFgDdYlGo5dnkoLhY6EJHpZSo+mGy1HKvvqBAcKRGZhNcfwnObd2P/0UHIkHHZzFbYbRYM\n+sZz2l5jyBcs6lYU7PJQXOzoQEQVl8+6zIYt3di1vy95+y+HziT/rDd9llqM4NPo9D0ZrL6jQjCU\niAxMvS6z5/AZLJzToRlO2abH9hw+gxVrt+uGW7Gr5Vh9R4VgKFFRsNKqNNRB4w9EkiGlPuFrbVGu\nfu6RE8PJxyxbOp+/sypSK4UODCUqilqutCplIOsFjdaoaPnS+QhHopprSqcH/BgNhBXPr+XfGRkX\nQ4mKopYrrUp5cr9nyVwcOj6IQV8QsZQPyno7wT5x37s1Xye1OWri+eX4nXEEXTwsdCDKQy1XWpXy\n5L5p20FFRVxjvQML5rTjY0vmYvXGrpxP9lpFB+u3dJf8d8bRGOWLoURFUcuVVlqBXMgI4eSZUTy5\nYSdGxkJoanBi1bLr0wLu/DY3Hr13Udq2EHsP92PBnHbd76NVdFCO31ktj6CpMAwlKoparrTSOrk/\nu3l3sjz7yIlhhCNR3am1RIC9vO80ohNzdOPeIJ7YsBOXzWpVBN7pAT9Wb+xCT7+yY/RoIIwd3T15\ntQkqx++slkfQxcZCByLKidbJff/RwYy3U6VOcaUaGQslA2/P4TPwByLJ8GlrrtN8rWK2CSqGWh5B\nU2EYSkQlIEPOeDuV3pRWU4MzGXgr1m5XjDia3E5cNqs1GVb5vG451fIIuthY6EA1h5VSxXPF7Dbs\n2t+bvH3l7Dbdx2qVfTvtVqxadr3uY6a3N+LRexfh1JlRPDGxDiXLQCgSUzxHC3/PZGQMJUpipVTx\nPHTXQt2WPepQuGfJ3LQRz8zzPZje0Zi8nToN1upxIRKJYcXa7Wn96tqa6xRrSlr4eyYjYyhREiul\n9GUaXeh9Te9ErxUKC+d0pF1HlCp18u+tk15FEKVq8dRhzWduyPhe+HuuTix0oJrDSil9mUYX+Y48\ntEJh5f3vSf5Za5SjVwyhNsWjXQCRKtvvmdN7VEkMJUpipZQ+rSBJnLy7DvRmfKyaVihkKwjIdTTz\n+pv9WL2xK2OQZPs9c3rPmFjoQIZUyk+xrJTSpw6SIV8Qz6Vci6R+bELq76vV40I4KkMcH4TNaoHT\nYcH8SzpyCn+9Hng2qyV5bRMAjI1HdRu2JuQbgJzeo3JiKFUZfoqtjOVL5+PQ8cHkWs6AN4hgKKp4\njMUCNNTZEY7E4POH4HE78dzmPYoqvFSBcRl2uxUetzMtvCyw4KwvmPzgof7+CfUuu6LRasJkgoTT\nuFRJDKUqw0+x5aMelTa5nYpQSLsWSY5vD7Frfy/Wb+nGo/cuwhtHBzJ+j8TvT2/NKPWDx7pHbsLD\nz/xBcQzzZrfCYbelVe9NJkg4jWtMLHQgQ2r1uDLerlZGXFxXj0rVXRSunN0Gu92KU/2jeKd3RDGN\nlggbCzKvAyT65O0RZ3Qfk7o536pl12PTtoNpP6di7hrLaVyqJIZSlVGf5LKd9KqFEacl1aNQz0QX\nBXUgrN7YhWM9PsVjEyOVebNbNdedLBbguss7k926/UHtrgxA+uZ8j967KBniK7/9cvJY9O6vdLhT\ncbDQgQzprC+Y8Xa1MuK0pHptZdpEFwU19bE21juSI5WH7roa67d0Y+/hfsXaz/VXTUu+lt57ddfb\nYYFF8by9h/vhmwie1BA/dHwQ6x65yZDhTpQPhlKVMeIidK5Tb5keZ8T3levaivrYF8xpT76vxIRe\ne0s96pw2eNxOTGtvVLyWXmVdJBJDU4NTEUqjgXBymi7VgDeIh5/5A0bGQor7jRDuRPlgKFWZQhah\nS71eo/WpXWv7hEyf4o24uJ66tuLVWLNJvK/EsZ7qH8WIP4Se/lGs+t4uADLeOHo2rWGqzTaG9Vu6\nk6+xfOl8RCIxdB3sU6xLjYdjGPcG08q+E8egDjKtLg9GCHcqDhY6kCFlWoTWC59ST+lofWrX2j4h\n0xSd0RfXtX6Gy5bOV/y8O1sacKzHhwFvEEdVa0wJqT+bcCSKB++6Ghu2dOOsL4hr53YgEolh9+F+\nZDr/nB7wo9VTh5YmJ4ZGQrqPs1ktivJ0omrAUDIRvfAp9XqN3vST+nsZcYouV1o/Q/XP212f3z+n\n/UcH00rB25rr0gIpdZQExKfwdu3vxbvnTYXdbkXf4FhaY9bE81LL06m6sdChiCRJ+i6ADwHoE0Jc\nNXFfC4DNAGYCOA7go0IIbzmOx6z0wqfUYZA69aY+OaZ+LyNO0eXC6w9hSFVQ0tnakPbzHstQQadF\nhpz2Guo1oUzO+oLJ5qs+fyjtGqYEritRNSnXSOn7AJ4DsDHlvs8B+J0Q4muSJD0K4LGJ+ygDrW0P\nEtetaJ04AeBjS+bi0PFBjIyF0NTgxD1L5hb1mFKn3jJdL2P0KTotJ8+M4uFn/qDYp6ituS5Zyp0a\n9okRjrvejitnt0GGjEHfON4+7VM8PyEUiuKtk8oRZiSa+7pBauB73E6se+QmrN/SXdQLaYnKrSyh\nJITYIUnSTNXddwBI9Nh/AcAfwVDKSj1l9Or+3rQTpno/nRe3HUx+gh73BrFp28GShUM1Bk8mT27Y\nmRYoLZ66ZIECAHQd6MV4+NxjprU14l/ue1fy9sPP/EFzjSmsEUDqqTo1d50d09obNUeaiZ99MS+k\nJeNgoUPpdQgh+gBACNErSVJHBY+lavT0jypua50w1fvpGPEaoHyVu+ND4vud1ZgO6xkYTXbifvTe\nRVi9sSvjXkjtLQ26hQ96rBbAbrMiHI0p1pgWSh2KisDVG7vSfiZm+2BAtcVIhQ618TFgknz+zGsO\nibY1qSdwdSuiapzOKUYFYT7Blmn/In8goujEnX2tLP+/2jE5/QNHYtpQ6xh5oaz5sdCh9PokSeoU\nQvRJkjQVgH7zrxSSJK0E8FRJj8zA6uvsgKocRD1lt151snr3vKlYPH9aVU/nFGO0l0tZdyKocnn9\nxGOyjUz6hwJp91kt8eDJR2LaUP399W5T9an18xtQ3lCyTPyX8AsAfw9gNYBPAPh5Li8ihFgJYGXq\nfZIkzQJwbPKHaHwBVYWX027FukduyniySq3SqlbFqCDMpawbiI821N+vsd6RtkWE1qh0+dL58PlD\n+Jf1OzA0Mq57vdHCOe14u3cEI2MhyBqjIi2tHpdiui69OW+d5nQeVY9aP78B5SsJ/yGAGwFMkSTp\nHcQ/CXwVwI8lSboPwNsAPlqOY6l2HtX2CTM6GtP24znrVX4yP+sNVP0FlMXoZNGq2ipcq6y7pz++\nXnSqfxRtzXXJtkDhSFTRWDW1Ai811MKRKHaLMwhH9IdBNqsFgyPjuGxWK+644WJ85fu7EB4JQUa8\nUWtqkNmsFlw4tQnT2xsRCIaTx3DkxDCukdoVI+BwJMrpPBNjoUMRCSH+TudL7y/H9zeTae2NikXz\nae2NADKvgQz6xpMXUBpxi4hcFLJ4rx4FvWteZ9o0prqs2+cP4WjPuZ/jxTOaAcSn4Nqa69BQZ8dY\nMIImtxPrt3Tj7V5lAcMbb53NGEhAvMLuWI8Px3p8ab8zmwVIffp7rjw/+b7vfuLXisfuPTKAjSuX\nJH9/K9ZuV3yd03lUjYxU6EA5uOOGi/Hq/l6EIzE47FbcecPF8PpD2Hu4P+PztDaTM/unafVJedA3\nnjaNqR6BneofVYxEXz3Qpxi5OP1WhCIxDHiDONbjg9NuVbyeejfafEVi8SlZGfG57nd6fclKP/Wm\ngtGYjOc270mWn2ea4qzWDyN0DgsdyJBWv9CVXH8IRWL46gtduGxWq+aW2KkSJ6jJLI6X48RWrO+h\n14VBzeN2KoodRlTVjeoZE/Xaj/p2tuuMcpH6mu/0jeKdvvhlAFfMbkvbWn1fys62maY4a+nDCFU3\nhlKVUZ9oh3zBjMGSupkcMLmCgXKc2Ir1PTZs6VaMeNTl1Kme27wn7WRvNH2DY1h5/3tw78ptiuBL\n3eQx0xQnK/WoWjCUqoz6g3hMztwQNXUzOWBy/ecKObHlO/Ip1slT/Tx1OXWqN1JGG0bV2doAj9uJ\na+d2KAouYrFYcnov08+1mpvhUhwLHciQ1H8tZcSDRr2zqcthxaLLp+q2oilEISe2fEc+xTp5ppdL\nu3QeWd4t5dV7I6k1uGxoqHPAXe+APxBGk9uJ6SmbAiZ2sk30txsbjyou5NWT7cMI15zIKBhKJrB+\nS3faInhDnR17D/fjgad/iytmt+GhuxamnWTyPREVMsrKd+RTrE7i6qDJFDzzZrcqRh/FlOtFsqkf\nIrR+T+pediu//bIivLP9XLN9GOGak/Gx0IEMyWoFYqrrLFPLii0WwGGzKjZ/U++pkwij1NFVLiei\nQkZZ+Y589L5HLgGa+pjTA37F18760nvYJTx019V4dvNuvPHWWfjz3H4iG3Ue6Y2SFl0+VfdnqxUY\nxZ6O45oTGQVDqco4bFaMq1MphV53gD+/3oO7n/g15s1uhQUWvKKxsF+KE1GxRj65bLme6VotvZN2\nIsgGfeNYKHVgLBjCblGcNSaHzaLZCTzBaom3jbpydpvuz8XrD2HPYWUHrj2Hz6CjpUFxca/W8/MZ\nCXPNiYyCoVRlUrdIyEdMTuxY2qe7Q2opTkTF6lidacv1cCSKJ+57t26o6lXeqfdKOnJiGK0eF66W\n2tB95Oyky7vVgaTu1uBpdGLEH8auA70QX38JT/9//wvTOxoVz9mwpVuxNxIQbwh7LBC/aPeyWa15\njbD0HlutGzDWkpGREciybPppPGv2h5DZqNdX3PV2LJ4/LefWPas3dmHF2u1YvbEra9fyfOm9fqbA\n3H90MONjRsbiazLqY9XaK2nQN46GOie++U/vg63Y/zpk4OrLOuCut8NmtWB4JIRoTIYsA0MjITyx\nYWfaU9RBqz4fZRrd5jMll/jwsOYzN+DRexexyMGAXnmjFz5fflugVCOOlExOq9pr3uxWOOy2giqt\n8um0XQi9T/epn+SPnvIq3lOiyGP50vk4dHwwbUvw8XAMO7p78Or+XkzvaExWs+ltPf7y6z3Y2d2T\n14YTNqsFsZi63ERJBtB9uF93BKZ1POppNYfNqgjSTGHNKTlzaWiojd8fQ8nk6pw2xeK9u86OT37o\nCmzadjCDnw6dAAAgAElEQVTrc7XWJPLptF0IvU/3qdOATz3/Z+wW59oqXXZhS/JY9YIGiK+1JXrO\nHTo+CHe9A+Ph8bTH5bEjedK1czthAbDncC/GMzTXyDQlWOey45Nf/E1y2/pVy65PC9pQJKa5u7AW\nTslRNWIomcCFnY0YC0bgcTvR0uTCsdO++DUuDU5cOLVJcQJfKHVg07aDqs7W8T566pGOVthoXf9T\nzMqtXD7dO+02xW2H3ZaxyEGLejRVKJvVgnmzW3H4nUFFxWMhvKPnnj/uDeKJDTvx/c9/AC2eOsXx\nau0urIU70FI1YiiZwL/9883JP6/e2IVBX/zT/7g3iJgso7HeARlysspr5bdfVjz/jaMDycX01JGO\nVthMUW3/YIElLUiGfEGsWLu9oKm8XD7dq8u73zh6FuGIshGquqigFM5rcsE7Mo7X3zxbktdPjPo4\nDUcAMDw8VBNdHRhKJvCJL2zDV5YvxvSORs3O2Al2uxUetzPtJKcufEi8htbJUP36XQf7MKOjEW3N\ndWhyOzHiDykq47RKtzPJ5Toldf8/rWa0113eibdOeos2ItIyPJI+9ZeJu96OSCSWcwVlU0P8Z8Vp\nOAKAWGxyHeirBUPJBAZ943jwmd/jB59fkraRXaqd3T345Bd/g899In7ST90cLrWjQeKTuNbJUL3/\nUDQm4+3eEQDx8uQ+25giCJSl29rThNl4/SF85pk/pDVYbfHUoad/VLFm5pwI3jNDAVw8oxmXzDgP\n+94aKPpFsYWod9oRRDSnULJYgFXLrgfAaTiKa21tM305OMBQMo1wRMbHPv/fGR8jIx4SX32hC9//\n/AcAxE/439y8B+56OyyIr48kwki9rcP6Ld24Z8nctD57CYmw0WsO+9rBvuRCfz4FEeqO38C5dZVP\nfvE3isAJR2PJIDzW48Pi+dMQkwu7tquYbFZLXqO2i873KK5Z8vpDeG7zbuw/OggZsm7rKC3sa0fV\nhKFUg3wT1wIlpsJST5YOuw0yoPn1IyeGsefwGdQ77ZqhlDq1pPXa6sqzXAsitB6XGM01qbaHV0+5\ndx3oLfiC42Kqd2n/zPQkdhRO2LClWzGaVbeOUlNPd6b+DgFz9rVj+JoDQ8nkHHYLICu7C4QiMd1K\nNXWJt5o/EIE/EEFbcx3q6+zoO3uuZPueJXMVU00+fwgPPP3btI4ECUO+IHz+UNYTh3r0ldqhYXp7\nI4716F9QWOlAaqx3YMGc9rQp0mzGgmHFz0YrmDOFeqbfoVn72pm9qezw8BC8Xi88Ho+pp/HY0cHk\n7Fn6r6lpFTNoafHUYeZUD0KRWHJ78E3bDio6Mqzf0o0rZrcpnpe6ffiAN4j1W7qTt/W6OSxfOh+L\n50/DRdM8yX5viQ4Ny5fOL+PGE/lx2q3498fej0fvXYSH7roai+dPS+vIoGe36Ff8bLQq7jJV4WX6\nHZq1es/sTWWdTif+uPuk6bs6ZBwpSZLUDOBJADEAXwSwHMA9APYBeEgIMVjyI6RJsVltiP/69Kkv\nxlQXM9is8TNp6vSbVnjtOXwG39y8J9nsNfEaTrsV57e5MXVKA95466yiI8GO7h6MrN+JOpdN0aX7\nyIlhjI1H0OCyo29wDK0eF7yj4xj0jWPAG8TRidHRo/cuQovHpagyLCWH3YJwJLeQl2Y2J/+cGEF+\n9PGtCIwrfx9tzXWa602pP9/lS+cjHIkm15QyNXEFtEeXuVxwW83MXjo/pa0TdfXmek9ask3fPQ/g\nFAAPgF8AOAjgAQBLAawFcG9Jj44mxQJgPJS56sxmtWDVsusVi+qJk1aioCERRq0eF8bDUVhgQTgS\nTav08wci2Kexi2soEoM/EIbDbtOsgut+U7sr997DZ9K26UjVNzgGrz+E8VD5SmWvljrgsNt0iz1S\n7XtrCM9u3q1o6eRy2hEYP3eRbKvHhXWP3ISHVdWFgPKk6nE78cR97875OLUqJ82+vsLSeXPIFkpz\nhRB3SZJkA9AH4K+FEFFJkl4F0J3luVRhMtI7VatFYzJ+8Mv9+Jf73pW8L/GpfsXa7YpPnuPhaHJ9\naNf+PrxrXica6x2Kk7PeZnojY6G8p1MyBRIAeBoc+Mwzf0gLOqfdqrl9RzHs2t8HC+L7WuXitYNn\nFBWHiVFnwnmNLnjcTqx75CY8m1Jdl20klM1k9qWqViydN4dsoRQBgIkgOiGEiE7cliVJqnxJE+VN\na5NArdENkD4dMqY6+Q/6xrFgTrtiQT3R7PXlfacV031NDekX7U7W628OpIVuY70D//rQe/H9X+5X\nlKAXkwwgmuPffvX3V99OVNnlOxIqlNmLAcxsaPAsXPUByPKFlT6UksoWSlFJkuqEEEEhxMLEnZIk\nuUt8XFQiWqMPvdFN4pP6nsNn4A9E0sqt1SXgqZ+8T50ZxRMbdiabi37uE4vw45cOo7HegVhMxngo\nkmx8Wu+0IRiKKjpsN9Y7YLMB3lH9KTKtUeCCOe2Y3tEIh91akkAqpsZ6R9mnmMxeDGBmsVgEsWjl\nLwIvtWyhdBsArbNCC4BHin84VAnzZrdq3q83jedyWLHo8qnJAErdZv3Zzbux780BjIdjqHPasGBO\nBx66ayHWq66zaXDZEInKCEViCGisCS2Y0457lszFExt2YsgXzKlzt9NuVYRkMeXaS6+tuQ7RWCyn\n5qwL5rRPeuos3+m4bMUAZp7eq3aJQgczl4MDWUJJCJG+Z3b8/pMATpbkiKhsbFYLFs3txCc+NC95\nsazWiUhd0OCe+ISvPlmpL/D0ByPYtb8X967cBpdDuQgzNp4eRO56O6a1NaKztQH3LJmL7/9yPwIp\nI6psOqc0YL1Of7zJuqCjEafP+rNW3rV46hAMRXRDyWm3KvZ0mqx8p+OyFQNweo8qreCLZyVJel4I\n8UAxD4ZKz2G3YNb5zYrwWb2xK+OJSN2Be9A3rtlNQG90Eo3JmiGk5g9EcPSUF00NDvzgl/uxa7/m\nZyJdp/tHcaJvNHlba4NDPRYLABm6m/SNBSO4oKMpWYquZ8gXxFCGRq2hSAzT2xuLdqLPdzouWzEA\np/eo0ibT0WFJ0Y6CyqLV40p2E0/w+kPYe7hf8biuA71YvbErGVrinaG019Jr/ZOpkMFdH//rptfh\nAYgH2G7Rj3pX/td1T6bgrsFlz9i0dcCbOWxsFsBms+bU366nf1Tz/kKmzop9bY7Zr/WpZolCB6/3\nPFN3dch28ewZnS9ZAJxX/MOhUhoaGceXf7ALM6d6FBv5qa+3SWwfDsRHTFqFEFonq+VL52MsGMIe\nMaA54qh32rFq2fXYtO0g9ogzGUNAfYFpIfIpdAiMZ19AzvR6LqcdYzm8BoBkpwq1QqbOin1tjtGu\n9eEa1zmxWAQuV7yrwx3NzWhubs7+pCqUbaRkAXAzAK/G/TtLckRUMrIMnOg7N8WltZFfqj2Hz2DF\n2u1wOqxA4Nz95zU5EY5E8X++9hJ6U3rfrVp2PRrqnLpTYIlWRFrFE5WWT6Ge1ZL++PFw7hfwNumc\nVAuZOiv2tTlGu9aHa1znTGnrxJT2qfCP1nCbIQCvAWgTQryu/oIkSadKc0hUDnob+aXyByLJr6W2\nqdFqLjowsX13i6oowuWwKpqi5vJ9c1HvsiEUjlWk7DsmpweT025BIJTbsYz4Q4qdeWXET749A8pp\nPU6dcY2rFmULpTsAKD4CSpLkBNAqhLiuZEdFJdfqcWHV93bhjbcGYLNa4HRYcPmsKXDYbTjrC+L0\ngF8xrZfYv8jrD+Efv/Jbzdcc9AUx83yP4r6Yqo460RlcPU0UCIbxF6Fc28qk3mWH1RrNuD5VShZV\njXgoIid3353e3ojdh/rSijvc9XY47VbFxocHjp3FpRecpwj5RGfxxM+olqewuMZVe7KVhIcAQJKk\nHwH4RwAhxNsLtUmS9BUhxL+W/hCpmFwOYNHl0xCJxJKNUwEgMC7j2GkfLr0gvlRY57QpQun0gB+r\nN3YhEonprgXFZODoKeXoR11CPeAN4uFn/pAcda28/z3w+UP49Nd/r3hctsq5Id+47jRhOdQ5lX38\nojEZA94gLpvVikfvXYRV33slbTQ5ra0xrchh0DeO/UeVfY3Pb3MrpqhqeQrLaGtclTQ0eBYyrAgE\n/Kbu6pBr9Z0khPBKkvRhAL8HsALAKwAYSlXEZrVg3Yr3YXpHI1as3Z729UHfuOJE2tZch0Aovn/S\naCCMHd09yQo6PcM5XDSaOlIAgEPHB9MCyOWwZSwcqEQg2awW1LlsuHJ2G2TImvsj9fSPToxAz6Z9\nbYqnDkdPqZdnAVn1btSjgVqewjLaGlclxWIRxGJh03d1yDWUHBP/vwHAr4UQY+x9V32iMRmPfev/\nxzf/6eac1nQC4xF0tDbgWODcwqpeS6KEfMOib3AM3tH0MupcK9nKwWm3YqHUDgssOOsLwm634s73\nXoy3Tnox6Asq1pZ8/pDutUwy5LQRFgBcObsNdrtVdzSg/l21elwZL3Ymc0otdDBrOTiQeygdkCTp\nvwHMBfA5SZLqS3hMVEJDIyEsX/07XDKjGe66zNfm+IORtF1d581uxasH+nJqudPS5IR0YSvODI3h\nxJkRzW4Ina0NON7jRWXGPukcdisi0Zji/UVjMo6cGE7u2ZRYC0rdwykxispUWj7oG8cVF09RjLBa\nPS48eNfCjKGinsKKpOwcPNnpvFperyJjyjWUPgHgAwC6hRB+SZKmA/hc6Q6LSsnnD2O3ONcZvKXJ\niXBExlgwnLU0etf+vpx3Tw1FYjjrC2JaeyP6BscQjihP2K0eF071jyKaS8KViLqnXVjjCtxoTE7b\nRFB9OxqTsxZdpG6iGN+4sA6AjJXffjmtEk8dEqmho556ncx0Xi2vV5Ex5RRKQogAgP9KuX0K8c3/\nyATCETnrhnWpcs2QREm51j5CQPzEXq4dY/XYrcC7rpiGrgO9itL1ybJZLahz2uB0WHFeU12y110i\nYLz+ED6TsrFf6vRctpAoZkVaLa9XVZvUQgczd3WYTJshMolcuhnkymmPtweKxmRl8UIFR0OZxOT4\nDruRXLu+TtDalyrV7OnNWPOZG3S//tzm3WktibQCQeu+YlakseS6eiQKHcze1YGhVKNSS66LdQGq\nzWrR3fE1Kue+/UM5RWPIa5QIANdI7Tj09lDG9bhsW0JoVeclnpMtJIpZkcaS6+qRKHQAYOquDgyl\nGpVPEF06oxFvnhrNGijZXlOWz61f+YNhwwVUrt7uHUkrWEjV1lyXdUsI9XSmzWpRPKdcIcGSazIa\nhhJlNaW5EWs+ezO+/L1digtuC+Hzhw2/I2w2I2MhPHTX1Vi/pRt7D/enjbRGxkJYv6VbUcmmnoZT\nl4YvmtuZfGy1hwQr+mgyGEqU1Z7DZ7B6Y1dab7ZCVHsgAUBTg1N3V17gXJf1Q8cHk50rmhqU/9Sk\nmeehoc5pymkzVvSVRqLQAYCpuzowlCirxEnWhIU+WanbHTnsFsyc2oQVa7ej1VOHs96A7nNTO1e0\nelyKrznt9rxO1IWOPioxamFFX2kkCh0AmLqrA0OJclata0CTYbcpQykWg27jWKfdqlvo4VdN8fUN\njcXbER0dgAUWzJvdiofuulo3MAodfVRi1MKKvtJQFzqYsRwcYCiZms1qwezpzRjyBXPaEbUW5LNF\nOhCfqhtP+dlleu70jkZMn7hQWP0zV7/OiD+k6Jaxa3+f5hbzCYWOPioxamFFH00GQ8nEojEZ0WgM\nF89oxszzPdh7uD/nE3Krx1XxC1tLoc5pg8tp031v7jo76l325BYU9yyZi03bDqJvcCxtOw+16e2N\nyVDx+UPJzg2drQ2K1+lsbUBP/2hO1yklFDr6SO+bV1fyvnms6KPJYCiZ3NEeH472+LB4/jRsXLkE\nDzz925z2IBrxj+c9qqgG/mAEV158rgFqq8eVbLSaepJOrMU888O/oLO1ASv+7ho8uWGnbiglysDV\nazgr73+PZlXd6o1daY1bMwVNoaMP9fPCkSiLEKoUCx3IVHr6R+FxO7FwTkfypJRJfHdvcwVSwllf\nMGO3BSB9LebQ8UHFyMZhs+CqS9vh84cUYbZ6Y1dOJ/3lS+cjEolhX8qaUqagKXT0Ucq+eVReLHQg\nUzna48Oq772CD988By/vO605AmprrsPIWKioPeCMKJepr1OqzfjU22uEozLqXXasvP89ivtzXcPx\nuJ34l/velcvhFhWLEKoXCx3IdHbt78NbJ726U3LBUBR2u9U0oWS3AupiOHe9PaeprxG/crNCi8UK\nQPliWoFj9JN+6nReq6cO4UgUK9Zu50WuZBgMpRpz1qdfhZdvDzijs9msiKi6pi6c05E88Wpdw5PY\nOsKrCqW28+oRDEUUBRKeBkda0cA9S+bi0PFBjIyF0NTgxD1L5pb8feYjdTov16lGonKqeChJknQc\ngBfxj6FhIcR1FT0gk1Nfa2S3xpulmvEapJjqTbV6XBgLhnD3E7+GDBkuh02xcd+h44O4eEazZk+7\n/qExXH1Zh+Jrx077FM9PSKw9jXuD2LTtYNFP9MW6IJYXuVYXFjqUTwzAjUKIoUofSK1w19sxra3R\n9NcvhSNyckfYK2e3QYasCBV1FeKAN4hgKKr9WtH0jf7SLojNceuJycr3gthEiJ3qH8WIPwSP24lp\n7Y1pXSYqMdXIPnm5q5VCB2ulDwCABcY4jpqxcE4H1nzmBjTVwD/+xI6wdrsVPQP+rI8fG9eewrRZ\n00/aTQ3Kn19na0PaY0pxos93hJMIsWM9Pgx4gzja44u3jYIFi+dPw6UXnIfF86dV5CLXxLEdOTGM\nHd09WL+lu+zHUC2mtHWio3M6Ojqno629k4UOJSQD+K0kSVEAzwshvl3pAzIjC4BLLjhPsbh96szk\nG6xWi1P9o+g7m37yVu/xpLdxX5PblXbNj/qC2HJtPZFvMYVeaOVSGl9qnEIkNSOE0vVCiNOSJLUj\nHk4HhRA7Kn1QZmO1WtDZ2oBIJIZXdPYBMjN1NR2Q36aD46H4CEo9TZa47VV1cEi9aLbY8r2QVh1i\nqfdXmtGrFan8Kh5KQojTE//vlyTpZwCuA6AbSpIkrQTwVHmOzjyiMXliyqY2+YPp+zjlU9wRGI9l\n7E333OY92DWx19SRE8OIRGIluw4p3wtpE6GlXlMyQk869slTynR+Y6FDGUiS1ADAKoQYlSTJDeAW\nAF/I9BwhxEoAK1WvMwvAsdIcpbmYsMguJ4FxZQFDpo7eVgtQ77IjMB5Bao6pL6hN9cbRAcXtfarb\nlWTkXnRGPrZKyHR+q5VCh0qPlDoB/EySJHniWF4UQvxPhY+JTM5iAZwOm24o/dVV0/DovYvwyS/+\nRlGdqDUFmHxN1RhUfduI8ql8Y5Vc5bGjQxkIIY4BWFDJY6DaI8vpFwpbEB8dWa0WhCNRHDo+iKER\nZQl4ppPwvNmtinLzebNbi3rMpQiFfErLuZsslUulR0pUYXabBZGo8Sf1rBbAbtOfcitE4nqtcwUg\n8TWhXfv7sEekb/Ph84d0W/I8dNfVikKHYqyNpAZR6jVlR04MIxyJwTHR6bzQkMqn8o1VclQuDKUa\nVw2B5LBZcM1lnTgzNIahkSC8oyEUa0eNxAn9yQ07FfdrhV/q9uaHjg9i3SM3JYMgl7WRfEc7qaMT\ntTeODiQv/i105JJP5Rur5CpPXejg9Z4Hj8djumk8hhIZXjgqJ0cxxeQPRLCjuwcHjp3N+7kD3mDG\najwt+U6BZRqNqNesChm55FP5NtkqOa5JTV5qoYPL5cQfd5/EHc3NaG5urvCRFRdDiWreoG8c9S5l\nU5H0nuDpcgmC1JNxz4Cyei/b89WjE6fdmtxyPRyJKtawChm55FP5NtkqOa5JTV5qoQMQL3YwI4YS\nEQCb1YbUGLJYLcg2R5hLEGSagsv2/OVL5ys2FwxFYskt19XbrWcbuVR6pMI1KcoVQ4mqSj5dGPIx\nb3YrHHYb9hw+A38gkixysFktqHPa4HLa4K53IBCM5HXxqfrk21jvwPlt7pyCxON2osVTpyhLT7ye\nx+3EsqXzk0Gzfkt3xqAptIlrsUKMa1KUK4YSVYTVCsya6kFHSwNCkQh2i9wuNi1FIJ3X5MSZoQCm\ntzeis6UBRwPnpkWiMRn+YAT+YASXXzRl0sUEiftyPclnOpnnEzTqcOw60IvVG7t0j6PY023s3DB5\nqYUOgHm7OjCUqCJiMeBLy66Hx+3E6o1dJfs+1ol6gEwzccMjIQyPhHCsx4e25jrdx+Uz5ZQYafT0\nj6KtuQ7+YAiB8RhGA+HkyT6Xk3ymk7nelJjWKEcdbuPhWMbjKPZ0Gzs3TF5qoQNg3q4ODCWqmGde\nfA0NdQ50HSh+ZV1CvqXjTW4nLpvVmnZtEJB9ysnrD+G5zbux/+ggAuMRxXVOjfUOpK5Z5XqSz3Qy\n1xtFaY1yEmHWdaBXsd293nFkGqFVen2qVmkVOpitHBxgKFEF7Rb9ul+z2yyQZaRdwOqwWxCOlO7a\nqkQhAYC8iwk2bOnW3LUWAGRV18FirKnojaK0RjmJcEvdAh2I78ar3tLd43ZmHKGxko5KiaFEhpR6\nUa/NakG9y455s1sRjkRzXn/KpK25Dv5ACIHQuVGDzQrcs2Ru8rZ6lOL1h5In8FaPCxZYcNYXTJ60\nM41+rpzdBruqA8Nk6Y2iMo1y1GETicQ0AybTCI2VdFRKDCUyvNnTm7HmMzfA6w9h2dO/S/u6026F\nu96OYCiq6AaurtRTV749+K+/RyB0rr9dNAZs2nYQH1syF09u2ImRsRDc9Q5cdL4HvrGw7vbxR04M\n49X9vXDY0zdQtlriDV7LOcWVaZSjDpsVa7crnptLwLCSrjK0Ch3M2NWBoURlZ7Xq7/CqJXWtRN1I\nFYhfvxMaCaGtuU4RSnarBeGUEdcVs6co9jjya7xW3+AYntywMxk+4+FxDPr0pxkVx6DRmqixwV60\nQMp1LSefogJ1wAz5gvBN7Lmkh5V0laEudDBrVweGEpVdPoH0rnmdiERiWLF2O04P+DM+1uN24uIZ\n5+GNowMYC0QUgQQA4p1BRUPVpgYnxlUjn87WBrzTW7wr5X3+CJ7dvBtP3Pfugp6fqSkrMPm1HPUF\nurm0T2IlXWWoCx0Ac3Z1YCiRoe0/Oqg5OtLi84fQ0dKQbFSqNjQSwtBIKHlCX7Xsejy+fgeGR8Zh\nsViw4NI23LNkLl7Nsc+ezWpJK8TQew+ZZBoBZeoIkakEPNeRWaYLdIkqgaFEhqa175FeDMS7eOcW\nKH2DY5je0YgXnlqiuH/1xi7d7THUa1TXzu2Aw25TbDPu84fS1p3UlXdqmarZMgVEphLwfEYyXCMi\nI2EoUVUpVjF4z8CoZkcDdQikjoZkOV611+KpS45IZMRDoc8WH6X888fn4vH1OzDoO1dAceXstozH\nkqmaTR0Y6u+f7fm54BpRdVAXOgDmLHZgKJEh5Fv8MFmJbSsikZii+EGrLVCqFk9dshJw/ZZu7D3c\nnxzNJfZZ+sryxdi07WDOJ/l8Sri1puYmO9LhGlF1UBc6AOYsdmAoUcU5rEC4jIGUat/Rc9c8ef0h\nRCIxxehIvWaUqE7TW+sZ8AaxadvBvE7y+ZRwK6+VqgMgo38ogLbmOjS5nZieY6NYqj5ahQ6A+Yod\nGEpUcU2NLsV0VzklNsvz+kP4zDN/0LwOKVWiOi2XrcNzKUDIp0gh2zFeNquVIx6qegwlqrjRsdyq\n6/JlAWDP0pZo3uxWAPF1oWyBlJAIEL1pvkwFCKnbTXS2Nig269MrUkgEV2JbjUzHRVTtGEpUcXrV\nbpNlt2UOJIfNAgssOV0DlWrIF8Qjf3cNAOi2HEp8LVXf4FhaUMUbtSofo5apLDwVq+bMTavQATDf\nFhYMJTKltuY6jAUjCGdo7+902PBKjtckpRrwBvF/n/0TFsxpx8r736M73aZVgKAOnVwateqNgJob\nHbhsZisGfeOsmqsBWoUOgPm2sGAokelcdXErPI11+PPrmUcX6hLaepcVobCc0wWxueyLpFXAsH5L\ntyKocmnUqjdVOHemsm0SmVumQgezlIMDDCUyiEwXxebr7b4ReN/K3EXBaomvJ6VuNeGucyIwfm5d\nyWm3Zp1azLSOo1VqnUuJt5reXkh7Dp/JuHssUTViKJEh1DmtmH9pB/Yc7sX4JOsefP7sLxCTgdff\n7IfNakGd04YrL27DmaExRbHD9I5GTG9vRN/gGHr6R+EPpk+TlPqaoNTqPHWvvmy7xxJVI4YSGUIo\nIuONo2cRiU5+zCTn+PTAeHzU4Q9G8ObJYQRDUcXXUzf8U2+O11jvwII57VnXcSbTl06rBLytuQ4j\nY6G0EVNqo1mOmswpU6GDmbo6MJTIEKIxOefGq6WQeuJ319uxcE6HInBynXZTh1AkEksWU+Taly5T\nCXiLpw6XzWpVBKQ/EMGRE8PcBdbk9AodzNbVgaFEpCYjLXRynXZ7bvNuxXVH7jrlP7HUNSi9UVSm\nEnB1yfnpAb8izHmtknnpFToA5urqwFAiU3DX2zNeWJqJesLQH4zg4Wf+gHWP3JT3VJh6mwr1lGDq\nGpT6mqWX951GvcsOWWf+sa25LhlcetOKvFaJqh1DiUzhytltOHxiKO92RU67FS1NTvQNKbs5DHiD\nePiZP+BLy67Hi6rmqqlBpR7tRGPKEIrFZDTWOxCNRVHvcqCn/1x3cvWoRm8KM3X9Sh2Sen3zJrOW\nRVRJDCUquXqXHYHx0l3gZwHw4F0L8cSGnXmHUigSSwukhAFvULE1+pETwwhHYnCkXFekXjNq9bgQ\nGD93DDLO7QkVGB/HoG8cR3viUy2ZWhXZrBbMnt6cNVD0phUnu8cSGY9eoQNgrmIHhhKV3OWzWrD3\nyIDmRanZdm912Cxp25preeArv9Us2Z6skbGQ4vZrB/uSx3vkxDDc9cp/Quc1unD5RVM013tSvbq/\nFwulDlwttWG3GEj7ep3LhjWfuSF5O9+RT7Y9ljiSqj56hQ6AuYodGEpUcn8R/bpfW/3pxfiv7W/p\nNoR78u0AAA1+SURBVBvNJZBkQDeQWj0uXHrBeeg+fAbBsAyrJX6NkpaLpnkwoto5Vn1tkDpAE13G\nE9pb4k1WTw/4EchwwVUoEsOu/b1o9bg0v67eGDDfkU+2PZY4kqo+mQodAPMUOzCUqKIe/9ZOPPvI\nTegbHMu4uV6hzmt0wWG3IRiOh0mmDkIj/hBWLbsem7YdRE//KHz+EFwO7emShHmzW+Gw2/BOrw+n\nz/qxK89eesMj6dON75rXiQfvWqi4L9/dZbPtJjvZ3WqJSoWhRBUVisTwuW/twBWzp5QklKZNdGTI\nxYA3iO//8g0AwNu9I7rTig6bBU6HDcFQFG+8dRZXXDwFo4Fwxo7keiwWi+Jq38Z6B564792Kzfw6\nWxsmNvQ7p9XjUnw9Mf2mnpbTaxg72d1qiUqFoUQVNzwyjuVL5yMcieK1g2dyaohqtwLZdrxoaXJq\nNkHNZP/RwawX8YajcrL7uD8YUfTPy4XTbsX5bW5c0NmEsWBIsabksFvSdrY9cmIY75rXicXzpykK\nLLSm33Kdlss2kiLjyVToAJwrdgBQ1QUPDCUyhGc378k5kADA4bAjkqWiLxyR4XE7k4HXdaAv4/Qd\nAIwFS99VIhSJ4YLOJjx67yL4/CE8nNJKaGgkfltdYDHoG1cUPqxYu13x9cRoMNdpuXx78FHlZSp0\nAOLFDq8eGkIgcAq333h51RY8MJSo4qxA3msxuZSYj42HsWLt9uQmfHVOG8bGoxmfk2MmTlrXgd7k\n9UrueoeiuEJrB1z19Jre9Bun5cwrW6FDQrWOkBIYSlRxMzob8U7faNFfNxZDQetUNitQ74pf8Boc\njxVtS41UqR2+s+16m+jkkEpv+i3faTmWhpPRMJSooiwATvXnvhV5eVgwb3Yr9h8dhIzSbNWe8JdD\nfVn3bGrx1KUFhd70W77TciwNJ6NhKFFFyUi/9qfSojE57+KFQgWyTCcCwBRV5V0xsTS8emQrdACA\nunoXAmPV/TtkKBEZ3MG3z8LnD5VkWo1rUNUjW6FDYGwM710gobl5FjweTxmPrLgYSkQG5x0NY/2W\n7pJMq7E0vHrk0tGhmW2GiKiY3PV2BIKRtCrAUk2rsTScjCbzBCURldXCOR1YdHn6p2FOq1Gt4EiJ\nqATUGweq2axANKa8fe3cTkQiMZwZGkOrx4XxUBQWS7wSkNNqpFXoUFfvSjYFHhszWhVrYRhKVeY9\n81rx8v5Bza/NnOrG273m+ItZ9VSppN6io85pV3Q2v3CqBw67TbGL7OL50zi1RknqQodzhQ3n1pCq\nucAhgaFUZR6/73/l9Xj1dtlUHuodzZvcDoTDMQRDUbgcVjgdVvhTGjdM12gcq7eOxAtea5O60MEs\nhQ1qXFMyOU77GMPwSAj+YATRmIyx8SiGRkJoa67DpRech8Xzp2H50vmarYS0JC54PXJiGDu6e7B+\nS3c53gJRWXCkZHL8BG1cwVBUsbVEruXZvOCVzIyhZHInzxS/pxwVx2hAef1RruXZ6gteTw/4k81d\n+SHEvAJjo4rdZc1S2KBW8VCSJGkJgLWITyV+VwixusKHZCpPbthZ6UOgDAoZ5SRGUIkt5EcD4eS6\nIQsjzCswOpS2E/Lv/nzIkF3BO1qcWPyuBQU9t6KhJEmSFcA3AdwMoAdAlyRJPxdCHKrkcZmJel8e\nMpZCrj9KjKhWrN2uGDFxGs/cWjsuyGnrCkOwFj5DU+lCh+sAHBFCvC2ECAP4EYA7KnxMptLUwOkc\no1EXOBQq18IIompS6em76QBOpNw+iXhQUZE8+JEFeOo7r1T6MCjFgDeIAW8wWT1X77Shvs4Od70D\no2MhhMLxq2odditC4SgsVguumN2Gv//QPLy47WCyEOKeJXMBsG8dmUulQ4lK7Lkf7630IVAWgVAU\ngVAUg75x3cfs2t+Lt04OJ3el5d5HZFaVDqVTAC5MuT1j4j5dkiStBPBUCY/JVLimZB7q3yXXkMwn\n0/ltqieMjubq+Pc8pbWj4OdWOpS6AFwiSdJMAKcB/C2AuzM9QQixEsDK1PskSZoF4FhJjrDKNTU4\nMe4NZn8gGZ76d8k1JPPJdH6TLrkIM2bMqMBRlVdFCx2EEFEAnwbwPwD2A/iREOJgJY/JbFYtu77S\nh0AAnDb9r9W7bGj1uHBBZyNampxw19nhrrPjvCYnGlw2uOvtePe8qVi17Hosnj+tKEUSREZV6ZES\nhBDbAEiVPg6zmt7RiK3PsKDRLLiGRGZX6ZJwIiKiJIYSEREZBkOJiIgMg6FERESGwVAiIiLDYCgR\nEZFhMJSIiMgwGEpERGQYDCUiIjIMhhIRERkGQ4mIiAyDoURERIbBUCIiIsNgKBERkWEwlIiIyDAY\nSkREZBgMJSIiMgyGEhERGQZDiYiIDIOhREREhsFQIiIiw2AoERGRYTCUiIjIMBhKRERkGAwlIiIy\nDIYSEREZBkOJiIgMg6FERESGwVAiIiLDYCgREZFhMJSIiMgwGEpERGQYDCUiIjIMhhIRERkGQ4mI\niAyDoURERIbBUCIiIsNgKBERkWEwlIiIyDAYSkREZBgMJSIiMgyGEhERGQZDiYiIDIOhREREhsFQ\nIiIiw2AoERGRYTCUiIjIMBhKRERkGAwlIiIyDIYSEREZBkOJiIgMg6FERESGwVAiIiLDsFfqG0uS\n9BSA+wGcmbjrcSHEtkodDxERVV7FQmnCGiHEmgofAxERGUSlp+8sFf7+RERkIJUeKX1akqSPA3gN\nwCNCCG+Fj4eIiCqopKEkSdJvAXSm3GUBIAP4FwDfAvBFIYQsSdIqAGsA/EOB38oGAL29vZM4WiKi\n8rr55ptnATgphIhU+liMwiLLcqWPAZIkzQSwVQhxVQ6PXQngqZIfFBFReVwkhDgOZD2/JR9nZhUL\nJUmSpgoheif+/FkAi4QQf1fga7kABAFcAiBavKM0tGMALqr0QZRZrb3nWnu/QO2952MAHJlGSpIk\n2QHMQI2MqCoZShsBLAAQA3AcwD8KIfom8XqyEKJmCidq7f0Ctfeea+39ArX3nmvt/eaiYoUOQoh7\nK/W9iYjImCpdEk5ERJTEUCIiIsMwUyh9odIHUGa19n6B2nvPtfZ+gdp7z7X2frMyREk4ERERYK6R\nEhERVTmGEhERGQZDiYiIDIOhREREhsFQIiIiw6j01hVFVSu72UqStATAWsQ/VHxXCLG6wodUUpIk\nHQfgRbwlVVgIcV1FD6gEJEn6LoAPAehLNCaWJKkFwGYAMxFvxfVRs2zvovN+TfvvV5KkGQA2Ir5r\nQgzAt4UQz5r5d1woM46U1gghrp74zxR/oVNJkmQF8E0AHwAwD8DdkiRdVtmjKrkYgBuFEAvNGEgT\nvo/47zTV5wD8TgghAfg9gMfKflSlo/V+AfP++40AWCGEmAfgPQD+z8S/WzP/jgtixlAye3PD6wAc\nEUK8LYQIA/gRgDsqfEylZoE5/64mCSF2ABhS3X0HgBcm/vwCgDvLelAlpPN+AZP++xVC9Aoh9k78\neRTAQcQ7f5v2d1woM/5D/7QkSXslSfqOJEnNlT6YEpgO4ETK7ZMT95mZDOC3kiR1SZJ0f6UPpow6\nEp3zJ7Z56ajw8ZSD2f/9QpKkWYjvkPAKgM4a/B1nVHWhJEnSbyVJej3lv30T/78N8d1sZwshFgDo\nRXw3W6p+1wshrgZwK+LTHosrfUAVYvb2K6b/9ytJUiOAnwB4eGLEpP6dmv13nFXVFToIIf46x4d+\nG8DWUh5LhZwCcGHK7RkT95mWEOL0xP/7JUn6GeJTmDsqe1Rl0SdJUqcQok+SpKk4VwBgSkKI/pSb\npvv3O7FZ308A/IcQ4ucTd9fU7zgXVTdSymTil5rwvwG8UaljKaEuAJdIkjRTkiQngL8F8IsKH1PJ\nSJLUMPHpEpIkuQHcAnP+XoH4ekrqmsovAPz9xJ8/AeDn6idUOcX7rYF/v98DcEAIsS7lPrP/jvNm\nqoasxd7N1qgmSsLX4VxJ+FcrfEglI0nSRQB+hvi0hh3Ai2Z8v5Ik/RDAjQCmAOgD8BSA/wLwYwAX\nAHgb8XLh4UodYzHpvN+bYNJ/v5IkXQ/gTwD2If53WQbwOIBXAfwnTPg7LpSpQomIiKqbqabviIio\nujGUiIjIMBhKRERkGAwlIiIyDIYSEREZBkOJiIgMo+o6OhCV2sRFyT8HcC0AWQjRofr6bQC+BsAG\n4C8APimECJb9QIlMiCMlonRRAF8HcLP6CxNdJZ4H8EEhxBwAowD+qbyHR2ReHClRTZMkqR7xLQMu\nBxAGIIQQfwvg95IkzdR4yt8A6BJCHJ24vWHi+V8qx/ESmR1DiWrdBwA0CSGuAIActku4EPF2MAnv\nIN4Ul4iKgKFEta4bwFxJkp4DsB3Aryp8PEQ1jWtKVNOEEMcQ31b+twDeD6B7otBBzzsAZqXcvhDK\nTReJaBIYSlTTJEmaDiAmhPgFgBUA2gC0TnxZvZUEAGwDcK0kSRdP3F6GeJdnIioCdgmnmjaxDUhi\nKwwrgI1CiH+VJOlVxLeZ7wBwGsA2IcQDE8+5DfHqPCuAPQD+XggRKPvBE5kQQ4mIiAyD03dERGQY\nDCUiIjIMhhIRERkGQ4mIiAyDoURERIbBUCIiIsNgKBERkWEwlIiIyDD+H5VC5cYx/j32AAAAAElF\nTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "sns.jointplot('s10', 's13', kallisto_log2_tpm_expressed)" ] @@ -906,7 +2791,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 58, "metadata": { "collapsed": false, "deletable": false, @@ -918,14 +2803,44 @@ "solution": true } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py:892: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n", + " warnings.warn(self.msg_depr % (key, alt_key))\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGoCAYAAADmTPpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVNWdP/53rb1XQ9ELAgpi5IpoABOMDs4gmkkwI2pk\nJmYmBic6Gk0iGpz54hqJ8ashEUeCGdB8s8jgPDETYqJJBpOogz83RMFWWQ4oi0DTG91UdVd17ff3\nR3UVdW/dW0t3LbduvV/P4yO1n6qC+65zzueeY5FlGUREREZgLXcDiIiIEhhKRERkGAwlIiIyDIYS\nEREZBkOJiIgMg6FERESGYS93AwqIte1EVGks5W6A0bCnREREhsFQIiIiw2AoERGRYTCUiIjIMMxU\n6FBV/uelNzEctimuC/oH8aUrFsBms+k8iojI2BhKFcpqq0F93XjFdVEZ4AK7RFTJOHxHRESGwVAi\nIiLDYCgREZFhMJSIiMgwGEpERGQYDCUiIjIMhhIRERkGQ4mIiAyDoURERIbBUCIiIsNgKBERkWEw\nlIiIyDAYSkREZBgMJSIiMgyGEhERGQZDiYiIDIOhREREhsFQIiIiw2AoERGRYTCUiIjIMBhKRERk\nGAwlIiIyDIYSEREZBkOJiIgMg6FERESGwVAiIiLDYCgREZFhMJSIiMgwGEpERGQYDCUiIjIMhhIR\nERkGQ4mIiAyDoURERIZhL3cDqLhkWYbX69W8zeVywWKxlLhFRET6GEom5/V68dz/7kJ9fYPier/f\nhysuPhvNzc1lahkRUTqGUhWor29AQ6Or3M0gIsqKoVSlZFmGx+NJu55DekRUTgwlE0kEjd1+8mv1\neDyQIafd1+8fwgtv9MPtnpC8zucbwsXnTdEc0mNYEVEpMJRMZNjvwx9e2YOGxqbkdX293WhobEZj\nY/r96+qUw3o+3yBeeOMjRVDFr08PK1mOB51WUDHAiGi0GEomU1ffmBY0eT2+Ln3+SSus+nq7YbXZ\ncwowIPegyrdaUO/+DEaiysRQopxo9aqsVkdOAaYXVFq9LY/Hgy07jqC+Xtm103sOrfvn83rs8REZ\nC0OJCi7XYUGt3lZiuDGXsNO7f76vp9XjY8k8UXkwlKgk9IYF1b2tTMONes8x1tfT6vFpVSeyV0VU\nfAwlIg1a1Yn5zKMxwIhGh6FEpGMs82gMMKLRMUUoSZJkf/HFF8vdjJI63tcD2RFUXHdioA+eE154\nGk4uKdTf3wer1YaAX1mhpnV9pd3XaG2zyNHkdZ4Tx9OuS9z3Pw98iCbXyVDyePphtdgU1wFAMBjA\ngk+fjqamJlDuKunzuvTSS6cBOCKEiJS7LUZhSfxKq2SSJE0DcKDc7SAiGoXThRAHy90IozBFTwnA\nkZH/n17WVpTWAVTX+wWq7z1X2/sFqu89H8DJ4xfBJD0lAJAkSRZCVM3ge7W9X6D63nO1vV+g+t5z\ntb3fXHCTPyIiMgyGEhERGQZDiYiIDKMkhQ6SJE0BsAFAO4AYgJ8IIX4kSdJ4AM8AmArgIIAvCSHS\nN/nJzXcL0dYKUm3vF6i+91xt7xeovvdcbe83q5IUOkiSNBHARCHEu5IkNQJ4B8CVAL4G4LgQ4geS\nJK0AMF4IcWfRG0RERIZUkuE7IUSXEOLdkT8PAdgNYAriwfTUyN2eAnBVKdpDRETGVPI5pZETXecA\neBNAuxCiG4gHF4C2UreHiIiMo6Qnz44M3f0awG1CiCFJktRjh6MaS5QkyY54z4vLdRCRqVTb8a1k\noTTywf4awH8KIX43cnW3JEntQojukXmnnhyeZyWA+7Vuq7b174io4ilOnK2y45vmScOl7Cn9DMAu\nIcSalOueA/DPAFYBuA7A7zQepyCEWAlgZep1XPuOiMyAx7fSlYTPB/AVAO9LkrQD8WG6uxEPo19J\nknQ9gEMAvlSK9hARkTGVJJSEEK8BsOnc/NlStIGIiIyPKzoQEZFhMJSIiMgwGEpERGQYDCUiIjIM\nhhIRERkGQ4mIAAAejwfXX389Pv/5z+OGG27A4OBg2n26urqwdOlS/N3f/R0WL16MDRs2JG9bs2YN\nrrjiClx11VW44YYb0NvbW8rmAwAOHDiAq666Cl/84hdx1VVX4VOf+pSijbn493//d1x88cU477zz\nFNe//fbbuPrqqzFr1iz86U9/Sl7f2dmJq6++Gl/84hexePFi/PKXvyzIe6lasixX/H8zZsyYNmPG\nDPnw4cMyUblFIpGSvVYsFivYc/3gBz+Qn3zySVmWZfmJJ56Qf/jDH6bdp6enR961a5csy7I8NDQk\nf+5zn5M//PDD5OWEDRs2yN/5zncK1rbRiEaj8vz58+XOzs68HtfR0SH39vbKc+fOVVx/9OhRWQgh\nr1ixQn7hhReS14fDYTkUCsmyLMt+v19euHCh3NPTk+vLVfPxTfP9lnTtO6JyGR4exu23347u7m5E\no1F84xvfwGWXXYZLLrkEl112GV555RXU1dVh9erVOPXUU9Hf34+VK1fi2LFjAIC7774bc+fOxXvv\nvYeHHnoIoVAINTU1ePjhhzFt2jQ8++yz+NOf/gS/349YLIZbb70Va9euRVNTE/bt24dFixZhxowZ\n2LBhA4LBIH784x/j1FNPxcsvv4x169YhEolg3LhxeOSRR+B2u/H444+js7MThw8fTvZOvvrVr+Lo\n0aO44YYbMHv2bOzatQtPPvkkTjnllIJ8Ri+++CI2btwIAPjiF7+Ir371q/jXf/1XxX1aW1vR2toK\nAGhoaMAZZ5yBnp4enHHGGWhoaFB83lZrfCCmp6cH9913H5544om015w7dy6+9KUv4bXXXkNrayse\nffRRjB8/viDv5/XXX8dpp52W/HwOHz6M7373uxgYGEBdXR2+973v4fTTT0973Cc/+UnN55s0aRIA\nwGJRro5jt588jAYCgYK0varppVUl/WfiXxJUIC+88IJ83333JS8PDg7KsizLCxculJ944glZlmX5\n2Weflb/+9a/LsizLy5cvl9955x1ZlmW5s7NTvuyyy2RZjvcGotGoLMuy/Prrr8u33nqrLMuy/Jvf\n/EZesGCB7PV6ZVmW5a1bt8rz5s2T+/r65GAwKP/1X/+1vHbtWlmWZfmpp56SH3roIVmW5eT9ZVmW\nf/WrX8nf//73ZVmW5bVr18pf/vKX5XA4LPf398vnn3++HIlE5CNHjsgzZ86UOzo6NN/nQw89JF91\n1VVp/yV6QJnMmzcv42W1w4cPywsXLlT0kB599FF5wYIF8uWXXy739/dnfU1JkuTf//73sizL8uOP\nPy4/8MADafd57rnn5CuvvDLtPS1btizjc991113yxo0bk5evu+46+dChQ7Isx3tDS5cuzfh4dU8p\n4c4771T0lGRZlo8dOyYvXrxYnjNnjvz0009nfF6Vaj6+sadE1WvGjBlYtWoVVq9ejQULFuDTn/50\n8rYvfOELAIDLL78c3//+9wEAb7zxBvbv3w9Zji9c7/f7MTw8jMHBQaxYsQKHDh0CAESj0eTz/NVf\n/RWampqSl88991xMmDABAHDaaadh/vz5yba89dZbAIBjx47h9ttvR09PDyKRCKZMmZJ8/MUXXwy7\n3Y7x48ejpaUFfX19AOK/2PV+zd91111j+JSU1D2CVD6fD8uWLcPdd9+t6CF9+9vfxre//W08+eST\n2LhxI2699daMr2Gz2XDZZZcBAK644gosW7Ys7T6LFy/G4sWL82p7OBzGSy+9lOzp+f1+7NixA7fd\ndlvyO41ECrfg9sSJE/Hcc8+ht7cX3/jGN7Bo0SK43e6CPX81YShRVUgMsW3ZsgVr1qzBhRdeiG98\n4xsAlAffxJ9jsRh+9atfweFwKJ7ngQcewAUXXIDHH38cR48exdKlS5O31dfXK+6b+liLxQKn0wkA\nsFqtyQPi9773Pdxwww24+OKL8dZbb+Hxxx9PPiZx/8RjEgFYV1en+z4ffvhhbN26VXGdxWLBF77w\nBdx4442K6++66y7s3r0b7e3teOKJJzBhwgT09fWhpaUFvb29ugfVSCSCZcuW4corr8RnP6u9Stji\nxYtx0003ZQ0lNa0gfP755/HTn/407fqpU6dizZo1adcDwCuvvIJZs2Yl30MsFoPL5cKzzz6ruF8s\nFsPVV18Ni8WCSy65JO/2qrW2tuLMM8/E22+/jc997nNjeq5qxVCiqtDT04Nx48Zh8eLFaGpqwq9/\n/evkbX/84x9x44034g9/+APmzJkDALjooouwYcMG3HDDDQCAPXv24KyzzsLQ0BDa29sBAL/5zW/G\n3C6fz4e2tvjeluoD5mjk01N6+OGHFZcvueQS/OY3v8FNN92EZ599Fpdeeqnm4+6++2584hOfwHXX\nXae4/tChQ5g6dSoA4C9/+QumT58OAOju7saKFSvwi1/8Iu25otEoNm/ejC984Qt4/vnn0yregNH1\nlP7whz/g8ssvT15ubGzElClTsHnzZixatAjAye/0t7/9reZzJHpU2W7r7u7GuHHjUFNTA4/Hg3fe\neQdf+9rX8movncSScKoKe/fuxd///d/jqquuwo9//ONkLwkAvF4vrrjiCmzcuBF33303AOCee+7B\nBx98gCuuuAKXX355ssz3hhtuwCOPPIKrr74asVgs59fXGwr75je/iWXLlmHJkiVlH+658cYb8frr\nr+Pzn/883nzzTdx0000A4oH+9a9/HQDwzjvv4Pnnn8ebb76ZLL1+5ZVXAACrV6/G4sWLceWVV+L1\n11/HPffcAwDo7e1VFAOkqqurw/vvv4/Fixfjrbfewje/+c0xv4/h4WG8/vrr+Nu//VvF9Y888gh+\n/etf48orr8Tll1+Ol156SfPxP/zhD7FgwQIEg0FcfPHFyd7r+++/jwULFmDz5s24//77k0H50Ucf\n4R/+4R9w1VVXYenSpfiXf/kXnHnmmWN+H9XKkunXQKVI7Dfy4osvKsbkibJJ9A7GjRtX7qaY1tNP\nP41JkyZh4cKFabfNnTsXO3bsKEOrDEN/4m6EiY9vZd/kj8hwMk3mU2F85Stf0b2Nnz+pMZSoqplw\ni+mKsn379nI3gQyGc0pERGQYDCUiIjIMhhIRERkGQ4mIiAyDoURERIbBUCIiIsNgKBERkWEwlIiI\nyDAYSkREZBhc0YGINHl8Iazf1IHufj/a3fW4ZclsuBqc2R9INAYMJSLStH5TB17t6AQA7Dt8AgCw\nYum8cjaJqgCH74hIU3e/P+NlomJgKBGRpnZ3fcbLRMXA4Tsi0nTLktkAoJhTIio2hhIRaXI1ODmH\nRCXH4TsiIjIMhhIRERkGQ4mIiAyDoURERIbBUCIiIsNgKBERkWEwlIiIyDAYSkREZBgMJSIiMgyG\nEhERGQZDiYiIDIOhREREhsFQIiIiw2AoERGRYTCUiIjIMBhKRERkGAwlIiIyDIYSEREZBkOJiIgM\ng6FERESGwVAiIiLDYCgREZFh2EvxIpIk/RTA5QC6hRCfHLnufgA3AugZudvdQojNpWgPEREZU0lC\nCcDPAawFsEF1/aNCiEdL1AYqA48vhPWbOtDd70e7ux63LJkNV4Oz3M0iIoMqyfCdEOJVAAMaN1lK\n8fpUPus3deDVjk7sO3wCr3Z0Yt2mjnI3iYgMrFQ9JT3fkiTpqwDeBnCHEMJT5vZQgXX3+zNeJiJK\nVc5Q+g8ADwghZEmSHgTwKIAbsj1IkqSVAO4vctuoQNrd9dh3+ITiMhFp4/GtjKEkhOhNufgTAM/n\n+LiVAFamXidJ0jQABwrUNCqgW5bMBgDFnBKZE+cPx47Ht9KGkgUpc0iSJE0UQnSNXLwawAclbAuV\niKvBiRVL55W7GVQCiflDAMneMb97ylepSsL/C8DFACZIkvQx4t3ThZIkzQEQA3AQwNdL0RYiKg7O\nH1IhlCSUhBD/pHH1z0vx2kRUGpw/pEIod/UdEZkE5w+pELjMEBEVRGL+8P4bLwQArPzJG1i1YRu8\nvlCZW0aVhD0lIiooFjzQWLCnREQFxYIHGguGEhEVlLrAgQUPhSHLcrmbUBIcviOigmLBQ3EMDQ2V\nuwklwVAiooLiCdM0FgwloiIp9bI7pXw9LilExcJQIiqSUlehlfL11K+152A/1tyxkMFEY8ZCB6Ii\nKXUVWqbX8/hCWLVhG5Y/tqUg5w6pX6vPE+BeWUXGQgciGpNSL7uT6fXy7UVlG55TvxbA0m8qDIYS\n0SjkMqdS6iq0TK+Xb68tW4jdsmQ29hzsR58nkLyOpd/FZbFUx0bdDCWiUdA7aJezACBT1Vu+vbZs\nIeZqcGLNHQuxTvVeicaKoUQ0CnoHbaMusZNvry2XEEsNQY8vlBZQLHqg0WAoEY2C3kHbqEvs5Hvu\nUL4hZtQwpsrDUCIaBb2Dtln2FMo3xIwaxmbS2NhY7iaUBEOJaBT0DtrVusSOWcLYyFjoQER5q9Yl\ndrTCmKs+0GgwlIhozLTCeNWGbZxnorxxRQciKgrOMxVWtazowFAioqLgvkqFxa0riIjGoFqLPmhs\nGEpEVayYxQjVWvRBY8NQIqpiWltQjHfVFiSgWH1Ho8FQIqpiWltQ9HkCBamW4yoPhcVCByIyvUzF\nB2OtlmP1HY0Ge0pEJuHxhbD2me3Yub8fMmScNdUNu82Cfm8wp+01BryBgm5FwVUeCosrOhBR2eUz\nL7N+Uwe27uxOXn5nT0/yz3rDZ6nFCF6Nlb7HgtV3NBoMJSIDU8/L7Njbg7kz2jTDKdvw2I69PVj+\n2BbdcCt0tRyr72g0GEpUEKy0Kg510PiGI8mQUh/wtbYoVz923+ETyfvcvGQ2v7MKUi2FDgwlKohq\nrrQqZiDrBY1Wr+iWJbMRjkQ155SO9fkwNBxWPL6avzMyLoYSFUQ1V1oV8+B+7aKZ2HOwH/3eAGIp\nP5T1doK99/oLNJ8ndXHUxONL8Z2xB104LHQgykM1V1oV8+C+cfNuRUVcY50Dc2a04iuLZmLVhm05\nH+y1ig7Wbeoo+nfG3hjli6FEBVHNlVZagTyaHsKRniHct/41DPpDaKp34sGb56cF3CktDVixdF7a\nthDv7u3FnBmtuq+jVXRQiu+smnvQNDoMJSqIaq600jq4/+iZ7cny7H2HTyAcieoOrSUC7I33jyE6\nMkYX9ARw7/rXcNY0tyLwjvX5sGrDNnT2KleMHhoO49WOzryWCSrFd1bNPehCY6EDEeVE6+C+c39/\nxsupUoe4Ug36Q8nA27G3B77hSDJ8WpprNZ+rkMsEFUI196BpdBhKREUgQ854OZXekFZTvTMZeMsf\n26LocTQ1OHHWNHcyrPJ53lKq5h50obHQgaoOK6UK55zpLdi6syt5+dzpLbr31Sr7dtqtePDm+br3\nmdzaiBVL5+FozxDuHZmHkmUgFIkpHqOF3zMZGUOJklgpVTjLrpmru2SPOhSuXTQzrccz9RQXJrc1\nJi+nDoO5XTWIRGJY/tiWtPXqWpprFXNKWvg9k5ExlCiJlVL6MvUu9G7TO9BrhcLcGW1p5xGlSh38\n++iIRxFEqca7avHo7Qsyvhd+z5WJhQ5UdVgppS9T7yLfnodWKKy88cLkn7V6OXrFEGoTXNoFEKmy\nfc8c3qNyYihREiul9GkFSeLgvW1XV8b7qmmFQraCgFx7M+992ItVG7ZlDJJs3zOH94yJhQ5kSMX8\nFctKKX3qIBnwBrA25Vwk9X0TUr8vt6sG4agMcbAfNqsFTocFsz/RllP4662BZ7Nakuc2AYA/GNVd\nsDUh3wDk8B6VEkOpwvBXbHncsmQ29hzsT87l9HkCCISiivtYLEB9rR3hSAxeXwiuBifWPrNDUYWX\najgow263wtXgTAsvCyw47g0kf3ioXz+hrsauWGg1YSxBwmFcKieGUoXhr9jSUfdKmxqcilBIOxdJ\njm8PsXVnF9Zt6sCKpfPwwf6+jK+R+P705oxSf3isuWMhblv9sqINs6a74bDb0qr3xhIkHMY1JhY6\nkCG5XTUZL1cqI06uq3ul6lUUzp3eArvdiqO9Q/i4a1AxjJYIGwsyzwMk1snbIXp075O6Od+DN8/H\nxs270z6nQu4ay2FcKieGUoVRH+SyHfQqhRGHJdW9UNfIKgrqQFi1YRsOdHoV9030VGZNd2vOO1ks\nwPlntydX6/YFtFdlANI351uxdF4yxFf+5I1kW/SuL3e4U2Gw0IEM6bg3kPFypTLisKR6bmXSyCoK\nauq2NtY5kj2VZdech3WbOvDu3l7F3M/8T05KPpfee22os8MCi+Jx7+7thXckeFJDfM/Bfqy5Y6Eh\nw50oHwylCmPESehch94y3c+I7yvXuRV12+fMaE2+r8SAXuv4OtQ6bXA1ODGptVHxXHqVdZFIDE31\nTkUoDQ2Hk8N0qfo8Ady2+mUM+kOK640Q7kT5YChVmNFMQhd7vkbrV7vW9gmZfsUbcXI9dW7FozFn\nk3hfibYe7R3CoC+Ezt4hPPizrQBkfLD/eNqCqTabH+s2dSSf45YlsxGJxLBtd7diXioYjiHoCaSV\nfSfaoA4yrVUejBDuVBgsdCBDyjQJrRc+xR7S0frVrrV9QqYhOqNPrmt9hjcvma34vNvH1+NApxd9\nngD2q+aYElI/m3AkiluvOQ/rN3XguDeAT89sQyQSw/a9vch0/DnW54PbVYvxTU4MDIZ072ezWhTl\n6USVgKFkInrhU+z5Gr3hJ/VrGXGILldan6H6826oy++f0879/Wml4C3NtWmBlNpLAuJDeFt3duGC\nWRNht1vR3e9PW5g18bjU8nSqbCx0KCBJkn4K4HIA3UKIT45cNx7AMwCmAjgI4EtCCE8p2mNWeuFT\n7DBIHXpTHxxTX8uIQ3S58PhCGFAVlLS769M+b3+GCjotMuS051DPCWVy3BtILr7q9YXSzmFK4LwS\nVZJS9ZR+DmAtgA0p190J4C9CiB9IkrQCwF0j11EGWtseJM5b0TpwAsBXFs3EnoP9GPSH0FTvxLWL\nZha0TalDb5nOlzH6EJ2WIz1DuG31y4p9ilqaa5Ol3Klhn+jhNNTZce70FsiQ0e8N4tAxr+LxCaFQ\nFB8dUfYwI9Hc5w1SA9/V4MSaOxZi3aaOgp5IS1RqJQklIcSrkiRNVV19JYDEGvtPAfhfMJSyUg8Z\nvbWzK+2Aqd5P5+nNu5O/oIOeADZu3l20cKjE4MnkvvWvpQXKeFdtskABALbt6kIwfPI+k1oacc/1\nn0levm31y5pzTGGNAFIP1ak11NoxqbVRs6eZ+OwLeSItGQcLHYqvTQjRDQBCiC5JktrK2JaK0dk7\npLisdcBU76djxHOA8lXqFR8Sr3dcYziss28ouRL3iqXzsGrDtox7IbWOr9ctfNBjtQB2mxXhaEwx\nxzRXalNUBK7asC3tMzHbDwOqLkYqdKiOnwFj5PVlnnNILFuTegBXL0VUicM5haggzCfYMu1f5BuO\nKFbizj5Xlv9f7Zic/oMjMWyo1UaeKGt+LHQovm5JktqFEN2SJE0EoL/4VwpJklYCuL+oLTOwulo7\noCoHUQ/ZrVMdrC6YNREXzZ5U0cM5hejt5VLWnQiqXJ4/cZ9sPZPegeG066yWePDkIzFsqH59vctU\near9+AaUNpQsI/8lPAfgnwGsAnAdgN/l8iRCiJUAVqZeJ0nSNAAHxt5E4xtWVXg57VasuWNhxoNV\napVWpSpEBWEuZd1AvLehfr3GOkfaFhFavdJblsyG1xfCPetexcBgUPd8o7kzWnGoaxCD/hBkjV6R\nFrerRjFcl744b63mcB5Vjmo/vgGlKwn/LwAXA5ggSdLHiP8S+D6A/5Yk6XoAhwB8qRRtqXQu1fYJ\nU9oa0/bjOe5R/jI/7hmu+BMoC7GShVu1VbhWWXdnb3y+6GjvEFqaa5PLAoUjUcXCqqkVeKmhFo5E\nsV30IBzR7wbZrBb0DwZx1jQ3rlxwBh76+VaEB0OQEV+oNTXIbFYLTpvYhMmtjRgOhJNt2Hf4BD4l\ntSp6wOFIlMN5JsZChwISQvyTzk2fLcXrm8mk1kbFpPmk1kYAmedA+r3B5AmURtwiIhejmbxX94I+\nM6s9bRhTXdbt9YWwv/Pk53jGlGYA8SG4luZa1Nfa4Q9E0NTgxLpNHTjUpSxg+OCj4xkDCYhX2B3o\n9OJApzftO7NZgNSHX3juKcn3/Y/3/lFx33f39WHDykXJ72/5Y1sUt3M4jyqRkQodKAdXLjgDb+3s\nQjgSg8NuxVULzoDHF8K7e3szPk5rMzmz/5pWH5T7vcG0YUx1D+xo75CiJ/rWrm5Fz8XpsyIUiaHP\nE8CBTi+cdqvi+dS70eYrEosPycqIj3V/3OVNVvqpNxWMxmSsfWZHsvw80xBnpf4YoZNY6ECGtOqp\nbcn5h1Akhu8/tQ1nTXNrbomdKnGAGsvkeCkObIV6Db1VGNRcDU5FscOgqrpRPWKinvtRX852nlEu\nUp/z4+4hfNwdPw3gnOktaVurv5+ys22mIc5q+jFClY2hVGHUB9oBbyBjsKRuJgeMrWCgFAe2Qr3G\n+k0dih6Pupw61dpndqQd7I2mu9+PlTdeiKUrNyuCL3WTx0xDnKzUo0rBUKow6h/iMTnzgqipm8kB\nY1t/bjQHtnx7PoU6eKofpy6nTvVBSm/DqNrd9XA1OPHpmW2KgotYLJYc3sv0uVbyYrgUx0IHMiT1\nX0sZ8aBR72xa47Bi3tkTdZeiGY3RHNjy7fkU6uCZXi5do3PP0m4pr94bSa2+xob6Wgca6hzwDYfR\n1ODE5JRNARM72SbWt/MHo4oTefVk+zHCOScyCoaSCazb1JE2CV5fa8e7e3tx08N/xjnTW7Dsmrlp\nB5l8D0Sj6WXl2/Mp1Eri6qDJFDyzprsVvY9CyvUk2dQfEVrfk3otu5U/eUMR3tk+12w/RjjnZHws\ndCBDslqBmOo8y9SyYosFcNisis3f1HvqJMIotXeVy4FoNL2sfHs+eq+RS4Cm3udYn09x23Fv+hp2\nCcuuOQ8/emY7PvjoOHx5bj+RjTqP9HpJ886eqPvZagVGoYfjOOdERsFQqjAOmxVBdSql0Fsd4PX3\nOvGP9/4Rs6a7YYEFb2pM7BfjQFSonk8uW65nOldL76CdCLJ+bxBzpTb4AyFsF4WZY3LYLJorgSdY\nLfFlo86mmpdzAAAgAElEQVSd3qL7uXh8IezYq1yBa8feHrSNr1ec3Kv1+Hx6wpxzIqNgKFWY1C0S\n8hGTEzuWduvukFqMA1GhVqzOtOV6OBLFvddfoBuqepV36r2S9h0+AberBudJLejYd3zM5d3qQFKv\n1uBqdGLQF8bWXV0QP3wRD3/jrzG5rVHxmPWbOhR7IwHxBWEPDMdP2j1rmjuvHpbefSt1A8ZqMjg4\nCFmWTT+MZ81+FzIb9fxKQ50dF82elPPSPas2bMPyx7Zg1YZtWVctz5fe82cKzJ37+zPeZ9Afn5NR\nt1Vrr6R+bxD1tU48/m+XwFbofx0ycN5ZbWios8NmteDEYAjRmAxZBgYGQ7h3/WtpD1EHrfp4lKl3\nm8+QXOLHw6O3L8CKpfNY5GBAb37QBa83vy1QKhF7SianVe01a7obDrttVJVW+ay0PRp6v+5Tf8nv\nP+pRvKdEkcctS2Zjz8H+tC3Bg+EYXu3oxFs7uzC5rTFZzaa39fgb73XitY7OvDacsFktiMXU5SZK\nMoCOvb26PTCt9qiH1Rw2qyJIM4U1h+TMpb6+Or4/hpLJ1Tptisn7hlo7vnb5Odi4eXfWx2rNSeSz\n0vZo6P26Tx0GvP/J17FdnFxW6azTxifbqhc0QHyuLbHm3J6D/WiocyAYDqbdL48dyZM+PbMdFgA7\n9nYhmGFxjUxDgrU1dnztgReS29Y/ePP8tKANRWKauwtr4ZAcVSKGkgmc1t4IfyACV4MT45tqcOCY\nN36OS70Tp01sUhzA50pt2Lh5t2pl6/g6euqejlbYaJ3/U8jKrVx+3TvtNsVlh92WschBi7o3NVo2\nqwWzprux9+N+RcXjaHiGTj4+6Ang3vWv4eff+TzGu2oV7dXaXVgLd6ClSsRQMoEf/59Lk39etWEb\n+r3xX/9BTwAxWUZjnQMy5GSV18qfvKF4/Af7+5KT6ak9Ha2wmaDa/sECS1qQDHgDWP7YllEN5eXy\n615d3v3B/uMIR5QLoaqLCophXFMNPINBvPfh8aI8f6LXx2E4AoATJwaqYlUHhpIJXPfdzXjolosw\nua1Rc2XsBLvdCleDM+0gpy58SDyH1sFQ/fzbdndjSlsjWppr0dTgxKAvpKiM0yrdziSX85TU6/9p\nLUZ7/tnt+OiIp2A9Ii0nBtOH/jJpqLMjEonlXEHZVB//rDgMRwAQi41tBfpKwVAygX5vELeufgm/\n+M6itI3sUr3W0YmvPfAC7rwuftBP3RwudUWDxC9xrYOhev+haEzGoa5BAPHy5G6bXxEEytJt7WHC\nbDy+EG5f/XLaAqvjXbXo7B1SzJk5R4K3Z2AYZ0xpxiemjMP7H/UV/KTY0ahz2hFANKdQsliAB2+e\nD4DDcBTndreYvhwcYCiZRjgi4yvf+Z+M95ERD4nvP7UNP//O5wHED/iPP7MDDXV2WBCfH0mEkXpb\nh3WbOnDtoplp6+wlJMJGb3HYt3d3Jyf68ymIUK/4DZycV/naAy8oAiccjSWD8ECnFxfNnoSYPLpz\nuwrJZrXk1Ws7/RSX4pwljy+Etc9sx879/ZAh6y4dpYXr2lElYShVIe/IuUCJobDUg6XDboMMaN6+\n7/AJ7NjbgzqnXTOUUoeWtJ5bXXmWa0GE1v0Svbkm1fbw6iH3bbu6Rn3CcSHV1Wh/ZnoSOwonrN/U\noejNqpeOUlMPd6Z+h4A517Vj+JoDQ8nkHHYLICtXFwhFYrqVauoSbzXfcAS+4QhammtRV2tH9/GT\nJdvXLpqpGGry+kK46eE/p61IkDDgDcDrC2U9cKh7X6krNExubcSBTv0TCssdSI11DsyZ0Zo2RJqN\nPxBWfDZawZwp1DN9h2Zd187si8qeODEAj8cDl8tl6mE8ruhgcvYs66+paRUzaBnvqsXUiS6EIrHk\n9uAbN+9WrMiwblMHzpneonhc6vbhfZ4A1m3qSF7WW83hliWzcdHsSTh9kiu53ltihYZblswu4cYT\n+XHarXjirs9ixdJ5WHbNebho9qS0FRn0bBe9is9Gq+IuUxVepu/QrNV7Zl9U1ul04n+3HzH9qg4Z\ne0qSJDUDuA9ADMADAG4BcC2A9wEsE0L0F72FNCY2qw3xr0+f+mRMdTGDzRo/kqYOv2mF1469PXj8\nmR3JxV4Tz+G0W3FKSwMmTqjHBx8dV6xI8GpHJwbXvYbaGptile59h0/AH4ygvsaO7n4/3K4aeIaC\n6PcG0ecJYP9I72jF0nkY76pRVBkWk8NuQTiSW8hLU5uTf070IL909/MYDiq/j5bmWs35ptTP95Yl\nsxGORJNzSpkWcQW0e5e5nHBbycxeOj+hpR21deZ6T1qyDd89CeAoABeA5wDsBnATgCUAHgOwtKit\nozGxAAiGMled2awWPHjzfMWkeuKglShoSISR21WDYDgKCywIR6JplX6+4Qje19jFNRSJwTcchsNu\n06yC6/hQe1Xud/f2pG3Tkaq73w+PL4RgqHSlsudJbXDYbbrFHqne/2gAP3pmu2JJpxqnHcPBkyfJ\nul01WHPHQtymqi4ElAdVV4MT915/Qc7t1KqcNPv8CkvnzSFbKM0UQlwjSZINQDeAvxVCRCVJegtA\nR5bHUpnJSF+pWi0ak/GL3+/EPdd/Jnld4lf98se2KH55BsPR5PzQ1p3d+MysdjTWORQHZ73N9Ab9\nobyHUzIFEgC46h24ffXLaUHntFs1t+8ohK07u2FBfF+rXLy9u0dRcZjodSaMa6yBq8GJNXcsxI9S\nquuy9YSyGcu+VJWKpfPmkC2UIgAwEkSHhRDRkcuyJEnlL2mivGltEqjVuwHSh0P8qoN/vzeIOTNa\nFRPqicVe33j/mGK4r6k+/aTdsXrvw7600G2sc+CRZX+Dn/9+p6IEvZBkANEc//arX199OVFll29P\naLTMXgxgZgP9x1FTNwxZPq3cTSmqbKEUlSSpVggREELMTVwpSVJDkdtFRaLV+9Dr3SR+qe/Y2wPf\ncCSt3FpdAp76y/tozxDuXf9acnHRO6+bh/9+cS8a6xyIxWQEQ5Hkwqd1ThsCoahihe3GOgdsNsAz\npD9EptULnDOjFZPbGuGwW4sSSIXUWOco+RCT2YsBzCwWiyAWLf9J4MWWLZQWA9A6KowHcEfhm0Pl\nMGu6W/N6vWG8GocV886emAyg1G3Wf/TMdrz/YR+C4RhqnTbMmdGGZdfMxTrVeTb1NTZEojJCkRiG\nNeaE5sxoxbWLZuLe9a9hwBvIaeVup92qCMlCynUtvZbmWkRjsZwWZ50zo3XMQ2f5DsdlKwYw8/Be\npUsUOpi5HBzIEkpCiPQ9s+PXHwFwpCgtopKxWS2YN7Md110+K3myrNaBSF3Q0DDyC199sFKf4OkL\nRLB1ZxeWrtyMGodyEsYfTA+ihjo7JrU0ot1dj2sXzcTPf78Twyk9qmzaJ9Rjnc76eGN1alsjjh33\nZa28G++qRSAU0Q0lp92q2NNprPIdjstWDMDhPSq3UZ88K0nSk0KImwrZGCo+h92Caac0K8Jn1YZt\nGQ9E6hW4+71BzdUE9Hon0ZisGUJqvuEI9h/1oKnegV/8fie27tT8TaTrWO8QDncPJS9rbXCox2IB\nIEN3kz5/IIJT25qSpeh6BrwBDGRYqDUUiWFya2PBDvT5DsdlKwbg8B6V21hWdFhUsFZQSbhdNcnV\nxBM8vhDe3duruN+2XV1YtWFbMrTExwNpz6W39E+mQoaGuvhfN70VHoB4gG0Xvairyf+87rEU3NXX\n2DMu2trnyRw2Ngtgs1lzWt+us3dI8/rRDJ0V+twcs5/rU8kShQ4ezzhTr+qQ7eTZHp2bLADGFb45\nVEwDg0H8319sxdSJLsVGfurzbRLbhwPxHpNWIYTWweqWJbPhD4SwQ/Rp9jjqnHY8ePN8bNy8GztE\nT8YQUJ9gOhr5FDoMB7NPIGd6vhqnHf4cngNAcqUKtdEMnRX63ByjnevDOa6TYrEIamriqzpc2dyM\n5ubm7A+qQNl6ShYAlwLwaFz/WlFaREUjy8Dh7pNDXFob+aXasbcHyx/bAqfDCgyfvH5ckxPhSBTf\n/MGL6EpZ++7Bm+ejvtapOwSWWIpIq3ii3PIp1LNa0u8fDOd+Am+TzkF1NENnhT43x2jn+nCO66QJ\nLe2Y0DoRvqEqXmYIwNsAWoQQ76lvkCTpaHGaRKWgt5FfKt9wJHlb6jI1WouL9o1s3z1eVRRR47Aq\nFkXN5XVzUVdjQygcK0vZd0xODyan3YLhUG5tGfSFFDvzyogffDv7lMN6HDrjHFc1yhZKVwJQ/ASU\nJMkJwC2EOL9oraKic7tq8ODPtuKDj/pgs1rgdFhw9rQJcNhtOO4N4FifTzGsl9i/yOML4esP/Vnz\nOfu9AUw9xaW4Lqaqo06sDK4eJhoOhPGOUM5tZVJXY4fVGs04P1VMFlWNeCgiJ3ffndzaiO17utOK\nOxrq7HDarYqND3cdOI4zTx2nCPnEyuKJz6iah7A4x1V9spWEhwBAkqRfAvg6gBDiywu1SJL0kBDi\nkeI3kQqpxgHMO3sSIpFYcuFUABgOyjhwzIszT41PFdY6bYpQOtbnw6oN2xCJxHTngmIysP+osvej\nLqHu8wRw2+qXk72ulTdeCK8vhG/98CXF/bJVzg14g7rDhKVQ61Su4xeNyejzBHDWNDdWLJ2HB3/2\nZlpvclJLY1qRQ783iJ37lesan9LSoBiiquYhLKPNcZXTQP9xyLBieNhn6lUdcq2+k4QQHkmS/h7A\nSwCWA3gTAEOpgtisFqxZfgkmtzVi+WNb0m7v9wYVB9KW5loMh+L7Jw0Nh/FqR2eygk7PiRxOGk3t\nKQDAnoP9aQFU47BlLBwoRyDZrBbU1thw7vQWyJA190fq7B0a6YEeT7ttgqsW+4+qp2cBWfVu1L2B\nah7CMtocVznFYhHEYmHTr+qQayg5Rv6/AMAfhRB+rn1XeaIxGXf9x/+Hx//t0pzmdIaDEbS563Fg\n+OTEqt6SRAn5hkV3vx+eofQy6lwr2UrBabdirtQKCyw47g3Abrfiqr85Ax8d8aDfG1DMLXl9Id1z\nmWTIaT0sADh3egvsdqtub0D9XbldNRlPdiZzSi10MGs5OJB7KO2SJOl/AMwEcKckSXVFbBMV0cBg\nCLes+gs+MaUZDbWZz83xBSJpu7rOmu7GW7u6c1pyZ3yTE9JpbvQM+HG4Z1BzNYR2dz0OdnpQnr5P\nOofdikg0pnh/0ZiMfYdPJPdsSswFpe7hlOhFZSot7/cGcc4ZExQ9LLerBrdeMzdjqKiHsCIpOweP\ndTivmueryJhyDaXrAHweQIcQwidJ0mQAdxavWVRMXl8Y28XJlcHHNzkRjsjwB8JZS6O37uzOeffU\nUCSG494AJrU2orvfj3BEecB2u2pwtHcI0VwSrkjUa9qFNc7AjcbktE0E1ZejMTlr0UXqJorxjQtr\nAchY+ZM30irx1CGRGjrqodexDOdV83wVGVNOoSSEGAbw25TLRxHf/I9MIByRs25YlyrXDEmUlGvt\nIwTED+yl2jFWj90KfOacSdi2q0tRuj5WNqsFtU4bnA4rxjXVJte6SwSMxxfC7Skb+6UOz2ULiUJW\npFXzfFWlSS10MPOqDmNZZohMIpfVDHLltMeXB4rGZGXxQhl7Q5nE5PgOu5FcV30dobUvVarpk5vx\n6O0LdG9f+8z2tCWJtAJB67pCVqSx5LpyJAodzL6qA0OpSqWWXBfqBFSb1aK742tUzn37h1KKxpBX\nLxEAPiW1Ys+hgYzzcdm2hNCqzks8JltIFLIijSXXlSNR6ADA1Ks6MJSqVD5BdOaURnx4dChroGR7\nTlk+OX/lC4QNF1C5OtQ1mFawkKqluTbrlhDq4Uyb1aJ4TKlCgiXXZDQMJcpqQnMjHv32pfi/P9uq\nOOF2NLy+sOF3hM1m0B/CsmvOw7pNHXh3b29aT2vQH8K6TR2KSjb1MJy6NHzezPbkfSs9JFjRR2PB\nUKKsduztwaoN29LWZhuNSg8kAGiqd+ruygucXGV9z8H+5MoVTfXKf2rS1HGor3WactiMFX3FkSh0\nAGDqVR0YSpRV4iBrwkKfrNTLHTnsFkyd2ITlj22B21WL455h3cemrlzhdtUobnPa7XkdqEfb+yhH\nr4UVfcWRKHQAYOpVHRhKlLNKnQMaC7tNGUqxGHQXjnXarbqFHj7VEF/3gD++HNH+Plhgwazpbiy7\n5jzdwBht76McvRZW9BWHutDBjOXgAEPJ1GxWC6ZPbsaAN5DTjqjVIJ8t0oH4UF0w5bPL9NjJbY2Y\nPHKisPozVz/PoC+kWC1j685uzS3mE0bb+yhHr4UVfTQWDCUTi8ZkRKMxnDGlGVNPceHdvb05H5Dd\nrpqyn9haDLVOG2qcNt331lBrR12NPbkFxbWLZmLj5t3o7venbeehNrm1MRkqXl8ouXJDu7te8Tzt\n7np09g7ldJ5Swmh7H+nr5tUWfd08VvTRWDCUTG5/pxf7O724aPYkbFi5CDc9/Oec9iAa9AXz7lVU\nAl8ggnPPOLkAqttVk1xoNfUgnZiLWf1f76DdXY/l//Qp3Lf+Nd1QSpSBq+dwVt54oWZV3aoN29IW\nbs0UNKPtfagfF45EWYRQoVjoQKbS2TsEV4MTc2e0JQ9KmcR39zZXICUc9wYyrrYApM/F7DnYr+jZ\nOGwWfPLMVnh9IUWYrdqwLaeD/i1LZiMSieH9lDmlTEEz2t5HMdfNo9JioQOZyv5OLx782Zv4+0tn\n4I33j2n2gFqaazHoDxV0DTgjymXo66hqMz719hrhqIy6GjtW3nih4vpc53BcDU7cc/1ncmluQbEI\noXKx0IFMZ+vObnx0xKM7JBcIRWG3W00TSnYroC6Ga6iz5zT0NehTblZosVgBKJ9MK3CMftBPHc5z\nu2oRjkSx/LEtPMmVDIOhVGWOe/Wr8PJdA87obDYrIqpVU+fOaEseeLXO4UlsHeFRhVLLuDoEQhFF\ngYSr3pFWNHDtopnYc7Afg/4QmuqduHbRzKK/z3ykDuflOtRIVEplDyVJkg4C8CD+MzQshDi/rA0y\nOfW5RnZrfLFUM56DFFO9KberBv5ACP947x8hQ0aNw6bYuG/PwX6cMaVZc0273gE/zjurTXHbgWNe\nxeMTEnNPQU8AGzfvLviBvlAnxPIk18rCQofSiQG4WAgxUO6GVIuGOjsmtTSa/vylcERO7gh77vQW\nyJAVoaKuQuzzBBAIRbWfK5q+0V/aCbE5bj0xVvmeEJsIsaO9Qxj0heBqcGJSa2PaKhPlGGrkOnm5\nq5ZCB2u5GwDAAmO0o2rMndGGR29fgKYq+Mef2BHWbreis8+X9f7+oPYQps2aftBuqld+fu3u+rT7\nFONAn28PJxFiBzq96PMEsL/TG182ChZcNHsSzjx1HC6aPaksJ7km2rbv8Am82tGJdZs6St6GSjGh\npR1t7ZPR1j4ZLa3tLHQoIhnAnyVJigJ4Ugjxk3I3yIwsAD5x6jjF5PbRnrEvsFopjvYOoft4+sFb\nvceT3sZ9TQ01aef8qE+ILdXWE/kWU+iFVi6l8cXGIURSM0IozRdCHJMkqRXxcNothHi13I0yG6vV\ngnZ3PSKRGN7U2QfIzNTVdEB+mw4GQ/EelHqYLHHZo1rBIfWk2ULL90RadYilXl9uRq9WpNIreygJ\nIY6N/L9XkqRnAZwPQDeUJElaCeD+0rTOPKIxeWTIpjr5Aun7OOVT3DEcjGVcm27tMzuwdWSvqX2H\nTyASiRXtPKR8T6RNhJZ6TskIa9JxnTylTMc3FjqUgCRJ9QCsQoghSZIaAHwOwHczPUYIsRLAStXz\nTANwoDitNBcTFtnlZDioLGDItKK31QLU1dgxHIwgNcfUJ9Sm+mB/n+Ly+6rL5WTkteiM3LZyyHR8\nq5ZCh3L3lNoBPCtJkjzSlqeFEH8qc5vI5CwWwOmw6YbSX31yElYsnYevPfCCojpRawgw+ZyqPqj6\nshHlU/nGKrny44oOJSCEOABgTjnbQNVHltNPFLYg3juyWi0IR6LYc7AfA4PKEvBMB+FZ092KcvNZ\n090FbXMxQiGf0nLuJkulUu6eEpWZ3WZBJGr8QT2rBbDb9IfcRiNxvtbJApD4nNDWnd3YIdK3+fD6\nQrpL8iy75jxFoUMh5kZSgyj1nLJ9h08gHInBMbLS+WhDKp/KN1bJUakwlKpcJQSSw2bBp85qR8+A\nHwODAXiGQijUjhqJA/p9619TXK8Vfqnbm+852I81dyxMBkEucyP59nZSeydqH+zvS578O9qeSz6V\nb6ySKz91oYPHMw4ul8t0w3gMJTK8cFRO9mIKyTccwasdndh14Hjej+3zBDJW42nJdwgsU29EPWc1\nmp5LPpVvY62S45zU2KUWOtTUOPG/24/gyuZmNDc3l7llhcVQoqrX7w2irka5qEj6muDpcgmC1INx\nZ5+yei/b49W9E6fdmtxyPRyJKuawRtNzyafybaxVcpyTGrvUQgcgXuxgRgwlIgA2qw2pMWSxWpBt\njDCXIMg0BJft8bcsma3YXDAUiSW3XFdvt56t51LungrnpChXDCWqKPmswpCPWdPdcNht2LG3B77h\nSLLIwWa1oNZpQ43ThoY6B4YDkbxOPlUffBvrHDilpSGnIHE1ODHeVasoS088n6vBiZuXzE4GzbpN\nHRmDZrSLuBYqxDgnRbliKFFZWK3AtIkutI2vRygSwXaR28mmxQikcU1O9AwMY3JrI9rH12P/8Mlh\nkWhMhi8QgS8QwdmnTxhzMUHiulwP8pkO5vkEjToct+3qwqoN23TbUejhNq7cMHaphQ6AeVd1YChR\nWcRiwPdung9XgxOrNmwr2utYR+oBMo3EnRgM4cRgCAc6vWhprtW9Xz5DTomeRmfvEFqaa+ELhDAc\njGFoOJw82OdykM90MNcbEtPq5ajDLRiOZWxHoYfbuHLD2KUWOgDmXdWBoURls/rpt1Ff68C2XYWv\nrEvIt3S8qcGJs6a5084NArIPOXl8Iax9Zjt27u/HcDCiOM+psc6B1DmrXA/ymQ7mer0orV5OIsy2\n7epSbHev145MPbRyz09VK61CB7OVgwMMJSqj7aJX9za7zQJZRtoJrA67BeFI8c6tShQSAMi7mGD9\npg7NXWsBQFatOliIORW9XpRWLycRbqlboAPx3XjVW7q7GpwZe2ispKNiYiiRIaWe1GuzWlBXY8es\n6W6EI9Gc558yaWmuhW84hOHQyV6DzQpcu2hm8rK6l+LxhZIHcLerBhZYcNwbSB60M/V+zp3eArtq\nBYax0utFZerlqMMmEolpBkymHhor6aiYGEpkeNMnN+PR2xfA4wvh5of/kna7025FQ50dgVBUsRq4\nulJPXfl26yMvYTh0cn27aAzYuHk3vrJoJu5b/xoG/SE01Dlw+ikueP1h3e3j9x0+gbd2dsFhT99A\n2WqJL/BayiGuTL0cddgsf2yL4rG5BAwr6cpDq9DBjKs6MJSo5KxW/R1etaTOlagXUgXi5++EBkNo\naa5VhJLdakE4pcd1zvQJij2OfBrP1d3vx33rX0uGTzAcRL9Xf5hR0QaNpYka6+0FC6Rc53LyKSpQ\nB8yANwDvyJ5LelhJVx7qQgezrurAUKKSyyeQPjOrHZFIDMsf24Jjfb6M93U1OHHGlHH4YH8f/MMR\nRSABgPi4X7GgalO9E0FVz6fdXY+Puwp3przXF8GPntmOe6+/YFSPz7QoKzD2uRz1Cbq5LJ/ESrry\nUBc6AOZc1YGhRIa2c3+/Zu9Ii9cXQtv4+uRCpWoDgyEMDIaSB/QHb56Pu9e9ihODQVgsFsw5swXX\nLpqJt3JcZ89mtaQVYui9h0wy9YAyrQiRqQQ8155ZphN0icqBoUSGprXvkV4MxFfxzi1Quvv9mNzW\niKfuX6S4ftWGbbrbY6jnqD49sw0Ou02xzbjXF0qbd1JX3qllqmbLFBCZSsDz6clwjoiMhKFEFaVQ\nxeCdfUOaKxqoQyC1NyTL8aq98a7aZI9ERjwUum3xXsr/+epM3L3uVfR7TxZQnDu9JWNbMlWzqQND\n/frZHp8LzhFVBnWhA2DOYgeGEhlCvsUPY5XYtiISiSmKH7SWBUo13lWbrARct6kD7+7tTfbmEvss\nPXTLRdi4eXfOB/l8Sri1hubG2tPhHFFlUBc6AOYsdmAoUdk5rEC4hIGU6v39J8958vhCiERiit6R\nes4oUZ2mN9fT5wlg4+bdeR3k8ynhVp4rVQtARu/AMFqaa9HU4MTkHBeKpcqjVegAmK/YgaFEZdfU\nWKMY7iqlxGZ5Hl8It69+WfM8pFSJ6rRctg7PpQAhnyKFbG08a5qbPR6qeAwlKrshf27VdfmyALBn\nWZZo1nQ3gPi8ULZASkgEiN4wX6YChNTtJtrd9YrN+vSKFBLBldhWI1O7iCodQ4nKTq/abazstsyB\n5LBZYIElp3OgUg14A7jjnz4FALpLDiVuS9Xd708LqvhCrcr7qGUqC0/Fqjlz0yp0AMy3hQVDiUyp\npbkW/kAE4QzL+zsdNryZ4zlJqfo8Afzrj17BnBmtWHnjhbrDbVoFCOrQyWWhVr0eUHOjA2dNdaPf\nG2TVXBXQKnQAzLeFBUOJTOeTZ7jhaqzF6+9l7l2oS2jraqwIheWcTojNZV8krQKGdZs6FEGVy0Kt\nekOFM6cql00ic8tU6GCWcnCAoUQGkemk2Hwd6h6E56PMqyhYLfH5pNStJhpqnRgOnpxXctqtWYcW\nM83jaJVa51Liraa3F9KOvT0Zd48lqkQMJTKEWqcVs89sw469XQiOse7B68v+BDEZeO/DXtisFtQ6\nbTj3jBb0DPgVxQ6T2xoxubUR3f1+dPYOwRdIHyYp9jlBqdV56rX6su0eS1SJGEpkCKGIjA/2H0ck\nOvY+k5zjw4eD8V6HLxDBh0dOIBCKKm5P3fBPvTleY50Dc2a0Zp3HGcu6dFol4C3NtRj0h9J6TKkL\nzbLXZE6ZCh3MtKoDQ4kMIRqTc154tRhSD/wNdXbMndGmCJxch93UIRSJxJLFFLmuS5epBHy8qxZn\nTceUEicAAA9CSURBVHMrAtI3HMG+wye4C6zJ6RU6mG1VB4YSkZqMtNDJddht7TPbFecdNdQq/4ml\nzkHp9aIylYCrS86P9fkUYc5zlcxLr9ABMNeqDgwlMoWGOnvGE0szUQ8Y+gIR3Lb6Zay5Y2HeQ2Hq\nbSrUQ4Kpc1Dqc5beeP8Y6mrskHXGH1uaa5PBpTesyHOVqNIxlMgUzp3egr2HB/Jershpt2J8kxPd\nA8rVHPo8Ady2+mV87+b5eFq1uGpqUKl7O9GYMoRiMRmNdQ5EY1HU1TjQ2XtydXJ1r0ZvCDN1/kod\nknrr5o1lLouonBhKVHR1NXYMB4t3gp8FwK3XzMW961/LO5RCkVhaICX0eQKKrdH3HT6BcCQGR8p5\nReo5I7erBsPBk22QcXJPqOFgEP3eIPZ3xodaMi1VZLNaMH1yc9ZA0RtWHOseS2Q8eoUOgLmKHRhK\nVHRnTxuPd/f1aZ6Umm33VofNkratuZabHvqzZsn2WA36Q4rLb+/uTrZ33+ETaKhT/hMa11iDs0+f\noDnfk+qtnV2YK7XhPKkF20Vf2u21NTY8evuC5OV8ez7Z9lhiT6ry6BU6AOYqdmAoUdG9I3p1b1v1\nrYvw2y0f6S42mksgyYBuILldNTjz1HHo2NuDQFiG1RI/R0nL6ZNcGFTtHKs+N0gdoIlVxhNax8cX\nWT3W58NwhhOuQpEYtu7sgttVo3m7emPAfHs+2fZYYk+q8mQqdADMU+zAUKKyuvs/XsOP7liI7n5/\nxs31RmtcYw0cdhsC4XiYZFpBaNAXwoM3z8fGzbvR2TsEry+EGof2cEnCrOluOOw2fNzlxbHjPmzN\ncy29E4Ppw42fmdWOW6+Zq7gu391ls+0mO9bdaomKhaFEZRWKxHDnf7yKc6ZPKEooTRpZkSEXfZ4A\nfv77DwAAh7oGdYcVHTYLnA4bAqEoPvjoOM45YwKGhsMZVyTXY7FYFGf7NtY5cO/1Fyg282t3149s\n6HeS21WjuD0x/KYeltNbMHasu9USFQtDicruxGAQtyyZjXAkird39+S0IKrdCmTb8WJ8k1NzEdRM\ndu7vz3oSbzgqJ1cf9wUiivXzcuG0W3FKSwNObW+CPxBSzCk57Ja0nW33HT6Bz8xqx0WzJykKLLSG\n33IdlsvWkyLjyVToAJwsdgBQ0QUPDCUyhB89syPnQAIAh8OOSJaKvnBEhqvBmQy8bbu6Mw7fAYA/\nUPxVJUKRGE5tb8KKpfPg9YVwW8pSQgOD8cvqAot+b1BR+LD8sS2K2xO9wVyH5fJdg4/KL1OhAxAv\ndnhrzwCGh4/iiovPrtiCB4YSlZ0VyHsuJpcSc38wjOWPbUluwlfrtMEfjGZ8TI6ZOGbbdnUlz1dq\nqHMoiiu0dsBVD6/pDb9xWM68shU6JFRqDymBoURlN6W9ER93DxX8eWMxjGqeymYF6mriJ7wGgrGC\nbamRKnWF72y73iZWckilN/yW77AcS8PJaBhKVFYWAEd7c9+KvDQsmDXdjZ37+yGjOFu1J7yzpzvr\nnk3jXbVpQaE3/JbvsBxLw8loGEpUVjLSz/0pt2hMzrt4YbSGswwnAsAEVeVdIbE0vHJkK3QAgNq6\nGgz7K/s7ZCgRGdzuQ8fh9YWKMqzGOajKka3QYdjvx9/MkdDcPA0ul6uELSsshhKRwXmGwli3qaMo\nw2osDa8cuazo0MxlhoiokBrq7BgORNKqAIs1rMbScDKazAOURFRSc2e0Yd7Z6b+GOaxG1YI9JaIi\nUG8cqGazAtGY8vKnZ7YjEomhZ8APt6sGwVAUFku8EpDDaqRV6FBbV5NcFNjvN1oV6+gwlCrMhbPc\neGNnv+ZtUyc24FCXOf5iVjxVKqm36Kh12hUrm5820QWH3abYRfai2ZM4tEZJ6kKHk4UNJ+eQKrnA\nIYGhVGHuvv6v87q/ertsKg31juZNDQ6EwzEEQlHUOKxwOqzwpSzcMFlj4Vi9eSSe8Fqd1IUOZils\nUOOckslx2McYTgyG4AtEEI3J8AejGBgMoaW5FmeeOg4XzZ6EW5bM1lxKSEvihNd9h0/g1Y5OrNvU\nUYq3QFQS7CmZHH9BG1cgFFVsLZFreTZPeCUzYyiZ3JGewq8pR4UxNKw8/yjX8mz1Ca/H+nzJxV35\nI8S8hv1Dit1lzVLYoFb2UJIkaRGAxxAfSvypEGJVmZtkKvetf63cTaAMRtPLSfSgElvIDw2Hk/OG\nLIwwr+GhgbSdkP/y+h5DrgreNt6Jiz4zZ1SPLWsoSZJkBfA4gEsBdALYJknS74QQe8rZLjNR78tD\nxjKa848SParlj21R9Jg4jGdu7rZTc9q6whCsox+hKXehw/kA9gkhDgkhwgB+CeDKMrfJVJrqOZxj\nNOoCh9HKtTCCqJKUe/huMoDDKZePIB5UVCC3/sMc3P//3ix3MyhFnyeAPk8gWT1X57ShrtaOhjoH\nhvwhhMLxs2odditC4SgsVgvOmd6Cf758Fp7evDtZCHHtopkAuG4dmUu5Q4mKbO1/v1vuJlAWw6Eo\nhkNR9HuDuvfZurMLHx05kdyVlnsfkVmVO5SOAjgt5fKUket0SZK0EsD9RWyTqXBOyTzU3yXnkMwn\n0/FtoiuMtubK+Pc8wd026seWO5S2AfiEJElTARwD8GUA/5jpAUKIlQBWpl4nSdI0AAeK0sIK11Tv\nRNATyH5HMjz1d8k5JPPJdHyTPnE6pkyZUoZWlVZZCx2EEFEA3wLwJwA7AfxSCLG7nG0ymwdvnl/u\nJhAAp03/troaG9yuGpza3ojxTU401NrRUGvHuCYn6mtsaKiz44JZE/HgzfNx0exJBSmSIDKqcveU\nIITYDEAqdzvManJbI55fzYJGs+AcEplduUvCiYiIkhhKRERkGAwlIiIyDIYSEREZBkOJiIgMg6FE\nRESGwVAiIiLDYCgREZFhMJSIiMgwGEpERGQYDCUiIjIMhhIRERkGQ4mIiAyDoURERIbBUCIiIsNg\nKBERkWEwlIiIyDAYSkREZBgMJSIiMgyGEhERGQZDiYiIDIOhREREhsFQIiIiw2AoERGRYTCUiIjI\nMBhKRERkGAwlIiIyDIYSEREZBkOJiIgMg6FERESGwVAiIiLDYCgREZFhMJSIiMgwGEpERGQYDCUi\nIjIMhhIRERkGQ4mIiAyDoURERIbBUCIiIsNgKBERkWEwlIiIyDAYSkREZBgMJSIiMgyGEhERGQZD\niYiIDIOhREREhsFQIiIiw2AoERGRYTCUiIjIMBhKRERkGAwlIiIyDIYSEREZBkOJiIgMw16uF5Yk\n6X4ANwLoGbnqbiHE5nK1h4iIyq9soTTiUSHEo2VuAxERGUS5h+8sZX59IiIykHL3lL4lSdJXAbwN\n4A4hhKfM7SEiojIqaihJkvRnAO0pV1kAyADuAfAfAB4QQsiSJD0I4FEAN4zypWwA0NXVNYbWEhGV\n1qWXXjoNwBEhRKTcbTEKiyzL5W4DJEmaCuB5IcQnc7jvSgD3F71RRESlcboQ4iCQ9fiWvJ+ZlS2U\nJEmaKIToGvnztwHME0L80yifqwZAAMAnAEQL10pDOwDg9HI3osSq7T1X2/sFqu89HwDgyNRTkiTJ\nDmAKqqRHVc5Q2gBgDoAYgIMAvi6E6B7D88lCiKopnKi29wtU33uutvcLVN97rrb3m4uyFToIIZaW\n67WJiMiYyl0STkRElMRQIiIiwzBTKH233A0osWp7v0D1vedqe79A9b3nanu/WRmiJJyIiAgwV0+J\niIgqHEOJiIgMg6FERESGwVAiIiLDYCgREZFhlHvrioKqlt1sJUlaBOAxxH9U/FQIsarMTSoqSZIO\nAvAgviRVWAhxflkbVASSJP0UwOUAuhMLE0uSNB7AMwCmIr4U15fMsr2Lzvs17b9fSZKmANiA+K4J\nMQA/EUL8yMzf8WiZsaf0qBDivJH/TPEXOpUkSVYAjwP4PIBZAP5RkqSzytuqoosBuFgIMdeMgTTi\n54h/p6nuBPAXIYQE4CUAd5W8VcWj9X4B8/77jQBYLoSYBeBCAN8c+Xdr5u94VMwYSmZf3PB8APuE\nEIeEEGEAvwRwZZnbVGwWmPPvapIQ4lUAA6qrrwTw1MifnwJwVUkbVUQ67xcw6b9fIUSXEOLdkT8P\nAdiN+Mrfpv2OR8uM/9C/JUnSu5Ik/T9JkprL3ZgimAzgcMrlIyPXmZkM4M+SJG2TJOnGcjemhNoS\nK+ePbPPSVub2lILZ//1CkqRpiO+Q8CaA9ir8jjOquFCSJOnPkiS9l/Lf+yP/X4z4brbThRBzAHQh\nvpstVb75QojzAHwB8WGPi8rdoDIx+/Irpv/3K0lSI4BfA7htpMek/k7N/h1nVXGFDkKIv83xrj8B\n8Hwx21ImRwGclnJ5ysh1piWEODby/15Jkp5FfAjz1fK2qiS6JUlqF0J0S5I0EScLAExJCNGbctF0\n/35HNuv7NYD/FEL8buTqqvqOc1FxPaVMRr7UhKsBfFCuthTRNgCfkCRpqiRJTgBfBvBcmdtUNJIk\n1Y/8uoQkSQ0APgdzfq9AfD4ldU7lOQD/PPLn6wD8Tv2ACqd4v1Xw7/dnAHYJIdakXGf27zhvplqQ\ntdC72RrVSEn4GpwsCf9+mZtUNJIknQ7gWcSHNewAnjbj+5Uk6b8AXAxgAoBuAPcD+C2A/wZwKoBD\niJcLnyhXGwtJ5/0uhEn//UqSNB/AKwDeR/zvsgzgbgBvAfgVTPgdj5apQomIiCqbqYbviIiosjGU\niIjIMBhKRERkGAwlIiIyDIYSEREZBkOJiIgMo+JWdCAqtpGTkn8H4NMAZCFEm+r2xQB+AMAG4B0A\nXxNCBEreUCITYk+JKF0UwA8BXKq+YWRViScB/J0QYgaAIQD/VtrmEZkXe0pU1SRJqkN8y4CzAYQB\nCCHElwG8JEnSVI2HXAZgmxBi/8jl9SOP/14p2ktkdgwlqnafB9AkhDgHAHLYLuE0xJeDSfgY8UVx\niagAGEpU7ToAzJQkaS2ALQD+UOb2EFU1zilRVRNCHEB8W/k/A/gsgI6RQgc9HwOYlnL5NCg3XSSi\nMWAoUVWTJGkygJgQ4jkAywG0AHCP3KzeSgIANgP4tCRJZ4xcvhnxVZ6JqAC4SjhVtZFtQBJbYVgB\nbBBCPCJJ0luIbzPfBuAYgM1CiJtGHrMY8eo8K4AdAP5ZCDFc8sYTmRBDiYiIDIPDd0REZBgMJSIi\nMgyGEhERGQZDiYiIDIOhREREhsFQIiIiw2AoERGRYTCUiIjIMP5/A8KgkIMvmc8AAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# YOUR CODE HERE" + "# YOUR CODE HERE\n", + "sns.jointplot('s10', 's13', kallisto_log2_tpm_expressed, stat_func=spearmanr)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 59, "metadata": { "collapsed": false, "deletable": false, @@ -961,7 +2876,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": { "collapsed": false, "deletable": false, @@ -973,7 +2888,94 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(46984, 1)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
# Program:featureCounts v1.5.0; Command:\"featureCounts\" \"-T\" \"8\" \"-s\" \"-B\" \"--primary\" \"-a\" \"/projects/ps-yeolab/biom262-2016/genomes/mm10/gencode/m8/gencode.vM8.basic.annotation.gtf\" \"-o\" \"/home/ucsd-train12/projects/shalek2013/processed_data/s10_featureCounts.txt\" \"/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam\"
GeneidChrStartEndStrandLength/home/ucsd-train12/projects/shalek2013/process...
ENSMUSG00000102693.1chr130732533074322+10700
ENSMUSG00000064842.1chr131020163102125+110980
ENSMUSG00000051951.5chr1;chr1;chr13214482;3421702;36705523216968;3421901;3671498-;-;-36340
ENSMUSG00000102851.1chr132527573253236+4800
\n", + "
" + ], + "text/plain": [ + " # Program:featureCounts v1.5.0; Command:\"featureCounts\" \"-T\" \"8\" \"-s\" \"-B\" \"--primary\" \"-a\" \"/projects/ps-yeolab/biom262-2016/genomes/mm10/gencode/m8/gencode.vM8.basic.annotation.gtf\" \"-o\" \"/home/ucsd-train12/projects/shalek2013/processed_data/s10_featureCounts.txt\" \"/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam\" \n", + "Geneid Chr Start End Strand Length /home/ucsd-train12/projects/shalek2013/process... \n", + "ENSMUSG00000102693.1 chr1 3073253 3074322 + 1070 0 \n", + "ENSMUSG00000064842.1 chr1 3102016 3102125 + 110 980 \n", + "ENSMUSG00000051951.5 chr1;chr1;chr1 3214482;3421702;3670552 3216968;3421901;3671498 -;-;- 3634 0 \n", + "ENSMUSG00000102851.1 chr1 3252757 3253236 + 480 0 " + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "s10_featurecounts = pd.read_table('s10_featureCounts.txt')\n", "print(s10_featurecounts.shape)\n", @@ -1001,7 +3003,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": { "collapsed": false, "deletable": false, @@ -1013,16 +3015,130 @@ "solution": true } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(46983, 6)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ChrStartEndStrandLength/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam
Geneid
ENSMUSG00000102693.1chr130732533074322+10700
ENSMUSG00000064842.1chr131020163102125+110980
ENSMUSG00000051951.5chr1;chr1;chr13214482;3421702;36705523216968;3421901;3671498-;-;-36340
ENSMUSG00000102851.1chr132527573253236+4800
ENSMUSG00000103377.1chr133657313368549-28190
\n", + "
" + ], + "text/plain": [ + " Chr Start \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 chr1 3073253 \n", + "ENSMUSG00000064842.1 chr1 3102016 \n", + "ENSMUSG00000051951.5 chr1;chr1;chr1 3214482;3421702;3670552 \n", + "ENSMUSG00000102851.1 chr1 3252757 \n", + "ENSMUSG00000103377.1 chr1 3365731 \n", + "\n", + " End Strand Length \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 3074322 + 1070 \n", + "ENSMUSG00000064842.1 3102125 + 110 \n", + "ENSMUSG00000051951.5 3216968;3421901;3671498 -;-;- 3634 \n", + "ENSMUSG00000102851.1 3253236 + 480 \n", + "ENSMUSG00000103377.1 3368549 - 2819 \n", + "\n", + " /home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam \n", + "Geneid \n", + "ENSMUSG00000102693.1 0 \n", + "ENSMUSG00000064842.1 980 \n", + "ENSMUSG00000051951.5 0 \n", + "ENSMUSG00000102851.1 0 \n", + "ENSMUSG00000103377.1 0 " + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# YOUR CODE HERE\n", + "s10_featurecounts = pd.read_table('s10_featureCounts.txt', skiprows=1, index_col=0)\n", "print(s10_featurecounts.shape)\n", "s10_featurecounts.head()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "collapsed": false, "deletable": false, @@ -1065,7 +3181,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "collapsed": false, "deletable": false, @@ -1077,7 +3193,24 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Chr object\n", + "Start object\n", + "End object\n", + "Strand object\n", + "Length int64\n", + "/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam int64\n", + "dtype: object" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "s10_featurecounts.dtypes" ] @@ -1100,7 +3233,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "collapsed": false, "deletable": false, @@ -1113,9 +3246,30 @@ }, "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAEZCAYAAACtle09AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+8VVWd//HXVUPNFJUUvoniD+QjWImYZNMvDQ3ph9ep\nkWBMYLTkMWhpvyapRnFyJtGpzBx/FSWUBWqNUoNKqP1OJX/0Q+wtTKBe8qJmYpk6gPf7x1oHzj2c\nX3LP5ez0/Xw8eHDu3mvtvfba++zPXmvvs1dHT08PZmZmVhzbtLsAZmZm1puDs5mZWcE4OJuZmRWM\ng7OZmVnBODibmZkVjIPzCxQRs9pdhmqKWC6XqTkuU/OKWC6XqTlFLFORtSQ4R8SxEfG7iHggIj5Z\nI83FEbE8Iu6NiNGN8kbEbhGxOCIUETdHxMCyeTPzsu6PiLeXTT8vIh6KiKdqlOG9EfF8RIzpw+ae\n04e8/amI5XKZmuMyNa+I5XKZmlPEMhVWn4NzRGwDXAKMBw4GJkfEQRVpJgAHSDoQmA5c3kTes4Al\nkgK4FZiZ84wCJgIjgQnApRHRkfMsBA6vUc5XAB8Gbu/rNpuZmfWnVrScxwLLJT0oaR0wH+isSNMJ\nzAOQdAcwMCIGN8jbCczNn+cCx+fPxwHzJa2XtApYnpeDpDslralRzs8C5wPP9WVjzczM+lsrgvNe\nwMNlf3flac2kqZd3cCnQSuoG9qyxrNVV1tdLRBwKDJV0Y6ONMTMza7ft2rTejsZJNrNF7xnNXd5f\nAKb2cf1ExPb5/wOADVuyjP4UEfu2uwyVXKbmuEzNK2K5XKaGtoV0DpXk3ssmtCI4rwb2Kft7aJ5W\nmWbvKmkG1MnbHRGDJa2JiCHAow2WVcvOpPvZP8yBeghwQ0QcJ+nuWpnyk4W1HmBYUWd97bSy3QWo\nwmVqjsvUvCKWy2VqzrMRUTntXEmz2lCWQmtFcF4KDI+IYcAjwCRgckWahcBpwIKIOAJ4Mgfdx+vk\nXQhMA2aTWr03lE2/OiK+SOrOHg7cWbG+jS1jSU+xqUuciLgN+Kike+ptVD5YZpVPyy3mFVdffTVD\nhgypl93MzLLu7m5OPPFEgOGS/rfd5flb0OfgLGlDRJwOLCbdw54j6f6ImA70SLpS0qKIeEdErACe\nBv6pXt686NnANRFxMvAg6QltJC2LiGuAZcA6YIakHoCImA38I7BjRDwEfFXSv1UUuYct7NYmd2UP\nGTKEoUOHbuEizMxesgp3O7CoOjxkZPPyPZyVt9xyi4OzmVmTurq6GDduHMB++Vc21oDfEGZmZlYw\nDs5mZmYF4+BsZmZWMA7OZmZmBePgbGZmVjAOzmZmZgXj4GxmZlYwDs5mZmYF4+BsZmZWMA7OZmZm\nBePgbGZmVjAOzmZmZgXj4GxmZlYwDs5mZmYF4+BsZmZWMA7OZmZmBePgbGZmVjAOzmZmZgXj4Gxm\nZlYwDs5mZmYFs127C/C36OYf/5rdBj3Sa9qwITtx2CGj2lQiMzN7MXFw3gI7vGJ3Xr7LHr2mPd/z\nTJtKY2ZmLzbu1jYzMyuYlrScI+JY4CJSsJ8jaXaVNBcDE4CngWmS7q2XNyJ2AxYAw4BVwERJa/O8\nmcDJwHrgDEmL8/TzgCnArpJ2KVv3R4APAOuAx4CTJT3cim03MzNrtT63nCNiG+ASYDxwMDA5Ig6q\nSDMBOEDSgcB04PIm8p4FLJEUwK3AzJxnFDARGEkK9pdGREfOsxA4vEox7wYOkzQa+A5wYV+328zM\nrL+0olt7LLBc0oOS1gHzgc6KNJ3APABJdwADI2Jwg7ydwNz8eS5wfP58HDBf0npJq4DleTlIulPS\nmsoCSvqRpGfzn7cDe/Vxm83MzPpNK4LzXkB5F3EXmwe/Wmnq5R1cCrSSuoE9ayxrdZX11XMKcOML\nSG9mZrZVtetp7Y7GSTbT09eVRsT7gcOAt/Z1WWZmZv2lFcF5NbBP2d9D87TKNHtXSTOgTt7uiBgs\naU1EDAEebbCsuiLiaNJ967fkLvRG6WcB5zRKZ2ZmTVsZEZXTzpU0qw1lKbRWBOelwPCIGAY8AkwC\nJlekWQicBiyIiCOAJ3PQfbxO3oXANGA2MBW4oWz61RHxRVJ39nDgzor19WqZR8ShpIfQxkv6YzMb\nlQ+WWRXL2RdY2Ux+MzPbzH75WSFroM/3nCVtAE4HFgP3kR7Wuj8ipkfEqTnNItIV0wrgCmBGvbx5\n0bOBYyJCwDjg/JxnGXANsAxYBMyQ1AMQEbMj4mFgx4h4KCLOzsu6ANgJuDYi7omI6/u63WZmZv2l\no6enz7dyXzJKLeezL5zLoD2G9Jo3aMdnOHz0yLaUy8ysyLq6uhg3bhy45dw0vyHMzMysYByczczM\nCsbB2czMrGAcnM3MzArGwdnMzKxgHJzNzMwKxsHZzMysYByczczMCsbB2czMrGAcnM3MzArGwdnM\nzKxgHJzNzMwKxsHZzMysYByczczMCsbB2czMrGAcnM3MzArGwdnMzKxgHJzNzMwKxsHZzMysYByc\nzczMCsbB2czMrGAcnM3MzArGwdnMzKxgtmvFQiLiWOAiUrCfI2l2lTQXAxOAp4Fpku6tlzcidgMW\nAMOAVcBESWvzvJnAycB64AxJi/P084ApwK6Sdilb9wBgHnAY8DjwPkkPtWLbzczMWq3PLeeI2Aa4\nBBgPHAxMjoiDKtJMAA6QdCAwHbi8ibxnAUskBXArMDPnGQVMBEaSgv2lEdGR8ywEDq9SzFOAJ/L6\nLwIu6Ot2m5mZ9ZdWdGuPBZZLelDSOmA+0FmRppPUckXSHcDAiBjcIG8nMDd/ngscnz8fB8yXtF7S\nKmB5Xg6S7pS0pkoZy5d1HTCuD9trZmbWr1oRnPcCHi77uytPayZNvbyDS4FWUjewZ41lra6yvppl\nlLQBeDIidm+Qx8zMrC1acs95C3Q0TrKZnq25/oiYBZzTwnWamb3UrYyIymnnSprVhrIUWiuC82pg\nn7K/h+ZplWn2rpJmQJ283RExWNKaiBgCPNpgWfV05Tx/iIhtgV0kPVEvQz5YZpVPi4h9gZUN1mVm\nZtXtl29HWgOt6NZeCgyPiGH5qehJpAezyi0kPUVNRBwBPJm7rOvlXQhMy5+nAjeUTZ8UEQMiYj9g\nOHBnxfoqW8bfy8sAOIH0gJmZmVkh9Tk453u4pwOLgftID2vdHxHTI+LUnGYRqTtjBXAFMKNe3rzo\n2cAxESHSA1zn5zzLgGuAZcAiYIakHoCImB0RDwM7RsRDEXF2XtYc4JURsRw4k/QkuJmZWSF19PS0\n8lbui1upW/vsC+cyaI8hveYN2vEZDh89si3lMjMrsq6uLsaNGwfu1m6a3xBmZmZWMA7OZmZmBePg\nbGZmVjAOzmZmZgXj4GxmZlYwDs5mZmYF4+BsZmZWMA7OZmZmBePgbGZmVjAOzmZmZgXj4GxmZlYw\nDs5mZmYF4+BsZmZWMA7OZmZmBePgbGZmVjAOzmZmZgXj4GxmZlYwDs5mZmYF4+BsZmZWMA7OZmZm\nBePgbGZmVjAOzmZmZgXj4GxmZlYw27ViIRFxLHARKdjPkTS7SpqLgQnA08A0SffWyxsRuwELgGHA\nKmCipLV53kzgZGA9cIakxXn6GOAqYAdgkaQz8/S9gbnArnk9MyXd2IptNzMza7U+t5wjYhvgEmA8\ncDAwOSIOqkgzAThA0oHAdODyJvKeBSyRFMCtwMycZxQwERhJCvaXRkRHznMZcIqkEcCIiBifp38G\nWCBpDDAZuLSv221mZtZfWtGtPRZYLulBSeuA+UBnRZpOYB6ApDuAgRExuEHeTlJrl/z/8fnzccB8\nSeslrQKWA2MjYgiws6SlOd28sjw9wC75867A6r5vtpmZWf9oRXDeC3i47O+uPK2ZNPXyDpa0BkBS\nN7BnjWWtLltWV41lzQJOioiHge8DH2pu08zMzLa+ltxz3gIdjZNspqcP65sMfF3SFyPiCOCbpG70\nmiJiFnBOH9ZpZma9rYyIymnnSprVhrIUWiuC82pgn7K/h7J5t/FqYO8qaQbUydsdEYMlrcld1o82\nWFat6QCnkO5rI+n2iNghIl4p6fFaG5UPllnl0yJiX2BlrTxmZlbXfvl2pDXQim7tpcDwiBgWEQOA\nScDCijQLgSkAueX6ZO6yrpd3ITAtf54K3FA2fVJEDIiI/YDhwJ2563ttRIzND4hNAa7PeR4Ejs7r\nHwlsXy8wm5mZtVOfg7OkDcDpwGLgPtLDWvdHxPSIODWnWUTqzlgBXAHMqJc3L3o2cExECBgHnJ/z\nLAOuAZYBi4AZkkpd3qcBc4AHSA+a3Zynfxz4YETcC1xNCvZmZmaF1NHT05dbuS8tpW7tsy+cy6A9\nhvSaN2jHZzh89Mi2lMvMrMi6uroYN24cuFu7aX5DmJmZWcE4OJuZmRWMg7OZmVnBODibmZkVjIOz\nmZlZwTg4m5mZFYyDs5mZWcE4OJuZmRWMg7OZmVnBODibmZkVjIOzmZlZwTg4m5mZFYyDs5mZWcE4\nOJuZmRWMg7OZmVnBODibmZkVjIOzmZlZwTg4m5mZFYyDs5mZWcE4OJuZmRWMg7OZmVnBODibmZkV\njIOzmZlZwWzXioVExLHARaRgP0fS7CppLgYmAE8D0yTdWy9vROwGLACGAauAiZLW5nkzgZOB9cAZ\nkhbn6WOAq4AdgEWSzixb/0TgHOB54FeS3t+KbTczM2u1PrecI2Ib4BJgPHAwMDkiDqpIMwE4QNKB\nwHTg8ibyngUskRTArcDMnGcUMBEYSQr2l0ZER85zGXCKpBHAiIgYn/MMBz4JvEHSa4CNQdvMzKxo\nWtGtPRZYLulBSeuA+UBnRZpOYB6ApDuAgRExuEHeTmBu/jwXOD5/Pg6YL2m9pFXAcmBsRAwBdpa0\nNKebV5bng8B/SXoql+HxFmy3mZlZv2hFcN4LeLjs7648rZk09fIOlrQGQFI3sGeNZa0uW1ZXjWWN\nACIifhoRPy+1qM3MzIqoJfect0BH4ySb6enD+rYDhgNvAfYBfhwRry61pKuJiFmke9RmZtYaKyOi\nctq5kma1oSyF1orgvJoU8EqG5mmVafaukmZAnbzdETFY0prcZf1og2XVmg6pFX27pOeBVRHxAHAg\ncFetjcoHy6zyaRGxL7CyVh4zM6trv3w70hpoRbf2UmB4RAyLiAHAJGBhRZqFwBSAiDgCeDJ3WdfL\nuxCYlj9PBW4omz4pIgZExH6kFvGduet7bUSMzQ+ITSnLcz1wVF7/K0mB+fct2HYzM7OW63NwlrQB\nOB1YDNxHeljr/oiYHhGn5jSLSN0ZK4ArgBn18uZFzwaOiQgB44Dzc55lwDXAMmARMENSqcv7NGAO\n8ADpQbObcp6bgT9GxH3ALcDHJf2pr9tuZmbWHzp6evpyK/elpdStffaFcxm0x5Be8wbt+AyHjx7Z\nlnKZmRVZV1cX48aNA3drN81vCDMzMysYB2czM7OCcXA2MzMrGAdnMzOzgnFwNjMzKxgHZzMzs4Jx\ncDYzMysYB2czM7OCcXA2MzMrGAdnMzOzgnFwNjMzKxgHZzMzs4JxcDYzMysYB2czM7OCcXA2MzMr\nGAdnMzOzgnFwNjMzKxgHZzMzs4JxcDYzMysYB2czM7OCcXA2MzMrGAdnMzOzgnFwNjMzK5jtWrGQ\niDgWuIgU7OdIml0lzcXABOBpYJqke+vljYjdgAXAMGAVMFHS2jxvJnAysB44Q9LiPH0McBWwA7BI\n0pkVZXgvcC3wOkl3t2LbzczMWq3PLeeI2Aa4BBgPHAxMjoiDKtJMAA6QdCAwHbi8ibxnAUskBXAr\nMDPnGQVMBEaSgv2lEdGR81wGnCJpBDAiIsaXleEVwIeB2/u6zWZmZv2pFd3aY4Hlkh6UtA6YD3RW\npOkE5gFIugMYGBGDG+TtBObmz3OB4/Pn44D5ktZLWgUsB8ZGxBBgZ0lLc7p5ZXkAPgucDzzXgm02\nMzPrN60IznsBD5f93ZWnNZOmXt7BktYASOoG9qyxrNVly+qqtqzc3T1U0o0vZMPMzMzaoSX3nLdA\nR+Mkm+nZkhXlLu/PA1NfyPojYhZwzpas08zMqloZEZXTzpU0qw1lKbRWBOfVwD5lfw/N0yrT7F0l\nzYA6ebsjYrCkNbnL+tEGy6o1fWfg1cAPc6AeAtwQEcfVeygsHyyzyqdFxL7Aylp5zMysrv3y7Uhr\noBXBeSkwPCKGAY8Ak4DJFWkWAqcBCyLiCODJHHQfr5N3ITANmE1q9d5QNv3qiPgiqdt6OHCnpJ6I\nWBsRY3OZpgAXS3oK2KNUkIi4DfiopHtasO1mZmYt1+d7zpI2AKcDi4H7SA9r3R8R0yPi1JxmEak7\nYwVwBTCjXt686NnAMREhYBzpYS4kLQOuAZYBi4AZkkpd3qcBc4AHSA+a3VSlyD1sWbe6mZnZVtHR\n07NFt3Jfkkrd2mdfOJdBewzpNW/Qjs9w+OiRbSmXmVmRdXV1MW7cOHC3dtP8hjAzM7OCcXA2MzMr\nGAdnMzOzgnFwNjMzKxgHZzMzs4JxcDYzMysYB2czM7OCcXA2MzMrGAdnMzOzgnFwNjMzKxgHZzMz\ns4JxcDYzMysYB2czM7OCcXA2MzMrGAdnMzOzgnFwNjMzKxgHZzMzs4JxcDYzMysYB2czM7OCcXA2\nMzMrGAdnMzOzgnFwNjMzKxgHZzMzs4LZrhULiYhjgYtIwX6OpNlV0lwMTACeBqZJurde3ojYDVgA\nDANWARMlrc3zZgInA+uBMyQtztPHAFcBOwCLJJ2Zp38E+ACwDngMOFnSw63YdjMzs1brc8s5IrYB\nLgHGAwcDkyPioIo0E4ADJB0ITAcubyLvWcASSQHcCszMeUYBE4GRpGB/aUR05DyXAadIGgGMiIjx\nefrdwGGSRgPfAS7s63abmZn1l1Z0a48Flkt6UNI6YD7QWZGmE5gHIOkOYGBEDG6QtxOYmz/PBY7P\nn48D5ktaL2kVsBwYGxFDgJ0lLc3p5pXySPqRpGfz9NuBvVqw3WZmZv2iFcF5L6C8i7iLzYNfrTT1\n8g6WtAZAUjewZ41lrS5bVleDcgCcAtxYd4vMzMzaqCX3nLdAR+Mkm+np60oj4v3AYcBbm0g7Czin\nr+s0M7ONVkZE5bRzJc1qQ1kKrRXBeTWwT9nfQ/O0yjR7V0kzoE7e7ogYLGlN7rJ+tMGyak0HICKO\nJt23fkvuQq8rHyyzyqdFxL7AykZ5zcysqv3y7UhroBXd2kuB4RExLCIGAJOAhRVpFgJTACLiCODJ\n3GVdL+9CYFr+PBW4oWz6pIgYEBH7AcOBO3PX99qIGJsfEJtSyhMRh5IeQjtO0h9bsM1mZmb9ps/B\nWdIG4HRgMXAf6WGt+yNiekScmtMsInVnrACuAGbUy5sXPRs4JiIEjAPOz3mWAdcAy4BFwAxJpS7v\n04A5wAOkB81uytMvAHYCro2IeyLi+r5ut5mZWX/p6Onp863cl4xSt/bZF85l0B5Des0btOMzHD56\nZFvKZWZWZF1dXYwbNw7crd00vyHMzMysYByczczMCsbB2czMrGAcnM3MzArGwdnMzKxgHJzNzMwK\nxsHZzMysYByczczMCsbB2czMrGAcnM3MzArGwdnMzKxgHJzNzMwKxsHZzMysYByczczMCsbB2czM\nrGAcnM3MzArGwdnMzKxgHJzNzMwKxsHZzMysYByczczMCsbB2czMrGAcnM3MzApmu1YsJCKOBS4i\nBfs5kmZXSXMxMAF4Gpgm6d56eSNiN2ABMAxYBUyUtDbPmwmcDKwHzpC0OE8fA1wF7AAsknRmnj4A\nmAccBjwOvE/SQ63YdjMzs1brc8s5IrYBLgHGAwcDkyPioIo0E4ADJB0ITAcubyLvWcASSQHcCszM\neUYBE4GRpGB/aUR05DyXAadIGgGMiIjxefopwBN5/RcBF/R1u83MzPpLK7q1xwLLJT0oaR0wH+is\nSNNJarki6Q5gYEQMbpC3E5ibP88Fjs+fjwPmS1ovaRWwHBgbEUOAnSUtzenmleUpX9Z1wLi+b7aZ\nmVn/aEVw3gt4uOzvrjytmTT18g6WtAZAUjewZ41lrS5bVleNZW3MI2kD8GRE7N7c5lXX09PDM8+t\n59En/spD3X/mga6/sHRZNw889Cce+9Mz/OmpZ3n8yWd44qlneea59fT09PRldWZm9hLSknvOW6Cj\ncZLNtDK6bcn6AbYF+Np3f8GAHXetUqDf9qVMZi/Ylh7IL0qujI122WkAsz74BnZ++YB2FwWA7u7u\n0sdt21mOvyWtCM6rgX3K/h6ap1Wm2btKmgF18nZHxGBJa3KX9aMNllVrenmeP0TEtsAukp6ot1ER\nMQs4p9q8rl9cXi+rmVnbHb+w3SWoakVEVE47V9KsNpSl0FoRnJcCwyNiGPAIMAmYXJFmIXAasCAi\njgCezEH38Tp5FwLTgNnAVOCGsulXR8QXSd3Vw4E7JfVExNqIGJvLNAW4uCzPVOAO4ATSA2Z15YNl\nVvm0iNgeeDavc0OjZWxlK4H92l2ICi5Tc1ym5hWxXC5TY9sCK4AdJD3X7sL8Lehoxb3Q/HOoL7Hp\n51DnR8R0oEfSlTnNJcCxpJ9S/ZOku2vlzdN3B64htXgfJP2U6sk8bybpCex19P4p1WH0/inVGXn6\n9sA3gEOBPwKT8sNkW7KtPZIK14FWxHK5TM1xmZpXxHK5TM0pYpmKrCX3nCXdBETFtCsq/j692bx5\n+hPA0TXyfA74XJXpdwGvqTL9OdLPr8zMzArPbwgzMzMrGAdnMzOzgnFwfuHObXcBaihiuVym5rhM\nzStiuVym5hSxTIXVkgfCzMzMrHXccjYzMysYB2czM7OCcXA2MzMrGAdnMzOzgnFwNjMzK5h2jUr1\nNym/avQiNr1qdHYLlrkKWAs8D6yTNDYidgMWAMOAVaRXl67N6WcCJwPr6f3q0jH0fnXpmXn6ANLY\n1ocBjwPvk/RQnjcV+DRpxK9u4CBgjaTX5vntKMe/S5qXpy8A/j5P/y5wUk73QTYNhPKp/Ja5rVWm\nI4Cb87KeAWZJuqiddRURQ0mvuh1Neofxb4Aj2llX+ZW5twMjSOeZB0ivz925jfVUq0ztPqb2JY1l\nPzrn2bed9VSnTEWpp92Bu4CTJK3nRcot5yZFxDbAJcB44GBgckQc1IJFPw8cKelQSWPztLOAJZKC\nNEjHzFyGUaTXkI4EJgCXRkTpXbWXAadIGgGMiIjxefopwBOSDiRdWFyQl7UbcDZwOPB60mAe760o\nWzvKcU5EDMx5Xkn6kgp4Mi8D4AuSxuR/pZPDyK1UppnAeZK2B64FzsrHQTvraj3wZ9LgLoNI+/JT\n7ayr/Mrc/yUNXvNy0njsn21nPdUpU9vqKeeZDfwOuC7vy1PaWU91ylSEevp8Xlb5+eBFycG5eWOB\n5ZIelLSOdAXX2YLldrD5fugE5ubPc4Hj8+fjgPmS1ueBO5YDY/OQmjtLWprTzSvLU76s64C35c/j\ngcWS1uYBRRYChxSgHItJA6QAvJYUAEvr//v8udrL8zu3Upn+Dvh8/jwnl2VoO+tKUjcwBviOpL8A\nvwLeVYC6eivwHWB74In8d7uPqWplanc9HU0aYe+rwMOk47zd9VStTO2up7eR9l2pTkplelFycG7e\nXqSDtKQrT+urHuAHEbE0Ij6Qpw2WtAYgn3j3rFGG1XnaXrk81cq2MY+kDcDaPOJXtWUNqSjbnm0q\nx14RMQj4U66f0rJelT+fHhH3RsRXy66qt1qZJD1fNm83Uldpu/ZZr3Llrr/9SS3DttcVqfuxG7gF\neEUR6qlKmdpdTwOAT5CO9WdIx3m766lamdpdT+XfvfLzwYuSg3P7vVHSGOAdwGkR8WY2BaSSVr7G\nrS9Dtm3tclRLcymwv6TRpBPs56uk6fcyRcQrgCuAP+TWarv3WUcu03XAOaTbJW2vK0mHknoWRpNa\nq22vpyplamc9HQNskHRvg7Rbs55qlantx1ML11d4Ds7NWw3sU/b30DytTyQ9kv9/DLie1H2+JiIG\nA+SuodIDGKtJ41tXlqHW9F55ImJbYBel4TirbU93RfHaVY7Vkv4IDGTTF7I0/TFJpRPVV0j1tVXL\nFBEvIwXBW4D7C1RX15HGLV9WoLraRtJTwH2kC4a211NlmdpZT6RbNztHxO+BbwNvIj030N2ueqpV\npqIcT1WW9aLk4Ny8pcDwiBiWnzScRLpPu8Ui4uW5tUNE7AS8nfSk7ULSQyuQHvK5IX9eCEyKiAER\nsR/pwZ87c7fX2ogYmx/EmFKRZ2r+fALp4RJITxwfExED80MYxwA/offVabvKcXOedxvp3mlHaf35\nRFXyHuC3bSjTElIA3LFiWe2sq78C6yV9qQh1FRGvBH4KnBAROwLvzvXWtnqqVaZ21pOkT5EuqmaS\nzimPkh5S+1676qlWmQry3TuhSp28KPmnVE2StCEiTic9oFD6KdX9DbI1Mhj474joIe2LqyUtjohf\nAtdExMnAg6QnIZG0LCKuIQWGdcCMsivZ0+j9k4Wb8vQ5wDciYjnwR9KXDUl/iojPAr8kdZk9CtwE\nDIqIh0hdo+cD127lcpybHwQhL+MLuW72B84ALoiI0aRW2Cpg+lYu07X53+tJ9+JeH+nncLPbsM/O\nlfRkRLyR1ArZIyKezeX6fjvrKiJeQ/rJ0tfy/hPwUdJPhNpVT7XKNKfNx9RZpAdMX0U+t7SznuqU\nqRD1lOffk5fxouVRqczMzArG3dpmZmYF4+BsZmZWMA7OZmZmBePgbGZmVjAOzmZmZgXj4GxmZlYw\nDs5mZmYF09RLSCLiRNKIRf8D/Kekw/u1VPXL8kbgTEknNEy85euYCryr2joi4hBghKRrN8/Z1LLP\nBX7bKH9ez3+Rxpv9H0kTy+Z9APhQ/rMHuFDS1RX57wPekF9T2GcR8W7gTZI+uYX5hwFvl/SVJtN/\nmvSi+0trzP86sLTW/DrLXQm8U9KyLUnXqO4j4l9Jby/qAeZKOi9Pr7c/x5NeYvI88DLgekn/WrHe\nlu7PoomI54FXSPprk+nPAXaS9C8N0k0FfiZpRZPL3R64T9LwiDgK+BxpEIgdSO9RPzqn+xhpbOMD\ngXdLWlSTC3AkAAAO5klEQVS2jD1Jr1Hdl/TmtumS7qyzztnAmcBekh4vm76xTiLi+8CHJK1sZjv6\nqtnvyQtY3hmklyw93jDxlq/jHNL4zy94jOeIuI30XV5UMb1mLOhvzbacjye99xla+wL2LXE88N9b\nYT21tvNQ8tt6qon0ntiaJJ3TZGBfA3yE9KWt9ADwVkmHAO8ELoqIje+jjYiDSe+jbfpE3kS5v7el\ngTnbDzj1BaTvpJiv56tZ9xHxFtKY2KOA15BeE/mmnO9Rau/PnwCHKg2AMhp4e0SUhnzsl/1ZQP11\nXplGeitYs44Gbs31dx1pLOIxkkYBHytL90PS2MU/qrKMzwE/UhqL+XTgm7VWFuld0e8nHQMnVcze\nWCeS3rW1AnPlulvkTDaNrNVSZcf6OaQLqVZrS8xr2HKO9B7pQyX9PCLeCrwsIi4H3kC60p8kSTnt\nJ0kHWg/pXdQfyld95wAHAbuQvih3kV4N+XnSS87/u3QFnN/f+mXS6wh3BL4t6fyyIr0TOC+XZWMr\nvsrfJwMfznmeY9P4tt9i00GyRNLHIg1kcAlwFPAYcG+NutgdOJf0Uvi7gR9LOjNf4Z6by3ZjRFxL\nGsHl5aQr7islXZyXsbHFl+slSIMW7A+sAE6Q9Gx+L213pMHVe5H047LPqyPiEdKL4B/KkzcGtnxF\neC9pHOLdgGslfbpi3hGkV+i9KyKmAB8n7dv/JV31P155BZnTzQC2BdaSXtn3QJ43E5icl/EX4M25\nfvfN9bYCeB+pJXlk3j9/kfTmnH+vsm37O9Lx0EFqVZ4naUHeztdExC2kY+UXkqbm/JNJr/p8WU73\nCUmld/eW789Gx1op3cdIY8q+p0HdTwTmSfq/nG9e3s6fKg1w8kiN/VneWnx5Lnf5sJQt3585fa/9\nJOlNeXrlvv1nScsj4g2k/dhrX0TEqaST77OkC/6Jkh6IiBHARaSBHAYAF0mam9fxHuDfSa8a/W5l\nnVTZB7uQXtd4MGmAlq78PxHxNuA80ghT25FaT9dExDTgdcDFEXFerodHqfHdrKjrnYGd2DTgBJJ+\nVfb5rrzuaiMlTQSG5XQ/i4hnI+KwUp4K7yB9H84mjXL2xbJ5G5dd3pKNiJHA1/M2/Ir0LuvPSlqU\nj4GlpPPz/yMdHzPzMmoe75FGw/sv0rn7x9QYASrSGABfBg7Pab8h6cLKMpb/TWpQvQq4LtLrZf9R\n0u/KlrkH1c/L2wAXkMZ47iG9Y/tfJPXk8+h60vnzFRHx85z35/l8fGTO8wXShfIOpHdzfzTnL9Xh\nTqR3hO9QbXuzXSPihlzPjwAnSXokIl5N/fP8c6Self1JDcrvkeLEUNJ34eLN1lSmmZbz0aSrxJJR\nwKW55XAt8JlcmAnAicARkl5L+pKUd82NIZ2oRpAC9edIlX4IMDUiDsjp5gFfknQE6Yv1jogYl9cx\nitS1tDanrTr8XEQcSXoP6zFKw5sdBTyVy7dC0iG5/P+W800nfZkOyts7liqURk05m3TwjJFU3gp6\nWtJYSecAK4Fxkl5Hegfz9IiIassEDiNd4IwkncBOrJGuqrytA0kXPCWd9B6UYyTphH0o8O6IeEfZ\nvP1Iw1a+K7fQPgccnevtPtLJuKRUv28inYDenC+G/pP0vuKN3UCk42A0qcuvh/SO3WW53iaS9vuR\nkkYpDeH3rrL1lJf/X4ALcr7XADeWpTuYFDQPBg4rHSfATZKOkHQYKfjMpbqax1q2bUR8idSanSDp\nz+WZq9T9PqT3IJc8RO9ReWqKiMMi4lekgHNrRfday/dntf2Up1fbt1/Py/4k1ffFBcBRueV/OPBQ\nbs18i3QL6vWkC7SZETEid/teSTo2xpBOYo2cDazNLdgTgLeWzbsrb/NhpIESPh8RAyVdRXpH84dz\nmW+lznczB9pxpO/3k6SRl1ZExMKI+GREDG1UyHwBXzpXlDxM7ePgZOBrkn5Oavg0c8vwG6Tj9rWk\ni5/KPHvnC90xwAcanVtzA+zbwGn5vPhjeo8MVe5fScNuvgZ4I+ncPb5eYSX9B/AH4L15P/yuIkmt\n8/KppBGyRudtOZTevW+HkG6VjZF0ep72hvz3U6TA/MO8vYeSxjI4Oaf7BnBJ3o5qdVjujcDHJB1M\nqptSUG10nh9FinGj8jaeKOktpFG+/j0iXk4dzQTnyu5FSfp1/nw7UNrx44D5kp7Of19JCnQlN0v6\nSz5R/xr4gaT1udUg4IBc2CNJV7r3AHeSrv5G1ihLLe8gtWAeywX+q6TncnknRMTsiHgnUCrrUaT7\ng89LeoY63VB1zCv7vBPwtYj4NfCzvA2H1Mh3c9lJ/w421WdD+WJlLim4P5envQrYVlL5gOVzJfXk\nfTMfeFvZvG9p0wDmR5Huh5ZaC1eQ9muld5O+NHfk/XQ+mwZRfydwWak1KOlPNYr/e2C7iJgTEe+n\n95V6+X6+DfhMRHw6Isaqd9fu9ZLWSVoH3M2muhseETdHxG+BBcDgHBA2auJYg3TB0SPpJFXcx6pW\n930h6a58YtobeF0Okv25P2vtp3r7tta+uAWYF2lgmKGSniVdhI8kDVRwD6nbdkCe9nrgLm26D3xl\nE1V0FHmgA6XhA8tb23sC34mI35BaV7uRWlTV1PtuHgHcW9qfkj6U511POnn/pizQ9VluMR5J6j6H\ndA45pUGenYGDJX07l/Eu0vm03LV53lOkIU0bnVuD1Lj4Sc53LakxU83RpIsW8nnr2/Q+z9dTazzm\nWuflo4GrJG3I37+vV6zrunys1VrHccAn8vbeTQrwB+Y6fLWkb+btuIM0GmAtPy07Vr/Kpu9bo/P8\n9TnGPUOKcYvy+v4APEFqQddUt1s7X0keTeoiLCmvjA2NllEnX7XlbEPqYntd2QmmXCeb7veup/fF\nRb1uCQAk3R4Rh5Kurk8ita7fXC9PRHyX1BrpqZO2h9R9W/IfpO6PKUpdKDfXKV9lPTTcjlyuA0kP\n6H1Q0i/KZlW2shr5S515tb5MHaSr/VkvYD29SHoqt+yOJO2P2XnfPAsMk/SbnO5LEbGQdBx+OSJu\nlnR2XkytY/HbwEckfS8fw39l83ptdKxBup94ZETsUbrQg7p1/xC5OzPbh9RqapqkJyLiRlLr8Kds\nnf1Zmabqvq2yLxZL+ldJ742I15FOWrdFxHTSdj+WW8a9RHq48IWWq57LgBskvScvX9T+HtX7bh5P\nxcW/pFWki7SvRcQi0sXLRbUKkvcfEbF7Weu51nEwhXTM/iY3uLYDdoqIM/p4wfeCzq2RRuuqtCX3\nWV/wORm27Lyc1TvWS47P+3CjHJz7ch+5lLfReb5ezHueBrGzUcv59cCvq1ydVLMEeF9E7JRPiB8g\nDa/YNEl/IV1hf6o0LSKGRsTgiPh/wABJpfuqvwf2jzTuZwep+7Lkf4AppdZSLtP2EbEv8GdJ15Ae\n7iidOG4FToqIbSON8/qPZWV6j6RDc1fJ06QryoEVRa88uewKPJx32Ktp7kCrpaNy+RGxP2l4xw9J\nqqzjar0L78/bthPp4uaWGuu6jdTVVWplfhD4QZV03yPV7165PNtERKkuvw/8c2wap3r3PL1XvUUa\nW3cnST8gfRmfJN2beQdlXdcRcaCklUpPeX+JGrccKgwkDWkHqSWy2UMidY618hb210hdY0vy8deo\n7q/N9bJDPo6mANdUpKm2Pw/Mx3Dpnt4ENrWG+mt/1tpPNfdtlX1xeJ6/v6RfSrqA9J0/lNRS+Gvu\nFSltZ+T13Q4cWtYK/UCN8pe7FfinvJxBwN+Xzdu4vyPiGNK9wZLK72u97+a7cr2UzhnHlJV9V9JF\nejMPZV0L/HPO9yZgB1W/3zwN6JS0f/63D6lF+w+1Fpxbq/dFeq6CvG+qBdfKfPWOdwE7RvolDBHx\nD2x+jitZQm7d5yA3iU3n+eXk7uFIt4cGl+VbW2uZdc7LS0jd5ttFei5oKvVjSuW+Xki6lbJNXs+g\niNg31+FvIv0KiYgYS/06fGPZsXoym75vrTzPb6ZRq3ezK8laJN2Ur8BuJ11Z/JL0wEc1Ve8VZyeS\nnoD9Fekk9hSpQt5GWQtC6Yb850ndFd2kVs6oPO9HEfE50kn1edIVy7tJrbSPRsSGvOzpeXFXkrry\n7ic9EHYnvQ+scrcAH89dJT9Suu9cuT3nkcYqPYX0dG/5E51NXbFF+unRT0kPbuwQeYxlSV8ndTXu\nDvxbpLFNe0j3A28H9lPZgyvZ74Cfk7r7FkgqBb9eZZF0X0ScxaZ6+z2b6mhjekk/ifRTp4X5wB9A\nOiHdLWlepK7Y2yNiHfBn4C2kYKPcBfQ70r3Qr0S6N7kdqcvnDtKDRZeXrfPDkX7S8n+k/Vi6t1Tv\nGPoIcENEPEEKpH+ska7WsfZo2bZ+K9JDLEsiPVdRte4l/SAfd98l3dst/ZTqJ9Bwf3YC03J9bQt8\nV9KcSA9B9cv+rLWf6u3bGvtiO+CqiBiY1/9Qro8NkVrIX4qIj+d03aSHxR6L9BDZ9yPir8B3aOyz\npNbrMjZ930tmApdG+pniUtJDUiVXku5Bf4L0QFjV72ZEHERq6Zdaux3AaRFxcd7W7UgPP5UezPs4\nqUfxlXn7nwVG5SA4E/hmpPv6fyU9JEvO9xXSOfVRYDdJt1Vs57dIx+DV9N6f5Z+nksZWPovUHftr\nUvCrTFf5d9XjXdKjOdhflo+TH7Pp4dKNZZb0fdJ+uCTSLYTSMV664DsbmBsRHyJdTJU/f/HlXE9P\nkxo/pZ+gnUr98/IBpLGbe0jf5a/W2E5IDxjflo+pI0nngQuAX0VED2k/nkm6kJsKfD3SQ8y/IZ3z\nS9t7LunXEaXbLT8D/jPSA46PsOmp+hdynm/092bqjucc6Z7dkerH36Y1K1KX0qcl3dPushRVRLwP\n+DtJZ5RNq/r7vS1Y9idIgWJGH4tZbx0vI13FD6/T1fyS0Z/703rLJ+n/k/TFhonbLCJ2yr14RHrq\n+DYgtOlBWXsRqBuc7W9fRNxK+onZFp/M85Xke0k/gah8+MS2olbsT/vblrvbLyS1MnuAz+RWrb2I\nODibWSFEenp5MZu6/ErB57vKb1oze6lwcDYzMysYD3xhZmZWMA7OZmZmBePgbGZmVjAOzmZmZgXj\n4GxmZlYw/x+yKIkkRTa1qwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "sns.distplot(s10_featurecounts['/home/ucsd-train01/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam'])" + "sns.distplot(s10_featurecounts['/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam'])" ] }, { @@ -1136,7 +3290,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "collapsed": false, "deletable": false, @@ -1148,7 +3302,18 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "90730267" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "s10_featurecounts['Length'].sum()" ] @@ -1173,7 +3338,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "collapsed": false, "deletable": false, @@ -1183,16 +3348,160 @@ "grade_id": "show_make_other_columns", "locked": true, "solution": false - } + }, + "scrolled": true }, - "outputs": [], - "source": [ - "reads = s10_featurecounts['/home/ucsd-train01/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam']\n", - "\n", + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ChrStartEndStrandLength/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bamnew_column
Geneid
ENSMUSG00000102693.1chr130732533074322+107000.00
ENSMUSG00000064842.1chr131020163102125+11098044457830.83
ENSMUSG00000051951.5chr1;chr1;chr13214482;3421702;36705523216968;3421901;3671498-;-;-363400.00
ENSMUSG00000102851.1chr132527573253236+48000.00
ENSMUSG00000103377.1chr133657313368549-281900.00
\n", + "
" + ], + "text/plain": [ + " Chr Start \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 chr1 3073253 \n", + "ENSMUSG00000064842.1 chr1 3102016 \n", + "ENSMUSG00000051951.5 chr1;chr1;chr1 3214482;3421702;3670552 \n", + "ENSMUSG00000102851.1 chr1 3252757 \n", + "ENSMUSG00000103377.1 chr1 3365731 \n", + "\n", + " End Strand Length \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 3074322 + 1070 \n", + "ENSMUSG00000064842.1 3102125 + 110 \n", + "ENSMUSG00000051951.5 3216968;3421901;3671498 -;-;- 3634 \n", + "ENSMUSG00000102851.1 3253236 + 480 \n", + "ENSMUSG00000103377.1 3368549 - 2819 \n", + "\n", + " /home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 0 \n", + "ENSMUSG00000064842.1 980 \n", + "ENSMUSG00000051951.5 0 \n", + "ENSMUSG00000102851.1 0 \n", + "ENSMUSG00000103377.1 0 \n", + "\n", + " new_column \n", + "Geneid \n", + "ENSMUSG00000102693.1 0.00 \n", + "ENSMUSG00000064842.1 44457830.83 \n", + "ENSMUSG00000051951.5 0.00 \n", + "ENSMUSG00000102851.1 0.00 \n", + "ENSMUSG00000103377.1 0.00 " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "reads = s10_featurecounts['/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam']\n", "s10_featurecounts['new_column'] = (s10_featurecounts['Length'].sum() * reads)/2e3\n", "s10_featurecounts.head()" ] }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "46451180" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "reads = s10_featurecounts['/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam']\n", + "reads.sum()" + ] + }, { "cell_type": "markdown", "metadata": { @@ -1215,7 +3524,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 66, "metadata": { "collapsed": false, "deletable": false, @@ -1227,18 +3536,159 @@ "solution": true } }, - "outputs": [], - "source": [ - "reads = s10_featurecounts['/home/ucsd-train01/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam']\n", - "\n", - "# YOUR CODE HERE\n", - "\n", + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ChrStartEndStrandLength/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bamfpkm
Geneid
ENSMUSG00000102693.1chr130732533074322+107000.000000
ENSMUSG00000064842.1chr131020163102125+110980191.794717
ENSMUSG00000051951.5chr1;chr1;chr13214482;3421702;36705523216968;3421901;3671498-;-;-363400.000000
ENSMUSG00000102851.1chr132527573253236+48000.000000
ENSMUSG00000103377.1chr133657313368549-281900.000000
\n", + "
" + ], + "text/plain": [ + " Chr Start \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 chr1 3073253 \n", + "ENSMUSG00000064842.1 chr1 3102016 \n", + "ENSMUSG00000051951.5 chr1;chr1;chr1 3214482;3421702;3670552 \n", + "ENSMUSG00000102851.1 chr1 3252757 \n", + "ENSMUSG00000103377.1 chr1 3365731 \n", + "\n", + " End Strand Length \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 3074322 + 1070 \n", + "ENSMUSG00000064842.1 3102125 + 110 \n", + "ENSMUSG00000051951.5 3216968;3421901;3671498 -;-;- 3634 \n", + "ENSMUSG00000102851.1 3253236 + 480 \n", + "ENSMUSG00000103377.1 3368549 - 2819 \n", + "\n", + " /home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 0 \n", + "ENSMUSG00000064842.1 980 \n", + "ENSMUSG00000051951.5 0 \n", + "ENSMUSG00000102851.1 0 \n", + "ENSMUSG00000103377.1 0 \n", + "\n", + " fpkm \n", + "Geneid \n", + "ENSMUSG00000102693.1 0.000000 \n", + "ENSMUSG00000064842.1 191.794717 \n", + "ENSMUSG00000051951.5 0.000000 \n", + "ENSMUSG00000102851.1 0.000000 \n", + "ENSMUSG00000103377.1 0.000000 " + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "reads = s10_featurecounts['/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam']\n", + "s10_featurecounts['fpkm'] = (reads * 1e9)/(reads.sum() * s10_featurecounts.Length)\n", "s10_featurecounts.head()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "46451180" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "reads.sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, "metadata": { "collapsed": false, "deletable": false, @@ -1249,9 +3699,22 @@ "locked": true, "points": 5, "solution": false - } + }, + "scrolled": true }, - "outputs": [], + "outputs": [ + { + "ename": "AssertionError", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0ms10_featurecounts\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'ENSMUSG00000064842.1'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'fpkm'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m151.9538381109796\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m: " + ] + } + ], "source": [ "assert s10_featurecounts.loc['ENSMUSG00000064842.1', 'fpkm'] == 151.9538381109796" ] @@ -1274,7 +3737,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 68, "metadata": { "collapsed": false, "deletable": false, @@ -1284,13 +3747,57 @@ "grade_id": "show_fpkm_distribution", "locked": true, "solution": false - } + }, + "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEYCAYAAACHoivJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG95JREFUeJzt3X+QXXWZ5/F3JzH4GxGhs0VIQAIPY1xcGY0sOq7YMhB3\nyqZqd2KyrBJ1l+wCO27Nlg7M7pDOVm1JZFSkmFlgJ8M0FE7C6ChZKyoiTs3+UITN4CgyzySSQJql\ng6gJaxQIyd0/7rf15tK5fejunHtveL+qqJzzvd/n3OfcCv3p8yP3DDQaDSRJqsOcbjcgSXrxMHQk\nSbUxdCRJtTF0JEm1MXQkSbU5qkMnIka63cNM2H932X/39HPvYP+dDFS5ZToiLgSuoxlSGzJz/SRz\nrgeWA/uA1Zn5QKfaiDgO2AQsBnYCKzJzb0TMA/4EOBuYC9yWmddMZ+ciopGZA9Op7QX231323z39\n3DvYfydTHulExBzgBuACYCmwKiLObJuzHDgtM08H1gA3Vqi9Erg7MwO4B7iqjP82MD8zzwLeAqyJ\niEUz2ktJUk+ocnptGbAtMx/JzP3ARmC4bc4wcCtAZt4LHBsRg1PUDgOjZXkUuKgsN4BXRMRc4OXA\nM8BT09k5SVJvqRI6JwG7WtbHyliVOZ1qBzNzN0BmjgODZfzzwM+Bx2medvvDzNxToU9JUo+bd4S2\nO51zgQfLn28DngMWAMcD/yMi7s7MnS9kYxFxTPnzNODANPrpCRFxSrd7mAn7765+7r+fe4e+7n8u\nNH+GZuYzs73xKqHzGNB6TWVhGWufc/Ikc+Z3qB2PiMHM3B0RC4Anyvgq4KuZeRD4UUT8L5rXdnYe\nrsFyp8Xaw7y8/XB1fWJHtxuYIfvvrn7uv597h/7v/+mIaB9bl5kjM9loldC5D1gSEYtpnvJaSTMY\nWm0GLgc2RcQ5wJ4SJk92qN0MrAbWlz/vLOOPAu8Gbo+IVwDnAJ/p1GD5EEZax8oRzvbbb7+dBQsW\nVNhNSdL4+DgXX3wxwJLM/OFsb3/K0MnMAxFxBXAXv7rt+aGIWAM0MvPmzNwSEe+NiO00b5n+UKfa\nsun1wB0R8WHgEWBFGf8j4JaI+H5Z35CZE8svxAGABQsWsHDhwmmUS9KL2hG5LFHp3+n0o3I+dcc3\nvvENQ0eSKhobG2NoaAjg1Bd6Lb2Ko/obCSRJvcXQkSTVxtCRJNXG0JEk1eZI/ePQnvHNb32f1x6/\n+5Cx17xiHm9/25u61JEkvXgd9aEz55jXMPdlxx8y9uwBv8pNkrrB02uSpNoYOpKk2hg6kqTaGDqS\npNoYOpKk2hg6kqTaGDqSpNoYOpKk2hg6kqTaGDqSpNoYOpKk2hg6kqTaGDqSpNpU+pbpiLgQuI5m\nSG3IzPWTzLkeWA7sA1Zn5gOdaiPiOGATsBjYCazIzL0R8S+AjwENYAA4C3hzZv7tDPZTktQDpjzS\niYg5wA3ABcBSYFVEnNk2ZzlwWmaeDqwBbqxQeyVwd2YGcA9wFUBmfi4z35yZZwMfAB42cCTp6FDl\n9NoyYFtmPpKZ+4GNwHDbnGHgVoDMvBc4NiIGp6gdBkbL8ihw0STvvarUSJKOAlVC5yRgV8v6WBmr\nMqdT7WBm7gbIzHHgxEne+/3An1foUZLUB47UjQQD06hptK5ExDJgX2b+YHZakiR1W5UbCR4DFrWs\nLyxj7XNOnmTO/A614xExmJm7I2IB8ETbNldS8SgnIkaAtVXmSpIq2RER7WPrMnNkJhutEjr3AUsi\nYjHwOM0wWNU2ZzNwObApIs4B9pQwebJD7WZgNbAeuAS4c2JjETEArADeUWUnyocw0joWEacAO6rU\nS5Ke59TM3DnbG53y9FpmHgCuAO4CHgQ2ZuZDEbEmIi4tc7bQTMXtwE3AZZ1qy6bXA+dHRAJDwDUt\nb/tO4NEjscOSpO4ZaDQaU8/qQxNHOldfO8rxJyw45LVjGk9x3rlndaUvSeplY2NjDA0NQbeOdCRJ\nmi2GjiSpNoaOJKk2ho4kqTaGjiSpNoaOJKk2ho4kqTaGjiSpNoaOJKk2ho4kqTaGjiSpNoaOJKk2\nho4kqTaGjiSpNoaOJKk2ho4kqTaGjiSpNoaOJKk2ho4kqTbzqkyKiAuB62iG1IbMXD/JnOuB5cA+\nYHVmPtCpNiKOAzYBi4GdwIrM3FteOwu4EXg1cAB4a2Y+O/3dlCT1gimPdCJiDnADcAGwFFgVEWe2\nzVkOnJaZpwNraAbGVLVXAndnZgD3AFeVmrnAbcClmflG4F3A/pntpiSpF1Q5vbYM2JaZj2TmfmAj\nMNw2Zxi4FSAz7wWOjYjBKWqHgdGyPApcVJZ/E/huZn6/bO+nmdmY1t5JknpKldA5CdjVsj5WxqrM\n6VQ7mJm7ATJzHDixjJ8BEBFfjYj7I+JjFXqUJPWBStd0pmFgGjUTRzPzgLcDbwGeBr4REfdn5jcP\nVxgRI8DaabynJGlyOyKifWxdZo7MZKNVQucxYFHL+sIy1j7n5EnmzO9QOx4Rg5m5OyIWAE+U8THg\nrzPzpwARsQU4Gzhs6JQPYaR1LCJOAXZ03jVJ0mGcmpk7Z3ujVU6v3QcsiYjFETEfWAlsbpuzGfgg\nQEScA+wpp8461W4GVpflS4A7y/LXgH8YES+NiHnAPwF+MJ2dkyT1lilDJzMPAFcAdwEPAhsz86GI\nWBMRl5Y5W2geim0HbgIu61RbNr0eOD8iEhgCrik1e4BPA/cDW4H7M/Mrs7S/kqQuGmg0js4bwyZO\nr1197SjHn7DgkNeOaTzFeeee1ZW+JKmXjY2NMTQ0BF08vSZJ0qwwdCRJtTF0JEm1MXQkSbUxdCRJ\ntTF0JEm1MXQkSbUxdCRJtTF0JEm1MXQkSbUxdCRJtTF0JEm1MXQkSbUxdCRJtTF0JEm1MXQkSbUx\ndCRJtTF0JEm1MXQkSbWZV2VSRFwIXEczpDZk5vpJ5lwPLAf2Aasz84FOtRFxHLAJWAzsBFZk5t6I\nWAw8BPxd2fS3M/Oyae+hJKlnTHmkExFzgBuAC4ClwKqIOLNtznLgtMw8HVgD3Fih9krg7swM4B7g\nqpZNbs/Ms8t/Bo4kHSWqnF5bBmzLzEcycz+wERhumzMM3AqQmfcCx0bE4BS1w8BoWR4FLmrZ3sB0\ndkaS1NuqhM5JwK6W9bEyVmVOp9rBzNwNkJnjwIkt806JiK0R8c2IeEeFHiVJfaDSNZ1pmM6RSqP8\n+TiwKDN/GhFnA1+KiDdk5s8OVxgRI8DaabynJGlyOyKifWxdZo7MZKNVQucxYFHL+sIy1j7n5Enm\nzO9QOx4Rg5m5OyIWAE8AZOazwLNleWtE/BA4A9h6uAbLhzDSOhYRpwA7ptw7SdJkTs3MnbO90Sqn\n1+4DlkTE4oiYD6wENrfN2Qx8ECAizgH2lFNnnWo3A6vL8iXAnaX+deUGBCLi9cAS4OHp7Z4kqZdM\nGTqZeQC4ArgLeBDYmJkPRcSaiLi0zNlC81BsO3ATcFmn2rLp9cD5EZHAEHBNGX8n8LcRsRW4A1iT\nmXtmZW8lSV010Gg0pp7VhyZOr1197SjHn7DgkNeOaTzFeeee1ZW+JKmXjY2NMTQ0BF08vSZJ0qww\ndCRJtTF0JEm1MXQkSbUxdCRJtTF0JEm1MXQkSbUxdCRJtTF0JEm1MXQkSbUxdCRJtTF0JEm1MXQk\nSbUxdCRJtTF0JEm1MXQkSbUxdCRJtTF0JEm1MXQkSbWZV2VSRFwIXEczpDZk5vpJ5lwPLAf2Aasz\n84FOtRFxHLAJWAzsBFZk5t6W7S0CHgTWZuanp7uDkqTeMeWRTkTMAW4ALgCWAqsi4sy2OcuB0zLz\ndGANcGOF2iuBuzMzgHuAq9re+lPAlmnulySpB1U5vbYM2JaZj2TmfmAjMNw2Zxi4FSAz7wWOjYjB\nKWqHgdGyPApcNLGxiBgGHqZ5pCNJOkpUCZ2TgF0t62NlrMqcTrWDmbkbIDPHgUGAiHgl8HFgHTBQ\naS8kSX2h0jWdaZhOWBwsf64FPpOZP4+IStuKiJFSJ0maHTvKz+BW6zJzZCYbrRI6jwGLWtYXlrH2\nOSdPMmd+h9rxiBjMzN0RsQB4ooy/DfhnEfFJ4DjgQET8IjP/+HANlg9hpHUsIk4Bdky1c5KkSZ2a\nmTtne6NVQuc+YElELAYeB1YCq9rmbAYuBzZFxDnAnhImT3ao3QysBtYDlwB3AmTmOyc2GhFrgf/X\nKXAkSf1jyms6mXkAuAK4i+aF/Y2Z+VBErImIS8ucLTQPxbYDNwGXdaotm14PnB8RCQwB18zqnkmS\nes5Ao9Hodg9HxMTptauvHeX4ExYc8toxjac479yzutKXJPWysbExhoaG4AidXvMbCSRJtTF0JEm1\nMXQkSbUxdCRJtTF0JEm1MXQkSbUxdCRJtTF0JEm1MXQkSbUxdCRJtTF0JEm1MXQkSbUxdCRJtTF0\nJEm1MXQkSbUxdCRJtTF0JEm1MXQkSbUxdCRJtZlXZVJEXAhcRzOkNmTm+knmXA8sB/YBqzPzgU61\nEXEcsAlYDOwEVmTm3oh4K3Bzy6bXZeaXprd7kqReMuWRTkTMAW4ALgCWAqsi4sy2OcuB0zLzdGAN\ncGOF2iuBuzMzgHuAq8r494Bfz8w30wyxm8p2JEl9rsoP82XAtsx8JDP3AxuB4bY5w8CtAJl5L3Bs\nRAxOUTsMjJblUeCiUv90Zh4s4y8DJpYlSX2uSuicBOxqWR8rY1XmdKodzMzdAJk5Dpw4MSkilkXE\n94HvAv+mJYQkSX2s0jWdaRiYRk1jYiEzvwO8MSICuDUivpKZzx6uMCJGgLXTeE9J0uR2NH8EH2Jd\nZo7MZKNVQucxYFHL+sIy1j7n5EnmzO9QOx4Rg5m5OyIWAE+0v3FmZkT8DHgjsPVwDZYPYaR1LCJO\nAXYcrkaS1NGpmblztjda5fTafcCSiFgcEfOBlcDmtjmbgQ8CRMQ5wJ5y6qxT7WZgdVm+BLiz1J8S\nEXPL8mIgaN7dJknqc1OGTmYeAK4A7gIeBDZm5kMRsSYiLi1zttA8FNsO3ARc1qm2bHo9cH5EJDAE\nXFPG3wF8NyK2Al8A/m1m/mRW9laS1FUDjUZj6ll9aOL02tXXjnL8CQsOee2YxlOcd+5ZXelLknrZ\n2NgYQ0ND0MXTa5IkzQpDR5JUG0NHklQbQ0eSVBtDR5JUG0NHklQbQ0eSVBtDR5JUG0NHklQbQ0eS\nVBtDR5JUG0NHklQbQ0eSVBtDR5JUG0NHklQbQ0eSVBtDR5JUG0NHklQbQ0eSVJt5VSZFxIXAdTRD\nakNmrp9kzvXAcmAfsDozH+hUGxHHAZuAxcBOYEVm7o2I9wDXAC8BngU+npnfnMlOSpJ6w5RHOhEx\nB7gBuABYCqyKiDPb5iwHTsvM04E1wI0Vaq8E7s7MAO4BrirjPwJ+KzPfBKwGbpvJDkqSekeV02vL\ngG2Z+Uhm7gc2AsNtc4aBWwEy817g2IgYnKJ2GBgty6PARaX+u5k5XpYfBF4aES+Z7g5KknpHldA5\nCdjVsj5WxqrM6VQ7mJm7AUrInNj+xhHxz4GtJbAkSX2u0jWdaRiYRk2jdSUilgKfAM6fqjAiRoC1\n03hPSdLkdkRE+9i6zByZyUarhM5jwKKW9YVlrH3OyZPMmd+hdjwiBjNzd0QsAJ6YmBQRC4G/BD6Q\nmTunarB8CCOtYxFxCrBjqlpJ0qROrfLz94WqcnrtPmBJRCyOiPnASmBz25zNwAcBIuIcYE85ddap\ndjPNGwUALgHuLPWvAb4M/F5mfnu6OyZJ6j1Thk5mHgCuAO4CHgQ2ZuZDEbEmIi4tc7bQPBTbDtwE\nXNaptmx6PXB+RCQwRPM2aYDLgdOAqyPibyJia0S8bnZ2V5LUTQONRmPqWX1o4vTa1deOcvwJCw55\n7ZjGU5x37lld6UuSetnY2BhDQ0PQxdNrkiTNCkNHklQbQ0eSVBtDR5JUG0NHklQbQ0eSVBtDR5JU\nG0NHklQbQ0eSVBtDR5JUG0NHklQbQ0eSVBtDR5JUG0NHklQbQ0eSVBtDR5JUG0NHklQbQ0eSVJt5\nVSZFxIXAdTRDakNmrp9kzvXAcmAfsDozH+hUGxHHAZuAxcBOYEVm7o2I1wKfB94K3JKZvzOjPZQk\n9Ywpj3QiYg5wA3ABsBRYFRFnts1ZDpyWmacDa4AbK9ReCdydmQHcA1xVxp8G/hPwH2a2a5KkXlPl\n9NoyYFtmPpKZ+4GNwHDbnGHgVoDMvBc4NiIGp6gdBkbL8ihwUan/eWb+b+CZ6e+WJKkXVQmdk4Bd\nLetjZazKnE61g5m5GyAzx4ETq7ctSepHR+pGgoFp1DRmvQtJUk+pciPBY8CilvWFZax9zsmTzJnf\noXY8IgYzc3dELACeeCGNt4qIEWDtdOslSc+zIyLax9Zl5shMNloldO4DlkTEYuBxYCWwqm3OZuBy\nYFNEnAPsKWHyZIfazcBqYD1wCXDnJO9d6YipfAgjrWMRcQqwo0q9JOl5Ts3MnbO90SlPr2XmAeAK\n4C7gQWBjZj4UEWsi4tIyZwvNVNwO3ARc1qm2bHo9cH5EJDAEXDPxnhGxA/gUcElEPNp+t5wkqT8N\nNBpH56WUiSOdq68d5fgTFhzy2jGNpzjv3LO60pck9bKxsTGGhoagW0c6kiTNFkNHklQbQ0eSVBtD\nR5JUG0NHklQbQ0eSVBtDR5JUG0NHklQbQ0eSVBtDR5JUG0NHklQbQ0eSVBtDR5JUG0NHklQbQ0eS\nVBtDR5JUG0NHklQbQ0eSVBtDR5JUm3lVJkXEhcB1NENqQ2aun2TO9cByYB+wOjMf6FQbEccBm4DF\nwE5gRWbuLa9dBXwYeA74aGbeNYN9lCT1iCmPdCJiDnADcAGwFFgVEWe2zVkOnJaZpwNrgBsr1F4J\n3J2ZAdwDXFVq3gCsAH6NZoj9cUQMzHA/JUk9oMrptWXAtsx8JDP3AxuB4bY5w8CtAJl5L3BsRAxO\nUTsMjJblUeCisvw+YGNmPpeZO4FtZTuSpD5X5fTaScCulvUxnh8Ck805aYrawczcDZCZ4xFxYsu2\nvtVS81gZm5annz3AL555joMHGzx34CDPHWgw58AzPPjwjwEYGIABBhiYAwPAwMDAr8YGWtZ/OT7Z\nWMv6Ia8/fw7l9RejRqPR7RbUR/zrcnivevlLmDu3Py/JV7qmMw3T+ak623/F5gJ87svf4SUve83z\nX/3y92f57SSpHmcsPo6P/8u3HJFtj4+PTyzOPRLbrxI6jwGLWtYXlrH2OSdPMmd+h9rxiBjMzN0R\nsQB4YoptHVZEjABrJ3tt7Fs3diqVpL6zA/jaLUf8bbZHRPvYuswcmclGq4TOfcCSiFgMPA6sBFa1\nzdkMXA5siohzgD0lTJ7sULsZWA2sBy4B7mwZvz0iPkPztNoS4DudGiwfwkjrWEQcAzxd6g9U2M9e\ntAM4tdtNzID9d1c/99/PvUN/9z8X2A68NDOfme2ND1Q5z15ue/4sv7rt+ZqIWAM0MvPmMucG4EKa\nt0x/KDO3Hq62jL8WuIPmUc0jNG+Z3lNeuwr4CLCfGdwyHRGNzOzbCyj231323z393DvYfyeVrulk\n5leBaBu7qW39iqq1ZfwnwHsOU/MJ4BNVepMk9Y/+vP1BktSXDB1JUm2O9tBZ1+0GZsj+u8v+u6ef\newf7P6xKNxJIkjQbjvYjHUlSDzF0JEm1MXQkSbUxdCRJtTF0JEm1OVLfMt11VZ52WlMfG4DfAnZn\n5lll7AU/NTUizgb+DHgpsCUz/30Zn0/zWUa/DjwJvD8zH53F/heW7Q8CB4H/lpnX98s+lO/g+2ua\nXz47D/h8Zq7rl/7L9ucA9wNjmfm+Put9J7CX5t+d/Zm5rM/6Pxb4E+CNZR8+DPx9P/QfEWeUPhs0\nv/n/9cAfALd1s/+j8kinytNOa3RL6aPVdJ6a+l+Bj2TmGcAZETGxzY8APylPbb0O+OQs9/8c8LuZ\nuRT4x8Dl5bPsi30oX1h4Xma+GfhHwPKIWNYv/RcfBX7Qst5PvR8E3pWZb87MiWdp9VP/n6X5Q/bX\ngDcBf9cv/Wfm35fP/WyaobAP+GK3+z8qQ4dqTzutRWb+T+CnbcMv6Kmp5dEPr8rM+8q8W1tqWrf1\neWBolvsfz8wHyvLPgIdoPm6in/bh52XxGJpHO41+6b8cab6X5m/bE/qi92KA5/+c6Yv+I+LVwG9k\n5i0Apa+9/dJ/m/cAP8zMXd3u/2gNncM9ybRXnNj61FSg9amprX1PPDX1JJr7MKF1f35Zk5kHgD3l\nG7xnXUScQvNo4du0Pfm1l/chIuZExN8A48DXy/88/dL/Z4CPcehDDvuld0rfX4+I+yLiX/VZ/6cC\nT0bELRGxNSJujoiX91H/rd4PfK4sd7X/ozV0+s1sfi3EEfk68oh4Jc3fZD5ajnjae+7ZfcjMg+X0\n2kKav7ktpQ/6j4h/SvNa4ANTbLPnem/x9nJ65700T83+Bn3w2RfzgLOBPyr7sI/mqal+6R+AiHgJ\nzaOYvyhDXe3/aA2dKk877abdETEIUPGpqZ2epvrL1yJiLvDq8tiIWRMR82gGzm2ZOfGwvb7aB4DM\nfAr4K5rPfeqH/t8OvC8iHgb+HHh3RNxGeepuj/cOQGY+Xv78EfAlmqe+++Gzh+Zv9Lsy8/6y/gWa\nIdQv/U9YDvyfzHyyrHe1/6M1dH75tNNyd8VKmk8k7ZYBDv0NYOKpqfD8p6aujIj5EXEq5amp5RB4\nb0QsKxf2PthWc0lZ/m2aFwZn258CP8jMz/bbPkTE68odSETEy4DzaV6X6vn+M/P3M3NRZr6e5t/h\nezLzA8B/7/XeASLi5eUImYh4BfCbwPfog88eoJyC2lXuAoPm9YoH+6X/Fqto/tIyoav9H5W3TGfm\ngYi4AriLX90y/VA3eomIzwHvAo6PiEeBtcA1wF9ExIcpT00tff8gIu6geafSfuCyzJw49L2cQ29Z\n/GoZ3wDcFhHbgB/T/OE0m/2/HbgY+F65LtIAfp/mY8bv6IN9+AfAaLmjcQ6wKTO3RMS3+6T/yVzT\nJ70PAl+MiAbNnzW3Z+ZdEXF/n/QP8DvA7eUU1cPAh2g+zrkv+i/XoN4DXNoy3NX/d/2WaUlSbY7W\n02uSpB5k6EiSamPoSJJqY+hIkmpj6EiSamPoSJJqc1T+Ox2pbhExDHwC+AWwMjO3HWbeQeCVLV9C\nKr2oGDrS7FgD/EFmfmGKef7DOL2o+Y9DpRmKiE8D/xrYDTxK8xso/jPNr31/KfAfM/Mvy9yDwCtp\nHhF9iua/2l8N3Aw8A5xO82FbX6T5dTfraH7X1XWZeX1d+yQdKV7TkWYoM3+X5pM9/11mvrsM7y/f\nbD0M3BwRryvjDeBlwB1lzsXlmU8Ab6D5wL830PzqoYsz853AO4D/Ur7SROprho40e1q/1HUDNJ/e\nCGwFzmmZ8xXgW5n5e231XyoP0PoFkMCWso3/C/yE5hGP1NcMHenI6PRckb8CLizfet3q6ZblA23r\nB/EarI4Cho50ZHwIICJOp/m01W+1vDYC3A18LSJeVX9rUvcYOtLsaL8jZ15EbKX5vJFLM/PHrfMy\n85M0n+T49Yh4zST1R/LpjlLXePeaNMvKHWqvKNdmJLXwSEeafQ2OwLPupaOBRzqSpNp4pCNJqo2h\nI0mqjaEjSaqNoSNJqo2hI0mqjaEjSarN/wcfjMLmaqxpjAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "sns.distplot(s10_featurecounts['fpkm'])" ] }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "90730267" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s10_featurecounts['Length'].sum()" + ] + }, { "cell_type": "markdown", "metadata": { @@ -1313,7 +3820,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 70, "metadata": { "collapsed": false, "deletable": false, @@ -1325,15 +3832,144 @@ "solution": true } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ChrStartEndStrandLength/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bamfpkmtpm
Geneid
ENSMUSG00000102693.1chr130732533074322+107000.0000000.000000
ENSMUSG00000064842.1chr131020163102125+110980191.794717320.193945
ENSMUSG00000051951.5chr1;chr1;chr13214482;3421702;36705523216968;3421901;3671498-;-;-363400.0000000.000000
ENSMUSG00000102851.1chr132527573253236+48000.0000000.000000
ENSMUSG00000103377.1chr133657313368549-281900.0000000.000000
\n", + "
" + ], + "text/plain": [ + " Chr Start \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 chr1 3073253 \n", + "ENSMUSG00000064842.1 chr1 3102016 \n", + "ENSMUSG00000051951.5 chr1;chr1;chr1 3214482;3421702;3670552 \n", + "ENSMUSG00000102851.1 chr1 3252757 \n", + "ENSMUSG00000103377.1 chr1 3365731 \n", + "\n", + " End Strand Length \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 3074322 + 1070 \n", + "ENSMUSG00000064842.1 3102125 + 110 \n", + "ENSMUSG00000051951.5 3216968;3421901;3671498 -;-;- 3634 \n", + "ENSMUSG00000102851.1 3253236 + 480 \n", + "ENSMUSG00000103377.1 3368549 - 2819 \n", + "\n", + " /home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 0 \n", + "ENSMUSG00000064842.1 980 \n", + "ENSMUSG00000051951.5 0 \n", + "ENSMUSG00000102851.1 0 \n", + "ENSMUSG00000103377.1 0 \n", + "\n", + " fpkm tpm \n", + "Geneid \n", + "ENSMUSG00000102693.1 0.000000 0.000000 \n", + "ENSMUSG00000064842.1 191.794717 320.193945 \n", + "ENSMUSG00000051951.5 0.000000 0.000000 \n", + "ENSMUSG00000102851.1 0.000000 0.000000 \n", + "ENSMUSG00000103377.1 0.000000 0.000000 " + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# YOUR CODE HERE\n", + "s10_featurecounts['tpm'] = (s10_featurecounts.fpkm * 1e6)/s10_featurecounts['fpkm'].sum()\n", "s10_featurecounts.head()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 71, "metadata": { "collapsed": false, "deletable": false, @@ -1346,7 +3982,19 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "ename": "AssertionError", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0ms10_featurecounts\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'ENSMUSG00000064842.1'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'tpm'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m260.82736102245372\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m: " + ] + } + ], "source": [ "assert s10_featurecounts.loc['ENSMUSG00000064842.1', 'tpm'] == 260.82736102245372" ] @@ -1369,7 +4017,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 72, "metadata": { "collapsed": false, "deletable": false, @@ -1381,7 +4029,28 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEYCAYAAAAaryJBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFlZJREFUeJzt3X+MXeV95/H3GMckTVrHITBWMDYEky+1s9vWFT+yzUar\nThC422WQ2lJclNohEm6BbbZdtQvpCo93VQUnSkMRTYEuyw5RUjub7ga3slqHEKmqtiFUDmmW0O/i\nYDseljGlxO6Gn8ae/eOcCdeX8Z2T8dx57r28X0rEPc99nnOe78xoPnPOPT7P0NTUFJIkLbRFpScg\nSXpjMoAkSUUYQJKkIgwgSVIRBpAkqYiBDqCIGCs9h26yvv5mff1rkGuDhatvqMlt2BFxBXA7VWDd\nm5nbZuhzB7AeeB7YlJmPdhobEcuAHcAqYD9wdWYeiYhVwOPA39e7/lpm3jCX4iJiKjOH5jK2H1hf\nf7O+/jXItcHC1TfrGVBELALuBC4H1gIbIuLCtj7rgfMz8wJgM3BXg7E3Aw9mZgAPAbe07HJvZq6r\n/z+n8JEk9bYml+AuBp7IzAOZeRTYDoy29RkF7gfIzIeBpRExPMvYUWC8fj0OXNWyv4H9y0KSVGkS\nQGcDB1u2J+q2Jn06jR3OzEMAmTkJnNXS79yI2BMRX42I9zeYoySpzyzu0n7ncgYz/WHU08DKzPxe\nRKwDvhQRazLz+z/MziLi9Pq/5wPH5jCfvhAR55aeQzdZX38b5PoGuLbToPodmpkvd/NATQLoKWBl\ny/aKuq29zzkz9FnSYexkRAxn5qGIWA48A5CZrwCv1K/3RMR3gPcAe042wfqOjS0neXvvSSsbDPtK\nT6DLrK+/DXJ9g1wbwEsR0d62NTPH5usATQLoEWB1fXfa08A1wIa2PjuBG4EdEXEpcLgOlmc7jN0J\nbAK2ARuBBwAi4p3Ac5l5PCLeDawGnuw0wfoLMtbaVp/57P3c5z7H8uXLG5QpSZqcnOTaa68FWJ2Z\n3+nmsWYNoMw8FhE3Abt57VbqxyNiMzCVmfdk5q6I+LmI2Et1G/aHO42td70N+EJEXAccAK6u2z8A\n/KeIeAU4DmzOzMNzqO0YwPLly1mxYsUchkvSG1rXP7po9O+A+lF9fXbfV77yFQNIkhqamJhgZGQE\n4LzM3N/NYw30kxAkSb3LAJIkFWEASZKKMIAkSUUYQJKkIgwgSVIRBpAkqQgDSJJUhAEkSSrCAJIk\nFWEASZKKMIAkSUUYQJKkIrq1ImrP+PJf/x3vOOPpE9re9c63ctFPrSk0I0kSvAECaMmPvIPT33bm\nCW3Hp14oNBtJ0jQvwUmSijCAJElFGECSpCIMIElSEQaQJKkIA0iSVIQBJEkqwgCSJBVhAEmSijCA\nJElFGECSpCIMIElSEQaQJKkIA0iSVIQBJEkqwgCSJBVhAEmSijCAJElFGECSpCIMIElSEQaQJKmI\nxU06RcQVwO1UgXVvZm6boc8dwHrgeWBTZj7aaWxELAN2AKuA/cDVmXmkZX8rgceALZn5+3MtUJLU\nm2Y9A4qIRcCdwOXAWmBDRFzY1mc9cH5mXgBsBu5qMPZm4MHMDOAh4Ja2Q38K2DXHuiRJPa7JJbiL\ngScy80BmHgW2A6NtfUaB+wEy82FgaUQMzzJ2FBivX48DV03vLCJGgSepzoAkSQOoSQCdDRxs2Z6o\n25r06TR2ODMPAWTmJDAMEBFvA34H2AoMNapCktR3Gn0GNAdzCY7j9X+3AJ/OzBciotG+ImKsHidJ\nmh/76t/BrbZm5th8HaBJAD0FrGzZXlG3tfc5Z4Y+SzqMnYyI4cw8FBHLgWfq9kuAX4iITwDLgGMR\n8WJmfuZkE6y/IGOtbRFxLrBvtuIkSTM6LzP3d/MATQLoEWB1RKwCngauATa09dkJ3AjsiIhLgcN1\nsDzbYexOYBOwDdgIPACQmR+Y3mlEbAH+X6fwkST1p1k/A8rMY8BNwG6qmwK2Z+bjEbE5Iq6v++yi\nOl3bC9wN3NBpbL3rbcBlEZHACHDbvFYmSeppQ1NTU6Xn0BXTl+Bu/eQ4Z5y5/IT3lp3+ApesW1Nk\nXpLUyyYmJhgZGYEFuATnkxAkSUUYQJKkIgwgSVIRBpAkqQgDSJJUhAEkSSrCAJIkFWEASZKKMIAk\nSUUYQJKkIgwgSVIRBpAkqQgDSJJUhAEkSSrCAJIkFWEASZKKMIAkSUUYQJKkIgwgSVIRBpAkqQgD\nSJJUhAEkSSrCAJIkFWEASZKKMIAkSUUYQJKkIgwgSVIRBpAkqQgDSJJUhAEkSSrCAJIkFWEASZKK\nMIAkSUUYQJKkIgwgSVIRi5t0iogrgNupAuvezNw2Q587gPXA88CmzHy009iIWAbsAFYB+4GrM/NI\nRFwE3NOy662Z+aW5lSdJ6lWzngFFxCLgTuByYC2wISIubOuzHjg/My8ANgN3NRh7M/BgZgbwEHBL\n3f4t4Kcz86eoAu3uej+SpAHS5Bf7xcATmXkgM48C24HRtj6jwP0AmfkwsDQihmcZOwqM16/Hgavq\n8S9l5vG6/S3A9GtJ0gBpEkBnAwdbtifqtiZ9Oo0dzsxDAJk5CZw13SkiLo6I/w18E/i1lkCSJA2I\nbl3aGprDmKnpF5n59cx8L3AR8LGIWDJvM5Mk9YQmNyE8Baxs2V5Rt7X3OWeGPks6jJ2MiOHMPBQR\ny4Fn2g+cmRkR3wfeC+w52QQjYgzY0qAWSVIz+yKivW1rZo7N1wGaBNAjwOqIWAU8DVwDbGjrsxO4\nEdgREZcCh+tgebbD2J3AJmAbsBF4ACAizgUOZuaxelxQ3SV3UvUXZKy1rd7Pvgb1SZJe77zM3N/N\nA8x6CS4zjwE3AbuBx4Dtmfl4RGyOiOvrPruo0nIvcDdwQ6ex9a63AZdFRAIjwG11+/uBb0bEHuBP\ngV/PzOfmpVpJUs8Ympqamr1XH5o+A7r1k+OccebyE95bdvoLXLJuTZF5SVIvm5iYYGRkBHrhDEiS\npG4wgCRJRRhAkqQiDCBJUhEGkCSpCANIklSEASRJKsIAkiQVYQBJkoowgCRJRRhAkqQiDCBJUhEG\nkCSpCANIklSEASRJKsIAkiQVYQBJkoowgCRJRRhAkqQiDCBJUhEGkCSpCANIklSEASRJKsIAkiQV\nYQBJkoowgCRJRRhAkqQiDCBJUhEGkCSpCANIklSEASRJKsIAkiQVYQBJkoowgCRJRRhAkqQiDCBJ\nUhGLm3SKiCuA26kC697M3DZDnzuA9cDzwKbMfLTT2IhYBuwAVgH7gasz80hEfBC4DXgT8ArwO5n5\n1VMpUpLUe2Y9A4qIRcCdwOXAWmBDRFzY1mc9cH5mXgBsBu5qMPZm4MHMDOAh4Ja6/R+An8/MnwA2\nAZ89lQIlSb2pySW4i4EnMvNAZh4FtgOjbX1GgfsBMvNhYGlEDM8ydhQYr1+PA1fV47+ZmZP168eA\nN0fEm+ZaoCSpNzUJoLOBgy3bE3Vbkz6dxg5n5iGAOnDOaj9wRPwisKcOL0nSAGn0GdAcDM1hzFTr\nRkSsBT4OXDYvM5Ik9ZQmAfQUsLJle0Xd1t7nnBn6LOkwdjIihjPzUEQsB56Z7hQRK4D/AXwoM/fP\nNsGIGAO2NKhFktTMvohob9uamWPzdYAmAfQIsDoiVgFPA9cAG9r67ARuBHZExKXA4TpYnu0wdifV\nTQbbgI3AAwAR8Xbgz4H/kJlfa1JE/QUZa22LiHOBfU3GS5Je57wmJwCnYtbPgDLzGHATsBt4DNie\nmY9HxOaIuL7us4sqLfcCdwM3dBpb73obcFlEJDBCdes1VEF2PnBrRHwjIvZExDvnp1xJUq8Ympqa\nmr1XH5o+A7r1k+OccebyE95bdvoLXLJuTZF5SVIvm5iYYGRkBHrhDEiSpG4wgCRJRRhAkqQiDCBJ\nUhEGkCSpCANIklSEASRJKsIAkiQVYQBJkoowgCRJRRhAkqQiDCBJUhEGkCSpCANIklSEASRJKsIA\nkiQVYQBJkoowgCRJRRhAkqQiDCBJUhEGkCSpCANIklSEASRJKsIAkiQVYQBJkoowgCRJRRhAkqQi\nDCBJUhEGkCSpCANIklSEASRJKsIAkiQVYQBJkoowgCRJRRhAkqQiDCBJUhGLm3SKiCuA26kC697M\n3DZDnzuA9cDzwKbMfLTT2IhYBuwAVgH7gasz80hEvAP4InARcF9m/sYpVShJ6kmzngFFxCLgTuBy\nYC2wISIubOuzHjg/My8ANgN3NRh7M/BgZgbwEHBL3f4S8B+Bf39qpUmSelmTS3AXA09k5oHMPAps\nB0bb+owC9wNk5sPA0ogYnmXsKDBevx4HrqrHv5CZ/wt4ee5lSZJ6XZMAOhs42LI9Ubc16dNp7HBm\nHgLIzEngrObTliT1u0afAc3B0BzGTM31YBExBmyZ63hJ0uvsi4j2tq2ZOTZfB2gSQE8BK1u2V9Rt\n7X3OmaHPkg5jJyNiODMPRcRy4JkfZuKt6i/IWGtbRJwL7JvrPiXpDe68zNzfzQM0uQT3CLA6IlZF\nxBLgGmBnW5+dwK8CRMSlwOH68lqnsTuBTfXrjcADMxx7LmdSkqQ+MGsAZeYx4CZgN/AYsD0zH4+I\nzRFxfd1nF9Xp2l7gbuCGTmPrXW8DLouIBEaA26aPGRH7gE8BGyPiu+133UmS+t/Q1NScP3rpadOX\n4G795DhnnLn8hPeWnf4Cl6xbU2RektTLJiYmGBkZgR65BCdJ0rwzgCRJRRhAkqQiDCBJUhEGkCSp\nCANIklSEASRJKsIAkiQVYQBJkoowgCRJRRhAkqQiDCBJUhEGkCSpCANIklSEASRJKsIAkiQVYQBJ\nkoowgCRJRRhAkqQiDCBJUhEGkCSpCANIklSEASRJKsIAkiQVYQBJkoowgCRJRRhAkqQiDCBJUhEG\nkCSpCANIklSEASRJKsIAkiQVYQBJkoowgCRJRRhAkqQiFjfpFBFXALdTBda9mblthj53AOuB54FN\nmflop7ERsQzYAawC9gNXZ+aR+r1bgOuAV4GPZubuU6hRktSDZj0DiohFwJ3A5cBaYENEXNjWZz1w\nfmZeAGwG7mow9mbgwcwM4CHglnrMGuBq4MepAu0zETF0inVKknpMk0twFwNPZOaBzDwKbAdG2/qM\nAvcDZObDwNKIGJ5l7CgwXr8eB66qX18JbM/MVzNzP/BEvR9J0gBpcgnubOBgy/YErw+EmfqcPcvY\n4cw8BJCZkxFxVsu+/qZlzFN125y89MoxXnz5VY4fn+LVY8d59dgUL572Et/e948MMcTQEDAEi4aq\nk6xFQ0NQ/Y9Fi17fNjRUjXmtrdqebn9t+/Vt1OPfqKampkpPQT3KH40TLX3bkjfE74pGnwHNwVy+\ncvP9I3gawOf//Ou86S1vn+Htb87z4SRpfrzvn72Lj1y5tsixJycnp1+e1u1jNQmgp4CVLdsr6rb2\nPufM0GdJh7GTETGcmYciYjnwzCz7OqmIGAO2zPTexN/c1WmoJPWcfQ/B5/+g9CzYGxHtbVszc2y+\nDtAkgB4BVkfEKuBp4BpgQ1ufncCNwI6IuBQ4XAfLsx3G7gQ2AduAjcADLe2fi4hPU116Ww18vdME\n6y/IWGtbRJwOvFSPP9agzn60Dziv9CS6yPr62yDXN8i1nQbsBd6cmS9380BDTa7L17dS/wGv3Up9\nW0RsBqYy8566z53AFVS3YX84M/ecbGzd/g7gC1RnOweobsM+XL93C/AR4CincBt2RExl5sBeSLW+\n/mZ9/WuQa4OFq6/RZ0CZ+RdAtLXd3bZ9U9OxdftzwAdPMubjwMebzE2S1J98EoIkqQgDSJJUxKAH\n0NbSE+gy6+tv1te/Brk2WKD6Gt2EIEnSfBv0MyBJUo8ygCRJRRhAkqQiDCBJUhEGkCSpiG49Dbu4\nJqu49oKIWEG1ltIwcBz448y8Yy4rxkbEOuC/AW8GdmXmv6vbl9TH+GngWeCXM/O7C1jjIuBvgYnM\nvHKQaqvnsBT4L8B7qb6H1wH/hwGoMSJ+k+qxWMeBbwEfBt7ar7VFxL3AzwOHMvOf120L8vMYERuB\n36V68v/vZeb9C1TfJ4B/A7wMfIfqUWn/1Av1DeQZUJNVXHvIq8BvZeZa4H3AjfVc57Ji7B8BH8nM\n9wDviYjL6/aPAM/VK9beDnxiYUr7gY8C327ZHqTaoHrW4a7M/HHgJ4C/ZwBqjIh3Af8WWFf/MltM\n9TDhfq7tPqrfC626Xk8dcrcCFwGXAFvqP1wWor7dwNrM/EmqBT57pr6BDCCareLaEzJzMjMfrV9/\nH3icagmKH2rF2HpJix/NzEfqfve3jGnd1xeBke5VdKL6DO/nqM4Qpg1EbQAR8WPAv8zM+wDquR9h\ncGo8DXhrRCwG3kK1NErf1paZfw18r625m/X8bP36cmB3Zh6pH7q8m+rhzfNqpvoy88HMPF5vfo3q\n9wv0QH2DGkAnW6G1p0XEucBPUv2QnLBiLNC6YmxrbdMrxp5NVee01pp/MCYzjwGH66eRL4RPA7/N\niQsODkptUD2S/9mIuC8i9kTEPRHxIwxAjZn5f4FPAd+t53kkMx9kAGprc1YX6zlS13OyfS2064Bd\n9evi9Q1qAPWdiHgb1V8UH63PhNofUTGfj6xYkMfIR8S/proW/egsx+y72losBtYBf5iZ66iWI7mZ\nwfj+vZ3qL95VwLuozoSuZQBqm8Wg1QNARPwucDQz/2Qed3tK9Q1qADVZxbVn1Jc3vgh8NjOnF+Y7\nFBHD9ftNVozttJLsD96LiNOAH6uXw+i2nwGujIgngT8BfjYiPku9Gm49n36tbdoEcDAz/7be/lOq\nQBqE798HgScz87n6r93/CfwLBqO2VgtRT9HfSRGxiepS+K+0NBevb1AD6AeruNZ3bVxDtdJqr/qv\nwLczs3UR3ukVY+H1K8ZeExFLIuI86hVj60sHRyLi4vqDxF9tG7Oxfv1LVB+0dl1mfiwzV2bmu6m+\nBw9l5oeAP6PPa5tWX7o5GBHvqZtGgMcYgO8f1aW3SyPizfWcRqhuJun32oY48S/3hajnL4HLImJp\n/YH9ZXVbN5xQX1R3BP82cGWeuMJp8foG8jbszDwWETdRfRA2fRv244WnNaOI+BngWuBbEfENqtP/\nj1EtVf6FiLiOesVYgMz8dkR8geoXwVHghsycvmRwIyfeOvkXdfu9wGcj4gngH6nCoKTbGKzafoNq\nGfk3AU9S3ap8Gn1eY2Z+PSK+CHyjnus3gHuAH+3X2iLi88C/As6IiO8CW6h+Hv97N+vJzO9FxH+m\n+ucIU8DW+sP6hajvY8AS4MsRAfC1zLyhF+rzadiSpCIG9RKcJKnHGUCSpCIMIElSEQaQJKkIA0iS\nVIQBJEkqwgCS5llEbKmfbiGpAwNImn9bqP7hn6QO/Ieo0jyKiDuBG4C/o1rE7QDwD1TrUp0B/BXV\nvzh/NSLuo1ok7ALg3VTPWvszYCvVs7Ruz8w7FrwIaYF4BiTNo8y8qX75vvrp2Iep1qf6ILCG6snS\n17cMWUO1lsoaqkcyXZuZHwDeD/xevbSDNJAMIKk7Wh92uSMzX6wXBRvntUW8AL5ULwj2IpDUa7XU\na/E8x2uLh0kDxwCSynqp5fWxtu3jDOgDgyUwgKRu+Cdgacv2L0XEW+o74z4EfKXMtKTe4l9X0vz7\nFPDViHgB2E+1PtWXgTOBrwJ/XPebbWVR7xDSQPMuOKmL6jvdHsnMz5Sei9RrvAQndZd/4Ukn4RmQ\nJKkIz4AkSUUYQJKkIgwgSVIRBpAkqQgDSJJUhAEkSSri/wPCYMAOJELw4wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "sns.distplot(s10_featurecounts['tpm'])" ] @@ -1404,7 +4073,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": { "collapsed": false, "deletable": false, @@ -1416,7 +4085,36 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py:892: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n", + " warnings.warn(self.msg_depr % (key, alt_key))\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAGoCAYAAADWwOtRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuUVeWd5/93KaJCxEYJ+AvESy/gGzURhUinWzsxEi8x\nrWgbb+NEDGYyRk20O6tbMZ0WO9peMomXZKIrHSYBQ1qNtq0mTELExBnTraJGxiXmG1aEyKUpWxG8\n4A2o3x9no6eQKgqoqnOqnvdrLZbnPPtS333A86nn2c/eu6WtrQ1JkkqyQ6MLkCSptxl+kqTiGH6S\npOIYfpKk4hh+kqTiGH6SpOIMaHQBfYzXhUjqi1oaXUCzsecnSSqO4SdJKo7Dnv3A/573EDvstPPb\n7zds2MBBY0cy8n17NbAqSWpehl8/8Nq6HRk0aOjb7zesX8/a115vYEWS1Nwc9pQkFcfwkyQVx/CT\nJBXH8JMkFcfwkyQVx/CTJBXH8JMkFcfwkyQVx/CTJBXH8JMkFcfwkyQVx/CTJBXH8JMkFcfwkyQV\nx/CTJBXH8JMkFcfwkyQVx/CTJBXH8JMkFcfwkyQVx/CTJBXH8JMkFcfwkyQVx/CTJBXH8JMkFcfw\nkyQVx/CTJBXH8JMkFcfwkyQVx/CTJBXH8JMkFcfwkyQVx/CTJBXH8JMkFcfwkyQVx/CTJBXH8JMk\nFcfwkyQVx/CTJBXH8JMkFcfwkyQVx/CTJBXH8JMkFcfwkyQVx/CTJBXH8JMkFcfwkyQVZ0CjC+gr\nImLAvHnzGl3GZr34wn/y2hvr336/YcMGnlm7lnVvvtbAqiRtj912263b9jVp0qR9gWWZua7bdtrH\nGX5dN2rSpEmNrkGStsViYD9gSYPraBqGX9ctq/67X0Or2LyN/7CbjXVtnWasqxlrAuvaWot55ztM\nQEtbW1uja+gzIqItM1saXcemrGvrWFfXNWNNYF1bq1nraiQnvEiSimP4SZKKY/hJkorTKxNeImIG\n8BdAa2YeVLVdCxwPvAH8HvhsZr5ULZsGTAXWARdm5tyqfTzwA2AXYE5mXlS1DwRmAROA54HTMvPZ\natkU4CtAG3BlZs7ajkO5fDu27UnWtXWsq+uasSawrq3VrHU1TK9MeImIw4FXgFl14fcJ4P7M3BAR\nVwNtmTktIg4AZgOHAqOA+4AxmdkWEQ8DF2Tm/IiYA9yQmT+PiC8AH8rM8yLiNOCkzDw9IoYCjwLj\ngRbgMWB8Zq7p8YOWJDWtXhn2zMwHgRc3absvMzdUbx+iFnQAJwC3Zua6zFwCLAImRsRewG6ZOb9a\nbxZwYvV6MjCzen0HcGT1+hhgbmauyczVwFzg2G49OElSn9Ms5/ymAnOq1yOBpXXLlldtI2l/ncqy\nqq3dNpm5HlgTEXt0si9JUsEafpF7RHwFeCsz/7kbd9vt17NExABqvVNvESSp3yntO66h4RcRZwPH\n8c4wJdR6Z++vez+qauuovX6bFRGxIzAkM1dFxHLgiE22+WUX6poOXLa5Zc16f09J6kS7DkFB33Ed\ndoR6M/xa6guJiGOBvwE+mplv1K13DzA7Iq6jNkQ5GnikmvCyJiImAvOBs4Ab67aZAjwMnALcX7X/\nHLgyInanNsR7FHDJlgrNzOnA9Pq2iNiX2i2CJKlP8zuu9y51+BG1HtieEfEstd84LgUGAr+ICICH\nMvO8zFwYEbcDC4G3gPMyc+OU1PNpf6nDz6r2GcAtEbEIeAE4HSAzX4yIr1Gb8dkGXF5NfJEkFcx7\ne3bRxt+K5s2bx6hRo7a0uiQ1ky3Og+in33EdHnezzPaUJKnXGH6SpOIYfpKk4hh+kqTiGH6SpOIY\nfpK0BZdeeil/9md/xvHHH9/QOq644gqOPvpoJk+ezNNPP93QWvo6w09S01i/fn2P7HfDhg1bXqkT\nf/mXf8mMGTO6qZpt88ADD/Dss88yd+5c/uEf/oHLLtvsDVrURQ2/t6ekvmf58uV87nOf48ADD2Th\nwoWMGTOGa6+9lp133pmnnnqKq6++mrVr1zJ06FCuvvpqhg0bxo9//GNuu+021q1bx957783Xv/51\ndt55Z6ZNm8bAgQN5+umnmTBhAkceeSRXXnklLS0ttLS08MMf/pBBgwZxzTXX8OCDD9LS0sK5557L\ncccdxyOPPMK3vvUthg4dyqJFi/jgBz/I17/+dQCOPPJIjjvuOP7t3/6Nz33ucxx33HHbfLwf/vCH\nWb58+bvab731VlpaWjjttNPatd9111384he/4OWXX+a5557j+OOP54ILLtjmnw+1246deGLtQTbj\nxo3j5Zdf5vnnn2fYsGHbtd9SGX6StsnixYu56qqrOPjgg7n00kv50Y9+xGc+8xm+9rWvcdNNNzF0\n6FDmzJnDN7/5Tf7xH/+Ro48+mlNOOQWA66+/njvuuIMzzzwTgNbWVm6//XYAzj33XC677DIOOeQQ\nXnvtNQYOHMjcuXP53e9+x7333ssLL7zApz/9aSZOnAjAb3/7W37605/y3ve+lzPOOIPHH3+c8ePH\nAzB06FD+5V/+5V2133vvvcyYMYOWlvbXQO+9997ccMMNXf4MTj/99A6XPfnkk/z0pz9l55135tOf\n/jQf//jHOfDAA9ut81d/9VcsWbLkXdueffbZTJ48uV3bc889x1577fX2+xEjRtDa2mr4bSPDT9I2\ned/73sfBBx8MwAknnMAPf/hDDj/8cBYtWsTUqVNpa2tjw4YNDB8+HIDM5IYbbuCll17itdde4/DD\nD397X8ce+85jNsePH89VV13F8ccfz9FHH82IESN47LHH+NSnPgXAnnvuycSJE3nyyScZPHgwBx10\n0Ns/4wMf+ADLly9/O/w66u0df/zxPX7+7rDDDmPIkCEAHHXUUTz22GPvCr/rrruuR2tQxww/Sd2i\npaWFtrY2xowZw6233vqu5dOmTeOmm25i7Nix3HXXXTzyyCNvLxs0aNDbrz//+c/z8Y9/nF/96lec\nccYZfO9733vXvupvy7jTTju9/XrHHXdsd95w11133WytG3t+m9pnn322qufXmU17lZu+h1rPb/Hi\nxe9ab3M9v+HDh7Ny5cq3369cuZIRI0Z0S60lMvwkbZMVK1awYMECxo0bx09+8hMmTJjAfvvtx4sv\nvsgTTzzBwQcfzLp161iyZAmjR49m7dq1DBs2jLfeeot77723wy/upUuXMmbMGMaMGcOTTz7J4sWL\n+fCHP8xtt93GiSeeyOrVq3n00Ue5+OKL+f3vf79NtW9Lz29z90GePXs2wNvDt/V+/etf89JLLzFw\n4EDuu+8+rrrqqnetszU9v0mTJjF79myOO+44nnjiCYYMGeKQ53Yw/CRtk/3224/Zs2czbdo0Ro8e\nzRlnnMFOO+3EDTfcwBVXXMHLL7/Mhg0bOOussxg9ejRf+tKXOOWUU9hzzz056KCDePXVVze735kz\nZ/Lwww+zww47MHr0aD760Y+y00478cQTTzB58mRaWlr427/9W/bcc893hV9972pzPa1t9eUvf5mH\nH36Y1atXc8QRR/DFL36Rk08+mWeeeYYJEyZsdpuDDjqICy64gNbWViZPnvyuIc+t9bGPfYwHHniA\no446il133XWzYaqu86kOXdRP73gubZPly5dz7rnncu+99za6lIY699xz+fa3v82AAe37EXfddRdP\nPfUUf/d3f9egyt7Fpzpswp6fJG2jm2++udElaBsZfpK22siRI4vv9XXmpJNO4qSTTmp0GeqEd3iR\nJBXH8JMkFcfwkyQVx3N+ktRE1rz6JjffuYDWVWsZsccgvnDyOIYMHtjosvodw0+SmsjNdy7gwQUr\nAFi0dDUAF591aCNL6pcc9pSkJtK6am2n79U9DD9JaiIj9hjU6Xt1D4c9JamJfOHkcQDtzvmp+xl+\nktREhgwe6Dm+XuCwpySpOIafJKk4hp8kqTiGnySpOIafJKk4hp8kqTiGnySpOIafJKk4hp8kqTiG\nnySpOL1ye7OImAH8BdCamQdVbUOB24B9gCXAqZm5plo2DZgKrAMuzMy5Vft44AfALsCczLyoah8I\nzAImAM8Dp2Xms9WyKcBXgDbgysyc1QuHLElqYr3V8/s+cMwmbZcA92VmAPcD0wAi4gDgVGB/4JPA\ndyKipdrmJuCczBwLjI2Ijfs8B1iVmWOA64Frq30NBf4eOBT4E+CyiNi9Zw5RktRX9Er4ZeaDwIub\nNE8GZlavZwInVq9PAG7NzHWZuQRYBEyMiL2A3TJzfrXerLpt6vd1B3Bk9foYYG5mrsnM1cBc4Nhu\nOzBJUp/UyHN+wzOzFSAzVwLDq/aRwNK69ZZXbSOBZXXty6q2dttk5npgTUTs0cm+JEkFa6YJL23d\nuK+WLa8iSSpVI5/n1xoRIzKztRrSfK5qXw68v269UVVbR+3126yIiB2BIZm5KiKWA0dsss0vt1RY\nREwHLtvqI5KkPsDvuN4Nvxba98juAc4GrgGmAHfXtc+OiOuoDVGOBh7JzLaIWBMRE4H5wFnAjXXb\nTAEeBk6hNoEG4OfAldUklx2Ao6hNtOlUZk4Hpte3RcS+wOKuHqwkNSu/43rvUocfUeuB7RkRz1L7\njeNq4McRMRX4A7UZnmTmwoi4HVgIvAWcl5kbh0TPp/2lDj+r2mcAt0TEIuAF4PRqXy9GxNeAR6kN\nq15eTXyRJBWspa2tO0+19V8bfyuaN28eo0aNanQ5krQ1tjgPop9+x3V43M004UWSpF5h+EmSimP4\nSZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmS\nimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj\n+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSijOg0QVExF8B\n5wAbgCeBzwKDgduAfYAlwKmZuaZafxowFVgHXJiZc6v28cAPgF2AOZl5UdU+EJgFTACeB07LzGd7\n6fAkSU2ooT2/iHgf8EVgfGYeRC2MzwAuAe7LzADuB6ZV6x8AnArsD3wS+E5EtFS7uwk4JzPHAmMj\n4piq/RxgVWaOAa4Hru2Vg5MkNa1mGPbcERgcEQOAXYHlwGRgZrV8JnBi9foE4NbMXJeZS4BFwMSI\n2AvYLTPnV+vNqtumfl93AJN68FgkSX1AQ8MvM1cA3wCepRZ6azLzPmBEZrZW66wEhlebjASW1u1i\nedU2ElhW176samu3TWauB1ZHxB49ckCSpD6h0cOef0StZ7YP8D5qPcAzgbZNVt30/fZo2fIqkqT+\nrNETXj4BPJOZqwAi4i7gz4DWiBiRma3VkOZz1frLgffXbT+qauuovX6bFRGxIzBk48/rSERMBy7b\nngOTpGbld1zjw+9Z4CMRsQvwBrXzcfOBV4CzgWuAKcDd1fr3ALMj4jpqw5mjgUcysy0i1kTExGr7\ns4Ab67aZAjwMnEJtAk2nMnM6ML2+LSL2BRZv22FKUvPwO67x5/weoTYJ5TfAAmpDkt+lFnpHRURS\nC8Srq/UXArcDC4E5wHmZuXFI9HxgBvA7YFFm/qxqnwEMi4hFwEXUZpJKkgrW0tbWnafT+q+NvxXN\nmzePUaNGNbocSdoaW5zr0E+/4zo87kYPe0oqzJpX3+TmOxfQumotI/YYxBdOHseQwQMbXZYKY/hJ\n6lU337mABxesAGDR0tUAXHzWoY0sSQVqhovcJRWkddXaTt9LvcHwk9SrRuwxqNP3Um9w2FNSr/rC\nyeMA2p3zk3qb4SepVw0ZPNBzfGo4hz0lScUx/CRJxTH8JEnFMfwkScUx/CRJxTH8JEnFMfwkScUx\n/CRJxTH8JEnFMfwkScXx9maStorP41N/YPhJ2io+j0/9gcOekraKz+NTf2D4SdoqPo9P/YHDnpK2\nis/jU39g+EnaKj6PT/2Bw56SpOIYfpKk4hh+kqTiGH6SpOIYfpKk4hh+kqTiGH6SpOIYfpKk4hh+\nkqTiGH6SpOIYfpKk4hh+kqTiGH6SpOI0/KkOEbE78D3gg8AGYCrwO+A2YB9gCXBqZq6p1p9WrbMO\nuDAz51bt44EfALsAczLzoqp9IDALmAA8D5yWmc/20uFJkppQM/T8bqAWVvsD44DfApcA92VmAPcD\n0wAi4gDgVGB/4JPAdyKipdrPTcA5mTkWGBsRx1Tt5wCrMnMMcD1wbe8cliSpWTU0/CJiCPDnmfl9\ngMxcV/XwJgMzq9VmAidWr08Abq3WWwIsAiZGxF7Abpk5v1pvVt029fu6A5jUg4ckSeoDGt3z2w94\nPiK+HxGPR8R3I2IQMCIzWwEycyUwvFp/JLC0bvvlVdtIYFld+7Kqrd02mbkeWB0Re/TUAUmSml+j\nw28AMB74n5k5HniV2pBn2ybrbfp+e7RseRVJUn/W6Akvy4Clmflo9f5OauHXGhEjMrO1GtJ8rlq+\nHHh/3fajqraO2uu3WREROwJDMnNVZ0VFxHTgsm0+KklqYn7HNbjnVw1tLo2IsVXTJOAp4B7g7Kpt\nCnB39foe4PSIGBgR+wGjgUeqodE1ETGxmgBz1ibbTKlen0JtAs2W6pqemS31f6gN0UpSn+d3XON7\nfgBfAmZHxE7AM8BngR2B2yNiKvAHajM8ycyFEXE7sBB4CzgvMzcOiZ5P+0sdfla1zwBuiYhFwAvA\n6b1yVJKkptXS1tadp9P6r4jYF1g8b948Ro0a1ehyJGlrbHGuQz/9juvwuBs94UWSpF5n+EmSimP4\nSZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKK06Xbm1WPGRpVv35mLuypoiRJ6klbDL+I\n+BJwJbAK2FA1twF/3IN1SZLUY7rS87sIiMxc0dPFSJLUG7pyzm+ZwSdJ6k+60vO7LCK+B8wBXt/Y\nmJlzeqwqSZJ6UFfC7/jqz1hgfdXWRi0MJUnqc7oSficB+2bmaz1djCRJvaEr5/yeofbUdEmS+oWu\n9PwWAfdHxL/S/pzfd3qsKkmSelBXwm9n4PfAh+ra2nqmHEmSet4Wwy8zP9sbhUiS1Fu6coeXAcDn\ngSOrpnnAP2Xmup4sTJKkntKVYc/vAPsAM6v3nwHGAef2VFGSJPWkroTfR4EDMnMDQETcDjzVo1VJ\nktSDunKpwwvUJr1stBPwnz1TjiRJPa8rPb+ngH+PiNuq96cA8yPiPPCSB0lS39OV8Hsv8BtqtzcD\nWFC1HYqXPEiS+qCuhN8+mXlSfUNEPJ6Z43uoJkmSelSH4Vdd4jAQ2CEidgVaqkW7A4N6oTZJknpE\nZxNevgK8AhwEvFq9fgV4Gpjd86VJktQzOuz5ZeblwOUR8e3MvKAXa5IkqUdt8VIHg0+S1N905To/\nSZL6FcNPklQcw0+SVBzDT5JUnK5c5N7jImIH4FFgWWaeEBFDgduoPU1iCXBqZq6p1p0GTAXWARdm\n5tyqfTzwA2AXYE5mXlS1DwRmAROA54HTMvPZ3js6SVKzaZae34XAwrr3lwD3ZWYA9wPTACLiAOBU\nYH/gk8B3ImLjxfc3Aedk5lhgbEQcU7WfA6zKzDHA9cC1PX0wkqTm1vDwi4hRwHHA9+qaJ/PO8wNn\nAidWr08Abs3MdZm5BFgETIyIvYDdMnN+td6sum3q93UHMKknjkOS1Hc0PPyA64C/of1NskdkZitA\nZq4EhlftI4Gldestr9pGAsvq2pdVbe22ycz1wOqI2KObj0GS1Ic0NPwi4lNAa2Y+wTv3Dt2c7nx6\nRGc/R5JUgEZPeDkMOCEijgN2BXaLiFuAlRExIjNbqyHN56r1lwPvr9t+VNXWUXv9NisiYkdgSGau\n6qyoiJgOXLZdRyZJTcrvuAaHX2ZeClwKEBEfA76cmZ+JiGuBs4FrgCnA3dUm9wCzI+I6asOZo4FH\nMrMtItZExERgPnAWcGPdNlOAh6k9iPf+LtQ1HZhe3xYR+wKLt/FQJalp+B3XHOf8Nudq4KiISGoT\nVK4GyMyFwO3UZobOAc7LzI1DoucDM4DfAYsy82dV+wxgWEQsAi6iNpNUklSwlrY2H8beFRt/K5o3\nbx6jRo1qdDmStDW2ONehn37HdXjczdrzkySpxxh+kqTiGH6SpOIYfpKk4hh+kqTiGH6SpOIYfpKk\n4hh+kqTiGH6SpOIYfpKk4hh+kqTiGH6SpOIYfpKk4hh+kqTiGH6SpOIYfpKk4hh+kqTiGH6SpOIY\nfpKk4hh+kqTiGH6SpOIYfpKk4hh+kqTiGH6SpOIYfpKk4hh+kqTiDGh0AVJn1rz6JjffuYDWVWsZ\nsccgvnDyOIYMHtjosiT1cYafmtrNdy7gwQUrAFi0dDUAF591aCNLktQPOOyppta6am2n7yVpWxh+\namoj9hjU6XtJ2hYOe6qpfeHkcQDtzvlJ0vYy/NTUhgwe6Dk+Sd3OYU9JUnEMP0lScQw/SVJxGnrO\nLyJGAbOAEcAG4J8y88aIGArcBuwDLAFOzcw11TbTgKnAOuDCzJxbtY8HfgDsAszJzIuq9oHVz5gA\nPA+clpnP9tYxqmNewC6pURrd81sH/HVmHgj8KXB+RHwAuAS4LzMDuB+YBhARBwCnAvsDnwS+ExEt\n1b5uAs7JzLHA2Ig4pmo/B1iVmWOA64Fre+fQtCUbL2BftHQ1Dy5YwU13Lmh0SZIK0dDwy8yVmflE\n9foV4GlgFDAZmFmtNhM4sXp9AnBrZq7LzCXAImBiROwF7JaZ86v1ZtVtU7+vO4BJPXdE6oo1r77J\nNbPmM3/hynbtXsAuqbc0uuf3tojYFzgYeAgYkZmtUAtIYHi12khgad1my6u2kcCyuvZlVVu7bTJz\nPbA6IvbomaPQlqx59U0u+sYveXDBCt54a0O7ZV7ALqm3NEX4RcR7qPXKLqx6gG2brLLp++3RsuVV\n1FNuvnMBz695vV3bzjvtwOHj3ucF7JJ6TcMvco+IAdSC75bMvLtqbo2IEZnZWg1pPle1LwfeX7f5\nqKqto/b6bVZExI7AkMxctYWapgOXbftRqSObG9o89IC9vJBd6kV+xzVB+AH/C1iYmTfUtd0DnA1c\nA0wB7q5rnx0R11EbzhwNPJKZbRGxJiImAvOBs4Ab67aZAjwMnEJtAk2nMnM6ML2+rRqWXbzVRyfg\nnZmd//H8q+3ah+2+iz0+qZf5Hdf4Sx0OA84EnoyI31Ab3ryUWujdHhFTgT9Qm+FJZi6MiNuBhcBb\nwHmZuXFI9HzaX+rws6p9BnBLRCwCXgBO741jU3v1jyYCGLzrAA4ZO9zLGyQ1REPDLzN/DezYweJP\ndLDNVcBVm2l/DPjQZtrfoApPNc6mw53vG/YehzolNUxTTHhR/+ejiSQ1k2Y456cC+GgiSc3E8FO3\n6uiWZT6aSFIzMfzUreontixauhrA0JPUdDznp2616cQWb1kmqRkZfupWTmyR1Bc47Kntsuy5V/jq\nzb/m5bVvstuggVwypTbE6cQWSc3M8NN2+erNv377Xp1vrHmdq2fO5/t/f8wWtpKkxnLYU9vl5bVv\ndvpekpqR4aftstuggZ2+l6RmZPhpu1xx7mEM230Xdt5pB4btvgtXnHtYo0uSpC3ynJ+6bHMXsI8c\n/h7P8Unqcww/dZkXsEvqLxz2VJd5Abuk/sLwU5d5Abuk/sJhT3Vo03N8//XY/QEvYJfU9xl+6pDn\n+CT1Vw57qkOe45PUX9nzUzv1Q50vvvR6u2We45PUXxh+aqd+qBNg2O67MHTILp7jk9SvGH5qZ9Oh\nzaFDduGbF32sQdVIUs/wnJ/a8XIGSSWw51ewNa++ybdue5ynnllFG2188I+H8dm/OBDwcgZJ/Zvh\nV6hlz73Chd/4JW+u2/B228NPrWSnATt4OYOkfs/wK9CaV9/ki1+fR13uvc3LGSSVwPArzMYe3+aC\nDzzHJ6kMhl9Blj33CuddM4+2DpZ/5MC9PMcnqQiGX0G+evOvOwy+CR8Yzlem/kmv1iNJjWL4FWDZ\nc69wyf/8P6x55a3NLv/IgXvxxdMO6eWqJKlxDL9+7rGnW5n+vYc6XD4h3muPT1JxDL9+7Of/tphv\n3/n/Olw+4QPD+ev/MqEXK5Kk5mD49VO/XbKq0+AbtvsuTP9vf9qLFUlS8zD8+qH/+/gyrp39WIfL\n/2i3gVxx7mG9WJEkNRfDr5/5Hz98mAd+s7LD5Zd//iOMjxG9WJEkNR/Drx/571f8hBUvru9w+aCd\nWww+SZ1au3Ytr7zySqPL2CYtLS0MHjy4S+sWE34RcSxwPbUnWczIzGsaXFK3OunLd7NuC+t886Ij\ne6UWSX3XA4/9gaFLXmt0GdvktZdf4L/+5cdpaWnZ4rpFhF9E7AB8G5gErADmR8TdmfnbxlbWPY7/\n8t2dLh+8y45848IjGDn8Pb1UkaS+atDg3XjPbrs3uoxt0rbu9S6vW0T4AROBRZn5B4CIuBWYDPT5\n8NtS8H3iw3tx4RlexydJ9Up5mO1IYGnd+2VVW5+2peADDD5J2oxSen5F+h9f+vNGlyCpj3n95RdY\nO7Bv9oveer3rE3VKCb/lwN5170dVbZsVEdOBy3q4ph518VkTiH32aHQZkppQZ99xx3xsHKNGjerd\nghqglPCbD4yOiH2A/wBOB87oaOXMnA5Mr2+LiH2BxT1WYTe6+KwJHD6u///jlbRt+vp3XHfom33b\nrZSZ64ELgLnAU8Ctmfl0Y6vqOQafJHWulJ4fmfkzIBpdR3e69xuTG12CJPVJRfT8JEmqZ/hJkopj\n+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJ\nkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKK\nY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkopj+EmSimP4SZKKY/hJkoozoFE/OCKu\nBY4H3gB+D3w2M1+qlk0DpgLrgAszc27VPh74AbALMCczL6raBwKzgAnA88BpmflstWwK8BWgDbgy\nM2f11jGY40C5AAAIx0lEQVRKkppTI3t+c4EDM/NgYBEwDSAiDgBOBfYHPgl8JyJaqm1uAs7JzLHA\n2Ig4pmo/B1iVmWOA64Frq30NBf4eOBT4E+CyiNi9Nw5OktS8GhZ+mXlfZm6o3j4EjKpenwDcmpnr\nMnMJtWCcGBF7Abtl5vxqvVnAidXrycDM6vUdwJHV62OAuZm5JjNXUwvcY3vqmCRJfUOznPObCsyp\nXo8EltYtW161jQSW1bUvq9rabZOZ64E1EbFHJ/uSJBWsR8/5RcQvgBF1TS3Uzr19JTPvrdb5CvBW\nZv5zN/7oli2vstV2BFi5cmUP7FqSes6kSZP2BZZl5rpG19IsejT8MvOozpZHxNnAcbwzTAm13tn7\n696Pqto6aq/fZkVE7AgMycxVEbEcOGKTbX65pbojYjpw2eaWnXnmmVvaXJKazWJgP2AJdP4dN2nS\npP2qU079WiNnex4L/A3w0cx8o27RPcDsiLiO2hDlaOCRzGyLiDURMRGYD5wF3Fi3zRTgYeAU4P6q\n/efAldUklx2Ao4BLtlRbZk4Hpm9S787A61U967f2eHvYxn/Yzca6tk4z1tWMNYF1ba3F1J026uA7\nbgC1DkL96aV+q6Wtra0hPzgiFgEDgReqpocy87xq2TRqMzjfov2lDhNof6nDhVX7zsAtwCHV/k7f\n+JtL1bvceKnDFdtzqUNEtGVmTwypbhfr2jrW1XXNWBNY19Zq1roaqWE9v+qyhI6WXQVctZn2x4AP\nbab9DWqXR2xuXz+gFpiSJAHNM9tTkqReY/hJkopj+G2dyxtdQAesa+tYV9c1Y01gXVurWetqmIZN\neJEkqVHs+UmSimP4SZKKY/hJkopj+EmSimP4SZKK07A7vDSDiPg0tfvb7Q8cmpmP1y3rE0+Tr+6R\nej21X2RmZOY13bXvav8zgL8AWjPzoKptKHAbsA+1G+WemplrqmXd9rltoa5R1XYjgA3AP2XmjY2s\nrbrN3v+hdtu+AcAdmXl5M3xe1bY7AI9Su7v/Cc1QV0QsAdZQ+zt8KzMnNklduwPfAz5Y1TYV+F2j\n6oqIsdXPbqP21Jo/Br5K7baODf+31ReV3vN7EjgJeKC+MSL2pw88Tb76Mvs2tYf2HgicEREf6I59\n1/l+tf96lwD3ZWZQu4n4tKqeA+imz60L1gF/nZkHAn8KnF8de8Nqq26z9/HMPAQ4GPhkdSP2Zvi8\nAC4EFta9b4a6NgBHZOYhmTmxieq6gVow7A+MA37byLoy83fVZzSeWji9CtzVJJ9Vn1R0+GXNIt79\n/L/J9I2nyU8EFmXmHzLzLeDWqo5uk5kPAi9u0lx/rDN55zM4ge3/3CZ1sa6VmflE9foV4Glqd6Rv\naG2ZubZ6uTO13l9bo2uCt3vKx1HrzWzU8Lqo/b+36fdQQ+uKiCHAn2fm9wGqn7em0XXV+QTw+8xc\n2kQ19TlFh18n+srT5Dfdd309PWl4ZrZCLYSA4R3Usy2f2+rqc+uyiNiXWk/rIWBEI2uLiB0i4jfA\nSuAX1ZdMQ2uqXEftEWL1d7VohrragF9ExPyI+FyT1LUf8HxEfD8iHo+I70bEoCaoa6PTgB9Vr5ul\npj6n35/z68rT5HtISY8P6c7bBG3V5xYR76H2W+qFmflKRGxaS6/WlpkbgEOq3sNdEXHgZmro1Zoi\n4lPUztk+ERFHdLJqI/4eD8vM/4iI9wJzIyI3U0dv1zUAGA+cn5mPVs8WvaQJ6iIidqLWq7u4gxoa\n9v9iX9Pve36ZeVRmHlT350PVfzsLvu15mjxR9zT5qn3vDrbZXj257860RsQIgGoY5bm6errrc9ui\n6uGbdwC3ZObdzVRbZr4E/IraEHejazoMOCEingH+GTgyIm4BVjb6s8rM/6j++5/Av1Ibym/057UM\nWJqZj1bv76QWho2uC2rn7x7LzOer981QU5/U78NvK9T/lnMPcHpEDIyI/XjnafIrqQ1nTqxOHp8F\n3F23zZTq9aZPkz8qInavJr8cVbV1h/nA6IjYp5qpdXpVR3dr4d2fz9nV6ym0/wy663Priv8FLMzM\nG5qhtogYtnEyU0TsSu3v+ulG1gSQmZdm5t6Z+cfU/o3cn5mfAe5tZF0RMajquRMRg4GjqU1Ca/Tn\n1QosjdoMS6id+3qq0XVVzqD2C8xGzVBTn9Tvhz07ExEnAt8ChgE/iYgnMvOTmbkwIm6nNjPuLeC8\nzNw4nHA+7acJ/6xqnwHcErUn1L9A7UuGzHwxIr5GbYp5G3B5NfFlu2Xm+oi4gNokmo2XOjzdHfve\nKCJ+BBwB7BkRzwKXAVcDP46IqcAfqB4k3J2fWxfqOgw4E3iyOsfWBlwKXAPc3qDa/j9gZtRm4e4A\n3JaZcyLioQbW1JmrG1zXCGpDw23UvotmZ+bciHi0wXUBfAmYXQ0zPgN8FtixkXVV5x0/AXy+rrmR\n/977NJ/qIEkqjsOekqTiGH6SpOIYfpKk4hh+kqTiGH6SpOIYfpKk4hR9nZ/UUyJiMnAV8BpwetZu\noL659TYA76m7IbakXmD4ST3jvwNfzcw7t7CeF9pKDeBF7lI3i4hvAv8NaAWepXaHnH+g9siYXajd\nVP1fqnU3AO+h1kP8BrW7npwNfBd4AxhD7cGld1G7Hdnl1O7HeH1m3thbxyT1N57zk7pZZv41tdvZ\nfTEzNz7X8a2sPeR2MvDdiBhWtbcBuwK3V+ucmbVnMwIcQO15kAdQu5XbmZn5UeBw4MrqdleStoHh\nJ/Wc+puBz4DaE7mBx4GP1K3zv4F/z8yL22/Ov1YPI30NSGBOtY8VwCpqPUBJ28Dwk3pHZ89G+xVw\nbPUkiHqv171ev8n7DXjOXtpmhp/UOz4LEBFjqD11/t/rlk0H7gN+HhG79X5pUnkMP6lnbDqTbEBE\nPE7tmWmfz8wX6tfLzGuBHwO/iIg/2sz2PfnEbqk4zvaUelg1o3Nwde5OUhOw5yf1vDY6P+cnqZfZ\n85MkFceenySpOIafJKk4hp8kqTiGnySpOIafJKk4hp8kqTj/PzUHKTnSXmoUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "sns.jointplot('fpkm', 'tpm', s10_featurecounts)" ] @@ -1441,7 +4139,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 80, "metadata": { "collapsed": false, "deletable": false, @@ -1453,15 +4151,151 @@ "solution": true } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ChrStartEndStrandLength/home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bamfpkmtpmlog2_tpm
Geneid
ENSMUSG00000102693.1chr130732533074322+107000.0000000.0000000.000000
ENSMUSG00000064842.1chr131020163102125+110980191.794717320.1939458.327301
ENSMUSG00000051951.5chr1;chr1;chr13214482;3421702;36705523216968;3421901;3671498-;-;-363400.0000000.0000000.000000
ENSMUSG00000102851.1chr132527573253236+48000.0000000.0000000.000000
ENSMUSG00000103377.1chr133657313368549-281900.0000000.0000000.000000
\n", + "
" + ], + "text/plain": [ + " Chr Start \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 chr1 3073253 \n", + "ENSMUSG00000064842.1 chr1 3102016 \n", + "ENSMUSG00000051951.5 chr1;chr1;chr1 3214482;3421702;3670552 \n", + "ENSMUSG00000102851.1 chr1 3252757 \n", + "ENSMUSG00000103377.1 chr1 3365731 \n", + "\n", + " End Strand Length \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 3074322 + 1070 \n", + "ENSMUSG00000064842.1 3102125 + 110 \n", + "ENSMUSG00000051951.5 3216968;3421901;3671498 -;-;- 3634 \n", + "ENSMUSG00000102851.1 3253236 + 480 \n", + "ENSMUSG00000103377.1 3368549 - 2819 \n", + "\n", + " /home/ucsd-train12/projects/shalek2013/processed_data/S10.Aligned.out.sorted.bam \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 0 \n", + "ENSMUSG00000064842.1 980 \n", + "ENSMUSG00000051951.5 0 \n", + "ENSMUSG00000102851.1 0 \n", + "ENSMUSG00000103377.1 0 \n", + "\n", + " fpkm tpm log2_tpm \n", + "Geneid \n", + "ENSMUSG00000102693.1 0.000000 0.000000 0.000000 \n", + "ENSMUSG00000064842.1 191.794717 320.193945 8.327301 \n", + "ENSMUSG00000051951.5 0.000000 0.000000 0.000000 \n", + "ENSMUSG00000102851.1 0.000000 0.000000 0.000000 \n", + "ENSMUSG00000103377.1 0.000000 0.000000 0.000000 " + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# YOUR CODE HERE\n", + "s10_featurecounts['log2_tpm'] = np.log2(s10_featurecounts['tpm']+1)\n", "s10_featurecounts.head()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 81, "metadata": { "collapsed": false, "deletable": false, @@ -1474,7 +4308,19 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "ename": "AssertionError", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0ms10_featurecounts\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'ENSMUSG00000064842.1'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'log2_tpm'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m8.0324720569159176\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m: " + ] + } + ], "source": [ "assert s10_featurecounts.loc['ENSMUSG00000064842.1', 'log2_tpm'] == 8.0324720569159176" ] @@ -1499,7 +4345,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 73, "metadata": { "collapsed": false, "deletable": false, @@ -1511,7 +4357,69 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
s10s13
target_id
ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072662.2|Mrpl15-004|Mrpl15|1569|UTR5:1-62|CDS:63-569|UTR3:570-1569|0.0000003.952259
ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051163.2|Lypla1-002|Lypla1|1136|UTR5:1-126|CDS:127-801|UTR3:802-1136|0.2786692.769812
ENSMUST00000027036.10|ENSMUSG00000025903.14|OTTMUSG00000021562.4|OTTMUST00000051162.1|Lypla1-001|Lypla1|2507|UTR5:1-91|CDS:92-784|UTR3:785-2507|3.1747842.992448
ENSMUST00000081551.13|ENSMUSG00000033813.15|OTTMUSG00000042348.1|OTTMUST00000111602.1|Tcea1-001|Tcea1|2547|UTR5:1-100|CDS:101-1006|UTR3:1007-2547|6.9473511.058026
ENSMUST00000002533.14|ENSMUSG00000002459.17|OTTMUSG00000029338.4|OTTMUST00000072687.1|Rgs20-002|Rgs20|1778|UTR5:1-160|CDS:161-880|UTR3:881-1778|2.7950654.141637
\n", + "
" + ], + "text/plain": [ + " s10 s13\n", + "target_id \n", + "ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTM... 0.000000 3.952259\n", + "ENSMUST00000134384.7|ENSMUSG00000025903.14|OTTM... 0.278669 2.769812\n", + "ENSMUST00000027036.10|ENSMUSG00000025903.14|OTT... 3.174784 2.992448\n", + "ENSMUST00000081551.13|ENSMUSG00000033813.15|OTT... 6.947351 1.058026\n", + "ENSMUST00000002533.14|ENSMUSG00000002459.17|OTT... 2.795065 4.141637" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "kallisto_log2_tpm_expressed.head()" ] @@ -1536,7 +4444,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 74, "metadata": { "collapsed": false, "deletable": false, @@ -1548,7 +4456,28 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['ENSMUST00000146665.2',\n", + " 'ENSMUSG00000033845.13',\n", + " 'OTTMUSG00000029329.3',\n", + " 'OTTMUST00000072662.2',\n", + " 'Mrpl15-004',\n", + " 'Mrpl15',\n", + " '1569',\n", + " 'UTR5:1-62',\n", + " 'CDS:63-569',\n", + " 'UTR3:570-1569',\n", + " '']" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "s = 'ENSMUST00000146665.2|ENSMUSG00000033845.13|OTTMUSG00000029329.3|OTTMUST00000072662.2|Mrpl15-004|Mrpl15|1569|UTR5:1-62|CDS:63-569|UTR3:570-1569|'\n", "s.split('|')" @@ -1572,7 +4501,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 75, "metadata": { "collapsed": false, "deletable": false, @@ -1584,7 +4513,20 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array(['ENSMUSG00000033845.13', 'ENSMUSG00000025903.14',\n", + " 'ENSMUSG00000025903.14', ..., 'ENSMUSG00000064367.1',\n", + " 'ENSMUSG00000064368.1', 'ENSMUSG00000064370.1'], dtype=object)" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "kallisto_log2_tpm_expressed.index.map(lambda x: x.split('|')[1])" ] @@ -1607,7 +4549,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 76, "metadata": { "collapsed": false, "deletable": false, @@ -1619,7 +4561,70 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(9383, 2)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
s10s13
ENSMUSG00000033845.130.0000003.952259
ENSMUSG00000025903.140.2786692.769812
ENSMUSG00000025903.143.1747842.992448
ENSMUSG00000033813.156.9473511.058026
ENSMUSG00000002459.172.7950654.141637
\n", + "
" + ], + "text/plain": [ + " s10 s13\n", + "ENSMUSG00000033845.13 0.000000 3.952259\n", + "ENSMUSG00000025903.14 0.278669 2.769812\n", + "ENSMUSG00000025903.14 3.174784 2.992448\n", + "ENSMUSG00000033813.15 6.947351 1.058026\n", + "ENSMUSG00000002459.17 2.795065 4.141637" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "kallisto_log2_tpm_expressed_genes = kallisto_log2_tpm_expressed.copy()\n", "kallisto_log2_tpm_expressed_genes.index = kallisto_log2_tpm_expressed.index.map(lambda x: x.split('|')[1])\n", @@ -1649,7 +4654,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 77, "metadata": { "collapsed": false, "deletable": false, @@ -1661,7 +4666,70 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(6733, 2)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
s10s13
ENSMUSG00000000001.40.2736516.259357
ENSMUSG00000000056.75.2181730.000000
ENSMUSG00000000058.611.6094940.344833
ENSMUSG00000000078.62.7237164.196505
ENSMUSG00000000085.160.0000005.360020
\n", + "
" + ], + "text/plain": [ + " s10 s13\n", + "ENSMUSG00000000001.4 0.273651 6.259357\n", + "ENSMUSG00000000056.7 5.218173 0.000000\n", + "ENSMUSG00000000058.6 11.609494 0.344833\n", + "ENSMUSG00000000078.6 2.723716 4.196505\n", + "ENSMUSG00000000085.16 0.000000 5.360020" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "kallisto_log2_tpm_expressed_genes_summed = kallisto_log2_tpm_expressed_genes.groupby(level=0, axis=0).sum()\n", "print(kallisto_log2_tpm_expressed_genes_summed.shape)\n", @@ -1686,7 +4754,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 83, "metadata": { "collapsed": false, "deletable": false, @@ -1698,7 +4766,31 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "before aligning: (6733,) (46983,)\n", + "after aligning: (46983,) (46983,)\n" + ] + }, + { + "data": { + "text/plain": [ + "ENSMUSG00000000001.4 0.273651\n", + "ENSMUSG00000000003.15 NaN\n", + "ENSMUSG00000000028.14 NaN\n", + "ENSMUSG00000000031.15 NaN\n", + "ENSMUSG00000000037.16 NaN\n", + "Name: s10, dtype: float64" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "x = kallisto_log2_tpm_expressed_genes_summed['s10']\n", "y = s10_featurecounts['log2_tpm']\n", @@ -1727,7 +4819,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 84, "metadata": { "collapsed": true, "deletable": false, @@ -1747,7 +4839,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 85, "metadata": { "collapsed": false, "deletable": false, @@ -1759,7 +4851,36 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py:892: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n", + " warnings.warn(self.msg_depr % (key, alt_key))\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGoCAYAAADmTPpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xmc3VV9//HXnX3LDJlMJiGhhISQQwiQhE0t/IpIUYpF\nsEEQESxULbQULbRSEEvUKKCVsqhJ61YQ1FRTqqilKq1YUCCQZAhZTiJJIGTIJJNlljvrnXt/f9xl\nvvc7d5uZu3zvnffz8eBB7vdu55vlfOac8zmf4wuFQoiIiHhBWaEbICIiEqWgJCIinqGgJCIinqGg\nJCIinqGgJCIinqGgJCIinlFR6AZkkXLbRaTY+ArdAK/RSElERDxDQUlERDxDQUlERDxDQUlERDxD\nQUlERDxDQUlERDxDQUlERDxDQUlERDyjlDbPloRDh48QGB6OPa6sqqJ5+jEFbJGISP4oKHnMb17c\njq+qKfa4fKSHSy96WwFbJCKSPwpKHlNZWUlFbV3scWhgoICtERHJL60piYiIZygoiYiIZygoiYiI\nZygoiYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiIZygo\niYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiI\nZ1QUugGSWigUoqurK+5aY2MjPp+vQC0SEckdBSWP6/P38pNfb6Wurj78uM/P+955Ck1NTQVumYhI\n9ikoFYG6unrqGxoL3QwRkZzTmpKIiHiGgpKIiHiGpu+KjBIfRKSUKSgVmb6+Xv77d4dpbp4ReazE\nBxEpHQpKRai2VokPIlKaFJSKXKLpPNCUnogUJwWlIueezgtf05SeiBQnBaUS4J7OUzKEiBQrBaUS\n5B49+f29vPOM4+JGTu4gFQqF6O7ujvscBTIRyTcFpRLlHD35/T389+9eSxmkurq6eGbjm9TVNSR9\njYKUiOSagtIUkSpIAXQe7KC+oSnpa7ROJSL5oKA0RbnXofz+npSvUZafiOSDgpJkJFGWn6b4RCTb\nFJQkY4lGV+nWqkKhEEBcoFLgEpFkFJRkUjJZqyorr0gauBIFLfe1TAKbsgdFSkNJBCVjTMXTTz9d\n6GZkxeFDByn3B2KP+450MhDsora2Lvz84U7KysoZ6OtO+DiT1+T6Pb7QSOw1XUcPxV07fLiT7+7+\nPdMaw0Gpq+swZb7y2ONE19yPBwcHOP+s+UybNi32np6eHp55aTfV1TVJXyMS5ZW/FxdeeOEJwJvW\n2kC6104VvuhPocXMGHMCsLvQ7RARmYD51to9hW6EV5TESAl4M/L/+QVtRXbspjTuA0rnXnQf3lMq\n97Kb0f5LKJGREoAxJmStLfoFhFK5Dyide9F9eE+p3Eup3Ec26eRZERHxDAUlERHxDAUlERHxjLwk\nOhhjjgMeBWYBQeAb1tqHjDHTgbXAPGAPcKW1dmwtm8x8Nhtt9YBSuQ8onXvRfXhPqdxLqdxH1uQl\n0cEYMxuYba3dZIxpAF4GLgOuBw5Za79kjLkdmG6t/YecN0hERDwpL9N31tr91tpNkV/3AtuA4wgH\npkciL3sEuDwf7REREW/K+5pSZKPrMuB5YJa1tgPCgQtozXd7RETEO/K6eTYydfcj4BPW2l5jjHvu\ncEJzicaYCsIjL5XrEJGSMtX6t7wFpchv7I+A71prfxy53GGMmWWt7YisOx3I4HNWAncneq5U6t+J\nyJQRt3F2ivVvCTcN53Ok9G1gq7X2Qce1nwB/DtwHfAT4cYL3xbHWrgRWOq+p9p2IlAL1b/lLCT8X\nuAbYbIzZSHia7k7CwejfjTE3AK8DV+ajPSIi4k15CUrW2ueA8iRP/3E+2iAiIt6nig4iIuIZCkoi\nIuIZCkoiIuIZCkoiIuIZCkoiIuIZpXIcuogUod/85jd88YtfJBQKsWLFCj7+8Y8nfN0LL7zAPffc\nQyAQYPr06Xz3u98F4F3vehcNDQ2UlZVRUVHBj370o3w2P2bVqlX85je/oba2lnvvvZfFixcXpB2l\nQEFJZAoYGRmhvDzZroyJCwaDlJVNbMIlGAzy+c9/nn/7t3+jtbWVK664ggsvvJATTzwx7nU9PT18\n7nOf49vf/jazZs3i8OHDsed8Ph/f/e53aWpqmtR9TMYzzzzDG2+8wS9+8Qva2tq4++67+fd///eC\ntafYKSiJeMi+ffv46Ec/ypIlS9i6dSsnnXQSX/rSl6iurmbLli3ce++99PX1MX36dO69915aWlr4\n4Q9/yNq1awkEAhx//PF8+ctfprq6mjvuuIOqqiq2bdvGmWeeybve9S6+8IUv4PP58Pl8PPbYY9TV\n1XHffffx7LPP4vP5uPHGG7nkkkt48cUXefjhh5k+fTo7d+7k1FNP5ctf/jIQHp1ccskl/Pa3v+Wj\nH/0ol1xyyYTu9ZVXXmHevHnMnTsXgPe+9708/fTTY4LSk08+ybvf/W5mzZoFQHNzc+y5UChEMBgc\n89k/+MEP8Pl8XHXVVXHXn3jiCX75y1/S09PDgQMHuPTSS7n55psn1P6op59+mssvDx9wsHTpUnp6\neujs7KSlpWVSnztVKSiJeMzu3bu55557WLZsGXfeeSff+973uPbaa/n85z/P6tWrmT59Oj//+c+5\n//77+eIXv8i73/1uPvCBDwDwwAMP8KMf/YhrrrkGgI6OjthP7TfeeCN33303y5cvp7+/n6qqKn7x\ni1+wY8cOnnzySQ4dOsQVV1zBOeecA8D27dv52c9+xsyZM7n66qvZsGEDZ5xxBgDTp0/nP/7jP8a0\n/cknn+Rb3/oWPl98WbPjjz+eBx98MO5aR0cHxx57bOzxrFmz2Lx585jP3LNnD4FAgGuvvZa+vj6u\nvfbaWBDw+XzccMMNlJWVcdVVV3HlleGiMB/84AeT/v5u3ryZn/3sZ1RXV3PFFVdwwQUXsGTJkrjX\n/O3f/i179uwZ894///M/57LLLou7duDAAWbPnh13Hx0dHQpKE6SgJOIxc+bMYdmyZQC8733v47HH\nHuO8885j586d3HDDDbHRQWtr+KQXay0PPvgg3d3d9Pf3c95558U+6+KLL479+owzzuCee+7h0ksv\njY08Xn75Zd773vcCMGPGDM455xw2b95MfX09p59+euw7Tj75ZPbt2xcLSslGR5deeimXXnppVn8/\nRkZG2Lp1K4888gh9fX188IMfZPny5cybN4/vf//7tLa2cvjwYa6//noWLFjAWWedlfLzzj33XBob\nGwG46KKLePnll8cEpX/+53/O6j1I5hSURDzO5/MRCoU46aST+MEPfjDm+TvuuIPVq1ezaNEinnji\nCV588cXYc3V1dbFff/zjH+eCCy7g17/+NVdffTXf/OY3x3yW8yTqysrK2K/Ly8sZGRmJPa6trU3Y\n1uhIyW3evHljRkqzZs2ivb099rijoyMWBN2vmz59OtXV1VRXV3PWWWexfft25s2bF3t9c3MzF110\nEZs3b04blNyjOPdjCI+Udu/ePeZ1iUZKra2t7N+/P/Z4//79salGGT8FJRGPaW9vp62tjaVLl/LT\nn/6UM888k/nz53PkyBE2bdrEsmXLCAQC7Nmzh4ULF9LX10dLSwvDw8M8+eSTSTvEvXv3ctJJJ3HS\nSSexefNmdu/ezVlnncXatWu5/PLLOXr0KC+99BK33347r7322oTaPp6R0mmnncYbb7zBvn37mDlz\nJj/72c+4//77x7zuwgsvZNWqVYyMjDA0NMQrr7zC9ddfT39/P8FgkPr6evr6+nj22Wdj60OPP/44\nQGwa0+m5556ju7ubqqoqfvWrX3HPPfeMec14RkoXXnghjz/+OJdccgmbNm2isbFRU3eToKAk4jHz\n58/n8ccf54477mDhwoVcffXVVFZW8uCDD7Jq1Sp6enoIBoNcd911LFy4kFtuuYUPfOADzJgxg9NP\nPx2/35/wcx955BFeeOEFysrKWLhwIX/0R39EZWUlmzZt4rLLLsPn8/GpT32KGTNmjAlKztFEopHF\nRJSXl/OZz3wmNiV5xRVXxJIcnIkKJ554Iueddx7ve9/7KCsr48orr2ThwoXs3buXm2++GZ/Px8jI\nCJdeemls6nLXrl2ceeaZCb/39NNP5+abb6ajo4PLLrtszNTdeJ1//vk888wzXHTRRdTW1iYMcpI5\nn3O4Xqyi5408/fTTHHfccYVujsiE7du3jxtvvJEnn3yy0E0pajfeeCNf/epXqaiI/7n7iSeeYMuW\nLdx1110FatkYaSN8CfdvBT/kT0QkL9asWVPoJsgEKSiJeMjcuXM1Ssqh97///bz//e8vdDMkBdW+\nExERz1BQEhERz1BQEhERz1BQEhERz1BQEhERz1BQEhERz1BQEhERz1BQEhERz1BQEhERz1BQEhER\nz1BQEhERz1BQEhERz1BQEhERz1BQEhERz1BQEhERz1BQEhERz1BQEhERz1BQEhERz9Bx6FJyuvxD\nrFnXRsfhPmY113HTiqU01lcVulkikgEFJSk5a9a18WxbOwA79x4F4Pbrzi5kk0QkQ5q+k5LTcbgv\n5WMR8S4FJSk5s5rrUj4WEe/S9J2UnJtWLAWIW1MSkeKgoCQlp7G+SmtIIkVKQUmKnrLtREqHgpIU\nPWXbiZQOBSUpesq2E42WS4eCkhS9Wc11sRFS9LFMLRotlw4FJSl6yrYTjZZLh4KSFD1l24lGy6VD\nQUlEip5Gy6VDQUlEip5Gy6VDZYZERMQzFJRERMQzFJRERMQzFJRERMQzFJRERMQz8pJ9Z4z5FvCn\nQIe19vTItbuBjwEHIi+701r7VD7aIyIi3pSvlPDvAA8Dj7qu32+tvT9PbRAREY/Ly/SdtfZZ4EiC\np3z5+H4RESkOhd48e7Mx5lrgJeA2a21XgdsjIiIFVMig9HXgc9bakDFmFXA/8Bfp3mSMWQncneO2\niYjknfq3AgYla+1Bx8NvAE9m+L6VwErnNWPMCcDuLDVNRKQg1L/lNyXch2MNyRgz2/HcnwGv5rEt\nIiLiQflKCf8e8E5ghjHmDcLD0wuMMcuAILAH+Mt8tEWKi04UFZla8hKUrLUfSnD5O/n4biluOlFU\nZGpRRQfxNJ0oKjK1KCiJp7lPED3SPcCtDzzDfY+up9s/VKBWiUiuFHqfkkhKzhNFj3QP0NkV/s/r\nU3laCxOZGAUl8TTniaK3PvAMnV0Dsee8PJWntTCRidH0nRQN91Se+7GXaC1MZGI0UpKi4ZzKi06J\nedWs5rrYCCn6WETSU1CSouGcyvO6YgqgIl6ioCSSA8UUQEW8REFJpMCUqScySkFJpMCUqScyStl3\nIgWmTD2RURopSUkrhqkxZeqJjFJQkpJWDFNjytQTGaWgJCWtGKbGlKknMkprSlKyuvxDHOkeiLum\nqTERb1NQkpK1Zl1bXK28lqYaTY2JeJyCkpQs91TdwNAIK7/xOx17IeJhCkpSstxTdb39w+zce5Rn\n29pZva6tQK0SkVSU6CAly5nV1t7Zi78/EHvOiwkPIqKRkpSwaFbb/Z88n+WLWuOeU8KDiDdppCQF\nl48NrtoLJMUuFAoVugl5oaAkBefe4LpxxwGWL2rNanAq9b1AxVC5Qiant7e30E3ICwUlKYgu/xAP\nr93All2H6RsYjnvO3x+IBalSDiTZVAyVK0QyoaAkBbFmXRsvbOlI+RolI2SuGCpXiGRCQUkKYt/B\n9FMR2UhGmCrTWirqKqVCQUkKoifB5tX6mgqWm9asJiNMlWmtVIkcUyUwlzolOojkUGN9VVwJIIBT\nT5yR9YCR7Wktdwd/zcWLefypbQXv8FMlckyVwCylQUFJCmLOzAZ2tXfHHrc01XDLVWdk/XuyPa3l\n7uC37zkcC65e7fC13lQafD5foZuQFwpKkjfRUca+g70c7RmgvqYCfHDaghb+5qrlORlhZHt/krtD\n7+kbSvm8F2i9SYqJgpLkjXOU4fTqrkOsXteWk6mvdPuTxrve4u7gp9VVMeiYhvRih6+Nw6VBa0oi\nWZZsFNHbP1ywfUmp1lsSBSx3B//hixfzmGtNyQuU3CDFSkFJ8sY9ynDrONyX98401XpLsoDlDpxe\nW0MCJTeUIq0piWRZdBSx72AvPf4h+gcD+AdGK3fPaq7La2ea7mTaXCYI5Dr4KrlBipWqhEveRNd3\nHrrtAh647QJOO7GF+toKGmoreduSWdy0YmleO1P3ybRVFWXsO9gbOwTQvT6UzfWiaPDN1flOuWy7\nSC5ppCR5Ea51t5FXd3Xiw0dVZRmHuwcdr/Cxel0bb3X6496Xy87UHfCGAkF2t3ezO5KqnssEgVwH\n30Rt1zpTcVOig0gW3f+9l9mw/cDohf7451/d1Rl3CF99bUWsUvhkJeuMU61xdRzuy2ll8VynaSdq\n+32Prtc6k3iegpLkVDQgxAWkBHzEL+LOaWnIWoeZbJ3KOZo40j0QN5WX6+muQqRpa52puCnRQSQL\nku1NgnAVh+mNNcxqrmM4MBJXNTybQSFZZ+ycDDnxuGM48bgQB4700+Mfoj2ytpSrKa5CnO+kTbRS\nDNIGJWPMHwEbrLW9xpi/AM4G7rPW7s5566TopaoGvurGc5nb2gBAt3+I1a4ptmxJ1hm7A+Z5S+cw\nd2YDz7a309k1ECuDVCpTXNpEK8Ugk5HSV4GlxpglwG3AY8C3gHflsmFS3KKJDbsd9e3cHntqW6zD\nz+XIIVlnnMl0VilNcZX66bulTokOowLW2pAx5k+A1dbah40xH8h1w6S4hQ/x25/yNfnq8JN1xslG\nUJriEimcTIJShTHmbcCfAR8bx/tkCssk4OR63SadVNNZmuISr1Giw6jPAP8CPG2t3WKMWQTszG2z\npNilKykE4B8IxNZ0blyxNO97aJKNoLw2xaX9RTKVZBKUrLV2mePBDmPMnTlskxS5Lv8Qw4ERyn0w\nksE0eMfhPtVqS0G/NwJTZ00pkzJD38vwmggQXU/qyCggQXhUpT00yen3RqaSpCMlY0wL0ArUGGMW\nQ2x3YxNQn4e2SZHKtNOsqijjnCWzuWnFUlava8tpgkExT4Fpf5GA1pQArgE+CcwBfu643gV8KZeN\nkuKVqPJ2MpWV4YF6d2S6r6G2khAhTlvQkvUEg2KeAvPK/qJ8BPZi/uFBsiNpULLWPgg8aIy501r7\nxTy2SYqYu/K2W7kP8PkYCYbw94cTHbbvORz3noqKsqx3ROmmwLzcGXplf1E+Ansx//Ag2ZE20cFa\n+0VjTB1wnPP11tqtuWyYFJ8u/xAbbeoad9Mba2isr4pVSwDo6RuKe00u1kzSTYFl2hl6OXjlWj7W\ntrR+ltxUSXTIpMzQXwH3AUeAkcjlELAgh+2SIvTw2o1xh/YlkmgUNa2uikHH9ebGau57dP2kOn53\n8PjwxYuB5FNgmXaGU/kn+XysbWn9TDJJCf874FRr7eu5bowUt1d3dWb0umn1VZx8QnNcwHjsqW2x\nx4FAcNIdf6Lg4dwLtXpdW1ywy7QzzOZP8sU26srH2pZX1s+8SIkOo/YrIEkm3MdPJNPjH+KmG0c7\n4C5//PTdgSOT7/gTBY9Uo5xUnaEzeKQ6Pn28im3UlW5tKxtB1ivrZ1I4mQSlXxpjvgT8AIj9ixzP\nmpIx5lvAnwId1trTI9emA2uBecAe4EprbVfmTRevmT+ngc2vHUn7us6uAVava4t1Pu7Ouaoifvvc\nRDp+98jnSPcAb+yPLw67cccBbn3gmVgHmqwzdFcTdx65MZmf5Ett/aTYgqx4UyZB6brI/51FWMe7\npvQd4GHgUce1fwB+Za39kjHmduCOyDUpMtGK4IkCUlUkk+5ozwCB4Oj19oO9sZ+s12+NL9w6FAiO\n6fjH+1N4qgP8ovz9AXbuPZq2A3UHi+mNNdz/yfOTfnemsrl+4oWpwFILsl6jRIcIa+38yX6JtfZZ\nY8w81+XLgOi/7EeAX6OgVJS+8K3fsu31xIPc5WYmd93wdq5b+V8c6RmdpjvSM5DyAEB3xz/eo7yd\n00C3PvBMyjR1SN2B5mrxPZvrJ14YpShJQbIhk+y7UxJdz0JKeKu1tiPyWfuNMa2T/DwpkGQBCcC+\nfpRu/xBDw8G4693+4TEjJCd3hzaZn8IzKQ6bqgPN1eJ7NtdP3L8fv9v8Frd85X+ZO7Mhb6MmJSnk\nlhIdRv3M8esaYBbwOjDpEZTL1BibTjFHewf5y3t+xcDQSNz1kWCIkWD8H3mqtZrJ/BR+04qlbNxx\nAH//2HT1Mh/84elzUnagiYLHRKfLJvK+TN7j/v0ZCYbY3d7N7vZutu85zIO3XTDpwJSuHUpSkGwY\n9/SdMeZC4E+y8N0dxphZ1toOY8xsIPWuy9HvXwncnYXvl0mKdlLp9PYPp3zeB8xoqok7Ht0tGjTa\nD/bS7R9iX4KzmJJ1mo31VSxf1JpwqvCcU2ZPqCOd6HTZRN6XyXtSBV53YslEeWGKsNSl6t+0ppSE\ntfZpY8yXJ/BdPojLGf4J8OeEN+Z+BPhxht+/EljpvGaMOQHYPYE2ySSkWhNKpKG2kmNb6sckHoQI\nd5zO49Gj3IGmdXodu9q76ewaiB21niyLD0b3Ju072EtLUw31tZX4+4eZVl8Vm9qaiIlOJ7pft37r\n/rQHHWbyXakC73jal4oSGXJP/dv415TKgLOB6vF8iTHme8A7gRnGmDcI/yRwL/BDY8wNhKcDrxzP\nZ0phdfmHeGlbx7jeEyLErOY6bvvQmTz21DbWb93PoGOtKVEn5w409bXxf2Wd73G/f9OOg3x17Uae\ndxzLfvIJzVn56T7RdOJEptkGh0c3CidrV6ZTl87R5JsHehlypDtmI+lAiQyFpTWlUc41pQDhU2c/\nMp4vsdZ+KMlTfzyez5HcGe9ax/2PvzRmnSidaAFWCHfAzow6gObGmlh5oebGGiDEph0H4z7DvUHX\n2TG6O83e/mE2u6pMbNpxkG7/0LjWVxL93iRa1F+dZHrL+f7mxmrevmQ2G3ccSBuQozJNIHCu6XT7\nh1jtanOq+8nk9yPfiQxeSHOX/MtLSrh433jXCzbtyKykUCLRDtjdyQ0HRtJOBy5Z0ExlRXnCjjHR\nusrAYHzg7O0fHvf6SrLfG/dnJJveck9znrd0DmefMjvu2pHugaTBciIJBKneM9G1oXwnMmgNa2rK\naE3JGPMeRkc1v7DW/jJ3TZJCGO96QXASi67R0Y27k7v1gWeSvqe6soyzT5md8qflxvoqTl0wgxe2\njE4rjgRDlJf54jL9xrsWkunvTbLprUTvX/mxd8Qd2ZGtZIRMFMvaULG0M1+U6BBhjPl7wtN1349c\nut8Y84i19p9y2jLJq/GsF7hr1WWqobaSZYtmcs3FixNWAU+1n+jsDLPkEtXfq62uiMsATLcW4p42\nCk8ljnJOMzrbn2x6K9HvbWN9FdMba+ISPqIZhbmerprI2lAhptK0hjU1ZTJSuhZ4h7W2B8AY8xDw\nHKCgVEIyXS/o8g/xsVX/lfHnOvceXXPxYh5/aht/99AzsSk257SMsw0zGmsIEeJw92Bce1J1jl3+\nITa/NnZaccmCZsDHq7s68eFjODCScl3JPW30tiWzOG/pnFg6+iu/P0D/YHBM+5NNb2UarN7Y3xPL\nKMzldNVE1oYKMZWmzbjxlOgwyhcNSADW2h5jzNT43ZlCMl0veHjtRvozHCiVl/niNm26ExuiotMy\nmbQhVee4Zl3bmPOcqirKuOWqM1i9ri0WCF/Y0pFyqsw9TXTwSD9zZjZw4Eh/wj1X7QlGOKFIe1KN\nLKKd7KYdB+ntHx6zmThX01UTWRsqxFSaNuNOTZkEpfXGmO8A34g8/gvgpdw1Sbzsld9ntMcZCK/n\n9PiHYh10srJC45mWSdU5Juoo57Y20FhfNa5O1T2C6fYPsas9eQKG83nn+9KNLKKd7q0PPJNw2tJL\n01WaSpN8ySQo/Q3wGeChyONfAZ/PWYvE06LTVpm6a81znHxCc8IRUnSNaTzTMqk6x0RrUnNnNqR9\nn5t72mjfwd6EBV2j7Xc/nyjgjScI1tdWsHxRq6emqzSVVnhKdIiw1vpR9W4B3jzQO+73HOoeYN/B\n+PdlkkkH4TWi+7/3Mm07DhIMhTimoYpPX/82IHG5oZtWLCUQCLI5sna0ZEFzrPMcT6fqnja679H1\nsbUeiA8ajfVVY56PBryJBsFsJhFkK0FBU2mSL0mDkjHmH4Aea+3XXNf/Gqi31n4p140T7+jyD3HL\nP/3PuN8XCoVPmnWqrCgHwtfdGzydHeaadW1s2D46XXikZ4h7H1nPd/7xPdz36Hp2tbePKTf06Rve\nlrAdyTpV98ZWHz4OdQ+kzapztvOmFUsZDoywZddhQoQYDgS5/k+XjHlP1JsHevnMmufo6RtiWl0V\nq248N2cdvvb6lA4lOsAK4NwE178JvAgoKE0ha9a1MTwysemDxvoqTj6hmZe376d/MEhv/zDPtrWz\nZVdn7IylRB1moimvrt6BhM9NNJ06Wf2+nXuPxlXXTnd2U2VFeSwJ4oUt+6msKEv6ns+seS423TfY\nNcBda57jO//4nrRtnQjt9ZFikyoolVtrx+RZWWsHjTE5bJJ40d6OnvQvSmLOzAZuv+5srr7r58Do\nmtTR3vi/Xu4OM9Eakc8XPiq9uTG+/OKRnoG4dOpAIJh01JTqO506uwZ4aO1GKivK0ga78XT+PX3x\n932oayA2BZlJ1t54KEEhXjGXLtKaEkwzxlRYa+NybI0xlUB9bpslXuD8B/z6/syD0vRpVZjjm+Om\nwSBckNWpzOdjxPEPrbmxOm608+GLF/PS1rcYGB59zVAgyNV3/ZyKivipjKM98R29u+ZdMukOAHx1\nV2fCPVXpPidV5z+tropBV5V052htPNNt6TrZbCYoFHOHHqXpTO9LFZT+i3D1hr+11o4AGGPKCE/b\nPZWPxklhjfdoCoAzT27l1g+dmbCzOnVBCy84KnYvWzST2uqKWCcXCATHdBgNddUMuDLf0p3PBIkr\nO8DYjvXDFy8GRvcKpfucZCOg8XT+q248l7vWPMehroG4MD3erD1I38lmM0GhFDr0Yp7O1JoS3An8\nHHjNGLO06QMPAAAgAElEQVQhcm058CbZOeRPPG68/2CPn9XAyo+9A0j8U/UtVy3nobUbeXVXJ6Fg\niN3tXRzTUM2cyLlGn1nzXNznPdfWPuHjiMNVHMZK1rG69wpFMwSHAyNxtfSSjYBCwHBghLc6/bR3\n9vLQ2o3cctXyhMG5IbLGttEeiNvs236wl9rq+H+S6abbsrW2loli7tCjNJ3pfUmDkrW2F/gjY8wf\nEw5GAF+z1j6dl5ZJzmQ6DZNuasvt+NmNsV8n6/wrK8pi02F9gyMc7h5kV2QtqNuVpTfRgFRVUcbB\nI/0JD89L1rG67zVaay/VERBOa9a1xQWvF7bsT1o1ItkI1D8QwD8QoKqijONaG2LBOhV3u3v8Qzzb\nnpvRTCl06Npv5X2Z7FP6lTHmRWChtXZDuteL92U6DXPNxYsznr6rqiiLTYXB2M7/ubZ2rv/cf1NX\nk/iv3Pqt+ykry+irYqorYFp9DXU1FfQNBGisr6LbP0Rn1wC72rtjwc55b8k61mSdVabTX+OZeks3\nwhgKBGPJIem4292ewUbeiSqFDr2Y91sp0SHCGHMJ8C/ACHCCMeYs4G5r7aW5bpzkRqbTMN/4z1cy\n/syhQJDv/PRV/uaqM1izro32zvgNs9Ejz6v8iSOP88C7TA0GwinVbztuVuyMJffBgx2H+1x7kWp4\n25JZYwq9TrazSjSqTDaSyGQEmi6YuEe7Kz/2jthG3l0JNvJmQzF36FI8Mikz9FnCR6D/F4C19iVj\nzIk5bZXkVLppmGiHt8EedL81pVd+38knv/K/CUvyODXUViZNVmioraR/MDCmOGkqr752aEwh1qhZ\nzXVjpsuilcuzyb2B9rQFLUlHEtHr+w720uMfoq6mgv2H+sZ1fHmy0e5ERzOlkFlX6pTo4GCt3e/a\nmzSYm+ZIPqTruCaSdQfQPzhC/2DqI9KHAsGU0xA1VeVMb6xmb0fmJY36kgSklqYablqxlJXf+F3c\n9c6uATq7BpJOXU6kg26sr+KuG96eUXsTjTgyXbuKSjbanehophQy66Q0ZBKUeowxs4isOxtj3glk\nvvotnpOu45roOoTPFy4rlE6qyhCppvgA6msq6BsMxH1Psk+b3liT9vDARPea7w56IkHQffDgjEmO\n/Eohs05KQyZB6Q7CU3fzjTG/Bk4C3pfLRklhuTu8TJX7IJCFtVjnNJbbctPKxh0HYhl8qSRKYjjS\nPRA3vZhommy8HXSiWnZzWxvSti8ajJx7pDIPgiHXo8n9xpdCZl2p6+npIRQKlfw0XibZdy8YYy4A\n/hDwAb+11mqkVML6BtKf4tdYX8HISHjqLER4lDSOZaAJ27r7EMEUX1RfW8GclgaaG2sYDoxw6wPP\nxI0+nNNkzY3VBAJBbn3gmbhirEe649fE0nXQE61ll2yaNJNRyuHuwZSPx6sUMutK3fOv7seYbpqa\nmgrdlJxKGZSMMeXAemvtGUQSHaS0JJo62rLrcNr3dfvjRyqhUPJptObGagaHRhgYGqGyHEZCMDzB\nIZWz862vqaC2uiJu5FNbVcHKj72D1Umm4JxTl8lOwoXwT191tRWctqCFD1+8OOWGVHctO/fjZJIF\nn0xGKdke2Sizzvvq6qbG6DVlULLWjhhjeo0xNdba1ClVUpTc6yeHuwcmPeKprS6LHQZY5oNgEMy8\nY+jpCzCruY7Lzz+RVd95YUy9uol48LYL+IQj46+za4C/vOdXY6azElU6SDUiCQH+/gAVFWU89tS2\nlGtM7lp20+pGA1aq9aLJHO7nHNlMq6tg6+5DXPEPT45r+lDEizJZU7LAb4wxPwJiKVHW2q/nrFWS\nN+6Oeevu9KOkdJyn0wZDcLR3kA02PMLZuffopMoHOfkHAjy0dsOYkUmidPN9B3rjqohDZvuF2g/2\n0nGkb8w1Z4D7h4+czb2PrI9bU4pKlTQxmcP9nCOb6z/337ERZK6PwhDJtUyCUgWwBVjsuDY1thZP\nAeMtJZQN2fzL4yztk0xVRdmY5ImOw32xOn0dh/s41NWfcF2m2z80Jqmi2z/ELlcpn2RBIFnSRDb3\nBU10+lCKy9GjR6ZEVYdMEh2uz0dDpDCcP63/fu/Rov5poyxJskWiZKVZzXWx0UaXf4iH124Ib3wN\nhaiuKqepoZq5MxvY5yrb01BbybT6qoxL+SRb+8lm2nmq6UMpHcFg6j2ApSKTMkN/lei6pu9Kg3Ma\n6NLbflzg1sRzj3DmzZ5Gt38wdlqt2zHTqhkcHmFgcCSuIoR7lBTdVBv18NoNcSOuU0+cEdsIe9+j\n62PTfhA+bgOIu5asIkaqskbZ3BcUPQoj0fShlI7m5paSTweHzKbvnD++1QAXAM8DCkoekY2poC6/\n96Z8Gl0jkkNdA2MO92usryAY9NE/GIibfnNu5HXOeLQ01cSOOI9yZxs6H6dKlXaeybTq2y/w6q5O\nfPioqiyLa0ui70yVPTfeP8+5rQ1aQ5KSMe7pO2PMscDXctYiGbdsTAV9fJV3Mv7nttQxf+4xfPji\nxXznp6/y0rYDjARDCRMY/P0jCevkJZt6j1Z5iHttio2oyVKlndfue3R93OGF9Me/trNrgE985X+Z\n3lgTCzKpgt1E/zxVv660aU0pCWvtW8aYRblojEzMZKeCtu85TDbWxmuryhkJhlJWZMjE4HDQ0aH6\nUhZnHe8/0kT7edwn4lZXltPtH8q4Q8/k9ztRvb1kgWaif56qX1fatKYU4VpTKiM8nXcgZy2ScZvs\nVNDtX/2/SX1/eZmPsxa34sPH884RwwQ5Rxa79nWl/e5gilp60ddUVfooLytnODAyJuDcctXyuL1O\nh7sHkx7Ql8h4MxjTBZmJbIzt8g+xcUf8P0vVrystWlMa5fyXGQC2An+bm+bIREx2Kmiym2VHgqGM\nUrPHIzqySGd2Sz3zZjemTOuePq068llBXtjSMSbgNNZXMb2xJmFGXSZB/aYVS+kfDPDy9vig0FBb\nybEt9RnV23N/XrQNmZb8WbOubUzquurXSTHKJCjdZ63d7rxgjDkZmPwuS8mKVCVi0k0Fvbwtu8Ek\n16ZPq4rLvps3uzF273/1pafHBKWqirLwabeOAZf796DLP5S03l0mQb2xvora6rH/lJYtmjmuI9Wd\nnzfeaTf3PTXUVsZ9j9abpFhkEpS+B5yRwTXJk/F0MOmmglZ+8/mctjWbWppqWHXjuTz21LbE2XCH\nxk5XDQWCHO1NXWB1zbq2uJGMM2U80/WdVEEhH3Xl3H/OyxbNjPs7ofWm4jflEx2MMS1AK1BjjFlM\nuEYlQBNQn4e2SRLj6WBKqfrz9MYa5rY2xN1rl38oVvInMJI4waLbH6C5sRp//zDT6qr48MWL4553\nBxRnhl6m6zvpgkKupftz1nlJxU+JDnAN8ElgDvBzx/Uu4Eu5bJSkNp4OJtVP6cU2ddfeGa455xwZ\nZnpKrrM23GNPbYv7PUkVeNzHnA8Hggkz8woR/LM5Yhbvm/KJDtbaB4EHjTF3Wmu/mMc2SRrZ6GC6\n/EOem7rzkbguXvS6vz/As23t9A8Ms/LjfwiMDcjlZalTyCFcUNUpVUBprK+isqI8tkfqhS37E2bm\nFeLoh6k6YpbSlsnm2S8CGGNaCVd0iF5/I4ftkhSy0cF89l+fzXazJm25aaGupor1W/czODw6FecO\nMZt2dsZ+7T4l9+zFs1hx4Ul86uH/S7qBtttVvWK8x8N7ZeorWyNmES/JZJ/SBcCjwCxgBKgCDhFe\nb5ICyEYHs/PNniy1JnuO9Azx2Y+fm/LwPXBvmB1bjeHHz7wWF5DchVqnjXOtx6tTX15tl+TGlE90\ncPgn4EJgLeGMu78ATshhmySHuvxD3P/4S4VuRkI9kRGMeyT46mudHO0dHd2Ul/li6zruFPAtuw4z\nHIhfEK6trsA/MLqHp3V67bja5dWpL6+2S3JDiQ4O1todxphKa20I+KYx5iXgrtw2TbLFuSDu3shZ\nKM6CqVHd/iFWffsFIMTh7kGaG6vpHxhmcDj+H+PwSCi2ruMeLSSqj1ddVR4XlDbYA+M6pdWrU19e\nbZfkxpRPdHCI/ivfZ4y5FNgDNOesRZJ1mWaoJVJTVcbA0ORq2SWSaBZiKBCML2yaQjRZwTlaaO/s\njatqUF1ZxtmnzOb1/d1xI6rhQAgIxZ3SOpnNpdqYKpI9mQSlB40x04HPEN4024TKDBWVySzM5yIg\nZUM0WcE5WnCvRZ19ymxuv+5srv/cfyf9nOgprZPZXOp+76YdB1myoBkfPg51DyhQSVZoTSnCWvv9\nyC9fBBbmtjmSC4U48jzXamsqxoxQoptinSOWLv8Q/YOBpJ8TPaV1Mhl27tf29g/H1QL0SgUFjeiK\nm9aUIowxdcCdwAJr7Ycide9Ottb+Z85bJ1kRneJav6WdFP2zJzQ3VjMwGKBvMPU/wP6BQEajm/se\nXR+3ngTheng+H3GntE4mky2ToO+FNHKVGipuWlMatRp4C4im9rwJfB9QUCoS0Skurx137k7VBpjR\nVMus5roxa2D1NfEZdI31VSlHN9FRwfqt8WtUDbWV/Msdf5zVigzR127ccWBMpe4oL6Rre3W/lYhT\nJkHpdGvtR4wx7wGw1vYaY8py3C7JEueUTa401lfQ7c9sCFbmC294jWa9udeBogHBWdrntAUthCAu\nCWLOzHDGXLLRTbLkjmQ16SaTyRZ9b7Qa+L6DvXT1DjI4NILP52PJguakQS6fU2ra1yTFIJOgFLcR\nxBhTQ/iwPykCk8m8y0S0cvdda55Lm2oePgxwFrdctTzW8SYaoTTWV3HXDW+Pe2+q4x+ca0rR4qzu\nUkJVFWWcs2R2TvfyRIPTfY+uZ3d7d+x6ZUV50kCTzyk17Wsqbkp0GPUbY8ydQLUx5p3ArYC35oEk\nqVxP0XR2DXDH1/8vnDCQ+pDYyGGA8bXjMh2hJHud81qqShDpviebI5bxTJPlc0pN+5qKmxIdRn0a\n+BTQQ7g6+E+Ae3PZKMmefGTeHekZiqu4kI77VNf2g710+4eYVl/F3JkNEw4IqTr0dKWFsjliGc80\nmabUJFNTPtHBGPMVa+1twOXW2i8AX8hfsyRbblqxlAOHe9mxtzv9iychFApP5dXXVvL6/tR19Y50\nD9AdCUjOkU1n10Bs2ssdENwjmWsuXszjrsP+3MVZnebOTF21IZsjlvFMk2lKTSReqpHShZH/3wH8\nMA9tkSxxduDNjTU5D0hRR3syK1/U2TUQWx9KJNF190jmxS37GQoEY4/Dxs63V1eWsWxRK8OBEW59\n4JmkU3PZHLGMZ5pMU2oi8VIFpX3GmM3AfGPMi+4nrbXnZKMBxpg9hFcjgsBwtj53Kst1ckMygSAZ\n19WLjgwSTS06A0Ky1O5oQHJ+XiJnnzIbIOHUXHzwrubtS2bHVWAQ8RIlOsDlhKuCPwb8fQ7bEATe\naa09ksPvmFImM/UUnbHO9V/99s5emhtreNuSWRw80h+3pnSNI4su0wKy0UDmDHItTTXctGIpK7/x\nu7jXdhzuo8s/xCe/8r9xn33e0jnc/8nzs3SHItk15RMdrLXDwAvGmPdaa3fksA0+lGI+RibZYMle\nM5nkhnz9HObvD/DClv2ct3QOD952Qdxzq779fFyZHqdE1cWjwScq3e/HrOY61qxrGxPstJlUvGzK\nJzpE5TggQbgf/KUxZgT4V2vtN3L8fUUhVTZYNBg5Kwjs3HuU7XsO8+BtF8Q66A3bO9KW6ym0jTsO\nxK31hICXth1I+nr3kenlZT4+f+O5sU2rPZFzlpwSJRO4R0+gzDcRL8joPKUcO9da+5YxZibh4LTN\nWuu9s7rzLFU2WLI1o2gCwe3Xnc3t153NB+74ac7aV1tdTnlZiN7+yVUR9/cH2Ln3aNxIZsRde8jB\n5xoq1VSX8/hT28Zk8e1yZPElSiZwj57co61CU/FUcdOaUp5Ya9+K/P+gMeYJ4BwgaVAyxqwE7s5P\n6wrH3Wk2N9bE1lne6vQnfV80eP3fhjcZGBr/KKmsDIIZxJmh4SBNDVXQP5j+xQmUl/kIhkJxU3GZ\nTJ/VuA7sO21By7iy+KKco6fmxmp8+Fj5jd95JgCoeOrUlKp/m/JrSlHGmBnAH0Qe7rXWHsrWl0cq\nkJdF6unVA+8GPpvqPdbalcBK1+ecAOzOVru8wD3lNBwYySijLjoF9aXHX57Q92YSkCA8mnEfRR7l\n88H0adXMP7aR7r5hZjTW0Pb7A/QPBuPe75YoWcHt1BNnUFlRHjeCWL2uLW0Wn1uyc5i8EgBUPHVq\nStW/Tfk1JWPMicC/Es7Ai/aGc4wxG4AbrbU7s/D9s4AnjDGhSFset9b+IgufW/TcU063PvBM3PPl\nZb64jr2+toLli1pjZwgVUigEh7sHOWV+JSs//odA6hJAEJ4++/DFi/nauk0Jn5veWJN0FBMN4M41\npTmRyhCZ8GIAUKUHmapSjZQeBb4OXGStDQJEqoN/KPLcOyb75dba3cCyyX7OVODupM5ePIuKirKE\naw6rvv18oZoZx9m5O0d+u/Z1jRkpTW+s4bGntrH59/ED8aqKMh687YKU02mT3YDqxQCgSg8yVaUK\nSjOstY87L0SC02PGmLty2yxxS1ZNO5FXft+Zt3aVl8FIkik/Z+fuDByJUr5nNdclHKH4fOR8fceL\nAUCVHsStv7/wI/h8SBWUDhtjrgZ+YK0NARhjfIRHSqV1tnYRyLSTCh//PbkFUXfadSrupaFyn4+K\nCh/T6qpix5NH2+WsnnDmya1sf/0wPkbPG3po7cYxnx89rjyXFACkGLxtyWwaGxsL3YycSxWUPgKs\nAb5mjNkXuTYX2BR5TvKgyz/Ew2s38uprnQwMjVBV6eP0ha1xZxJFvXmgl5u/9PSkv3O5aeGN/b0c\n7RkgkCbxwZ2hOhIKMTIcYrBrgMee2hbr7N1p7OctncMPVr03do+r17Xxyu/j9ydVlvtix5UXK6V2\nS7ZMmzZtaic6RBIZLozsH3Jm3x3MS8sECHfmzhNX+wfHnkkU9enVzzIyiW0M5WU+3nHasQQCwYxr\n2CU60jzKOR03kX1XJ8xpYm5r6ureXqfUbpHxyaSiw0FAgahAxrMH50iSFO10fMCMptEjym/+8v8k\nfW1tdVlcand1VfxjJ+eaUrJkgi7/EJt2JP7r5YWEg8nyYmafiJdNaPOsMWaztfa0bDdGxsqkkjaE\nO/eJDpLOXTon7qf3ZJtzy3xQW11J/+Bo8Fu6sDWWBRjdhJqo0nayZII169ro7R+O+56G2kqWLZrp\niYSDyfJiZp8Up6lQzQFS71M6JcX7ZuSgLZLATSuWEggE2exYU1q6sHVMh/3w2g0T/o4Xt+zn+s/9\nN6tuPJeG+iqGkywkBSP7j1qaaphWX0WPf4j2zl76BgI01ldRWVGedM0kWTKBe+RQX1vBv9zxx1lf\ndynU2o4XM/tEvCzVSOlVYA+jpxk4teSkNTJGY30Vn77hbWlf17Zj4mngQ5E1pLvWPMfJJzSnHXH1\nDwYYCgTo9gfCJ2ExWm9uOBCkMsn+qUTcI4nli1pzEiwKtbajzD7JlqmQ5ACpg9Ie4P9Za/e5nzDG\n7M1ZiyRjzp/+B4YnXxerp28oozUPZ+05t1d3dcZVLt+440Cs0kSiYJOvkYT7vjbuOEB3goriIlJY\nqYLSOmAeMCYoAf+Rm+bIeKaZsn3C7LS6Kpobqyf1GT7XwNrfH4i1MdGIIV8jCfeIzN8fSJjBKOJV\nPT09hEKhkh8xpUoJT3rarLX2E7lpjqSbZnIGrVTVwieitqZiTFLFeDbStjTVcOJxTQkP6Nu042BB\nRyY3rVjKph0H45IqlAknxeT5V/djTDdNTU2FbkpOZXziqzHmGGPM5cYYrdTmUKJpplsfeIb7Hl1P\ndyQgPdvWzs69R8dkrU3W3o7eMZW/UwUkH+G9TfU1FZxxcisnHtfEwSP9tDTVUFddHvfa3v5hHk5Q\nsSFfGuurWLZoZtw1ZcJJMamrmxp/X1Nl3z0GfNla22aMaQbagG6gxRjzaWvtN/PVyKkk0TST8xA8\nd9By7xvKp4V/cAz3f/J8YGwV8Lcvmc36bR1xhVc370qfjJHLLDllwol4X6o1pTOstW2RX18LbLPW\nvtsYcxzwU0BBKQecHedbnf4x003uoJXPgFRVUcaQI13cOdJwB8tD3QPUVlfEtd+93pRILrPklAkn\n4n2ppu+cdWbOA54AsNa+SebLDDJO0Y7z/k+en3C66aYVS2lpqsnJd5eXjQ0aLU01nPQHx3De0jk8\ndNsFnLd0Tuyxc6Thngqb1VzHkgXNcdfcjxNRBQSRxFQlHDDGzAGOAO8k/oje3PSKEifZcRXTG2sy\nrk03Hu4zjhpqK8ecZZRopNHlH2I4MEJDbSUhQpy2oCXW9tWuqbh0JlMBQcVPpZSpSjjcQ7gi+BDw\nrLV2K4Ax5u3AG3lo25SXbLopWemhbFu2aGbaTr3LP8Qt//Q/cQkSIUKx9413umwy6z4Pr90Qy/zb\nufcow4ER7rrh7eP6fhGvUpVwa39ojPk/YDbhJIeoN4CP5bphktxNK5by6q5Ojvbk7tjz+toKPnzx\nYu57dH3KkceadW1jMva27Dqc8fckGt1MdN3H/b3jaYeIeEPK6Ttr7X5gv+ta9nZryoSEgN6+7KaD\nuy1f1MpjT21Lm3SQaM0nNI4lx2wmNri/dzztEBFvyHifknjH/d97mcBkDk5KwEc4qWHBnMZYEkP7\nwd6412y04dI8TonWfE5bkHlpxGwmNpzq+t7xtEPE66Z8lXDxnuhU14btB9K/eJzmz2nkwdsuiH3P\n6nVtvL6/J+41/oEA1618itrqCpYsaOaWq87gmosXs3X3IY72DOLz+Vh2Ugt/c9XyjL83m0c73HLV\n8nEnVoiItygoeUi67LFs17pzmjNz9ITXVN8zEgzR2z/MC1s6WL0uvNQYW1MKhaitqUyZHOG+xw9f\nvBjIzoZW7UOSUjYVkhxAQclT0q2v5GLPTm11GWeePJtrHEkN7Z296d+YpD3p2qjjwUUkFQUlD0m3\nvpLtVPDmxmoe/rt30VhfNaZMkFN0U617H9OR7gH6h+KPsUg3/abNsSITM1XWlJTo4BFd/iGOdMdv\niHV38NleI+nqHU1aSBYc6qrLOWtxK1/7+3fx9iWzqa+toKG2kunTqujsGoidndRQWzmmykMiiSo/\niIhEaaTkEWvWtcVVaWhpqhnTwe9840hWv3MkGIqdKZRsFNY3OBLbkOrciHrrA89wxLFP6tiW+oym\n4VQUVWRitKYkeeUeqUxvrIklDHQ5jqzIxDHTqjLeWLsvkvZ904qlbN9zOGn5IvdG1ERZc5mU+VEy\ngoikouk7j3BPY73V6ee+R9ez70Avn/zK/44r6248lR56IvuOGuurWHXjuUlf596IetOKpWOKszrP\nenq2rT2WnScikimNlDwiOo21cccB/P0BevuHebatPeXoJRs6uwa4/O9/Qk1VOVWVyX9GOXlefIXv\nRCOebCYxqLiqSDwlOkheRTv5OS0NcdcPd+cuIEWNBEP4BwJxa0Ruu/YdjTsBN5FsJjFo1CUyNWmk\n5DHutZpgln848jGxw7CO9AxxpGcobm9RLjfCKnVcJJ4SHaQgnNlp7Z29sZTrbMk0IJWX+cbsS4qK\nBohsb4R1Brl06fEiUpoUlDzGuVaz6tsv8MKW/WnekRtnL55FRUVZLEA417WiASLboxl3hmFLUw3T\nG2uUOi4yhSgoedhwILujpETqayvw4aO3f/QojPIyHyFCseSC7kiBVve0XDaLqULitPj7P3n+pD5T\npFRMlUQHBSUP2/FGV86/49QFM/DhY/OuTgYGRxgJhhgJhmIFV2+/7uyke4uyvRE220FORIqPgpKH\n5fqQupamGnz4eD7JFGG66bhsb4RVtQeR5JToIAV36oKWrK8p1ddWMKelIdbpr/zG75K+Nt8jFVV7\nEBEFJY9ItFn0inedlPWgtHxRK7dfdzZvHujlE1/5Xw4l2AdVX1vB8kWtWRupaCOsyORpTUnyKlF6\n9dbdh7Ly2S1NNUyrr2LuzIZYoPnMmueSVoqY09KQdMQykQCjM5REJFMKSh7RfrB3zOPYia5ZcPu1\nZzO3dbRaRE9f8uoNqabtJhJgtBFWZPK0piR55S7d8/r+nqx9dmfXAHeufpZT5s+IjXDqaioYHB79\nzqqKMuYd25g2wWAiAUZZdSKSKQUlj5hWXxU3nZasmsJEHe0ZjBvhHNNQzfRpVfQNBJhWF64Q7hxJ\nJTORAKOsOhHJlIKSR8yd2cDu9u6cfb7P5wPHQunR3kHOWzon7dRbNurbKatOZPKU6CB5ddOKpQwH\ngry0rSPro6SWphqGAgG6/fEVIjbuOMCtDzyTMmFBSQoikk86usIjQsBrbx7NekA6b+kcvvOP72FG\n09hpNn9/IO3REO41o407DiQ9ukJEcmeqJDooKHnEfY++mPXD/MrLfPQPBuj2DzF3Zur1omQJC+41\nI39/QGcbiUjOKCh5xObfZ2dPktNIMMTL2w/w0NqNBAJB6msraKitpL5m7KxtsoSFm1YspaG2Mu6a\nUrpFJFcUlKaAV3d18vyW/bFj1mur44NSS1NN0oSFxvoqli2aGXdNKd0i+dfT0zMlkh2U6DAF+Iif\ni+4bGKahtpIQIU5b0MLfXLU8LskhlyfKisjEPP/qfozppqmpqdBNySkFpRLX3FjNCcc2ssEejF3r\nGxwBRgAYCgTGnJWkjDsR76mrmxozFApKJW5waIRUh6C37TwUy/iLBiD3mlH7wV7ue3S9CqqKSM4p\nKJU4/0Ag5WGBQdccdTTwOKs2dPuH2NWukZOI5F7Bg5Ix5mLgAcJJF9+y1t5X4CaVnJHgSNLnyst8\nBEZGA1N0JDQcCPLqrk58+OgbGI57z6YdB9Nuuk2kUEdY6OgMKQU7Xnud59bX0tAwrdBNmZRjptVw\n+pJFSZ8vaFAyxpQBXwUuBNqB9caYH1trtxeyXaVmaDj59F1gJERVRRnDgSAVFT66evu5a81z7DvQ\nyzP+uggAAAv8SURBVFAgmPA9vf3D7Nx7NDZqujGyDpWu0y/UWpXWyKQULDpxHr66OfSFinsTbbA7\ndTm1Qo+UzgF2WmtfBzDG/AC4DFBQyqJ0VSKiwWc4EGLza0fG9dkdh/vGdPq/2/wWZy2exS2urL5U\nFcZzMZqJfub6rfEHJWqflRSj2rqGKVHVodBBaS6w1/H4TcKBSoqEc8QUNRIM8cKW/Vzzj/+V9r2X\n3vbjhNejQS4Xkn1v1LTaCk6Y08jv3zzK0HCImqpyFsxtZO8BP929g/h8Pk6Zfwz1NdV0HOnjUFcf\nvX0BgqHwdOjSk2bw8cuX8thT22g/2Eu3fyjukMVEwTbToBx9XbLPdX/ONRcv5vGntiV9PJWmMjWN\nWxwKHZREPKenP8Dm1w7HHvsH4h8TSj6iHAmG2GA7uct1sm9n10CsCnyiqcNMpxidr0v0ue7P2b7n\ncKwdiR4n+55SpGnc4lDooLQPON7x+LjItaSMMSuBu3PYJpFJS3ayb7Kpw0wPT0x33f28ux3ux1Np\nKrMYTkBO1b/Nbhymtan4iyEf0zQz5fOFDkrrgYXGmHnAW8AHgatTvcFauxJY6bxmjDkB2J2TFopM\nwLS6KgYTFNhNVqIp08MT3a9zv979vLsd7sdTqWRUMZyAnKp/Mwvnc9xxxxWgVflV0KBkrR0xxtwM\n/ILRlPBthWyTlI6Kch8VZT6GAkFCIaipKmd4JBiXAp/ItLoK5h/byE7HmtKJcxt5I0trSolkejpv\n9Hqyz3V/zocvXsxjjjUk9+OpVDJKJyAXB18pFPiL/iTx9NNPT4mfJESkZKRNpyvh/i3hvatKuIiI\neIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaC\nkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiI\neIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaC\nkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiI\neIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaC\nkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeEZFob7YGHM38DHgQOTSndbapwrVHhERKbyCBaWI\n+6219xe4DSIi4hGFnr7zFfj7RUTEQwo9UrrZGHMt8BJwm7W2q8DtERGRAsppUDLG/BKY5bjkA0LA\np4GvA5+z1oaMMauA+4G/mOBXlQPs379/Eq0VEcmvCy+88ATgTWttoNBt8QpfKBQqdBswxswDnrTW\nnp7Ba1cCd+e8USIi+THfWrsH0vZvsdeVsoIFJWPMbGvt/siv/xY421r7oQl+VjUwACwERrLXyoLY\nDcwvdCOypFTuRffhPaVyL7uBylQjJWNMBXAcU2REVcig9CiwDAgCe4C/tNZ2TOLzQtbaok+cKJX7\ngNK5F92H95TKvZTKfWRTwRIdrLXXFeq7RUTEmwqdEi4iIhKjoCQiIp5RSkHps4VuQJaUyn1A6dyL\n7sN7SuVeSuU+ssYTKeEiIiJQWiMlEREpcgpKIiLiGQpKIiLiGQpKIiLiGQpKIiLiGYU+umJSjDFX\nACuBxYRr521wPHcHcAMQAD5hrf1FQRo5DsaYi4EHCP+w8C1r7X0FblJGjDHfAv4U6IgW1TXGTAfW\nAvMIl5G60utHkxhjjgMeJVzZPgh8w1r7UJHeSzXwG6CK8L/zH1lrP1uM9wJgjCkjfMTNm9ba9xXj\nfRhj9gBdhP9uDVtrzynG+8i1Yh8pbQbeDzzjvGiMWQxcSThY/QnwdWOMp+tLRf7RfRV4D7AEuNoY\nc3JhW5Wx7xBut9M/AL+y1hrgf4A78t6q8QsAt1prlwDvAP468mdQdPdirR0ELrDWLidcY/JPjDHn\nUIT3EvEJYKvjcTHeRxB4p7V2ubX2nMi1YryPnCrqoGTDdjL2BNvLgB9YawORUu87gXPc7/eYc4Cd\n1trXrbXDwA8I34fnWWufBY64Ll8GPBL59SPA5Xlt1ARYa/dbazdFft0LbCNcnbno7gXAWtsX+WU1\n4dFSiCK8l8gI9hLgm47LRXcfhPspd59bjPeRU0UdlFKYC+x1PN4XueZl7ja/iffbnEprtOp75IiS\n1gK3Z1yMMScQHmE8D8wqxnsxxpQZYzYC+4FfWmvXU5z38s/A3xMOqlHFeB8h4JfGmPXGmI9GrhXj\nfeSU59eUUp1ea619sjCtkgkomtIhxpgG4EeE1yJ7jTHuthfFvVhrg8ByY0wj8IQxZglj2+7pezHG\nvJfwWuUmY8w7U7zU0/cRca619i1jzEzgF8YYS5H9eeSD54OStfaiCbxtH/AHjsfHRa552T7geMfj\nYmhzKh3GmFnW2g5jzGzgQKEblInIgWo/Ar5rrf1x5HJR3kuUtbbbGPNr4GKK717OBd5njLkEqAWm\nGWO+C+wvsvvAWvtW5P8HjTH/SXjKvtj+PHKulKbvnOtKPwE+aIypMsbMJ3wi7YuFaVbG1gMLjTHz\njDFVwAcJ30ex8DH2z+DPI7/+CPBj9xs86tvAVmvtg45rRXcvxpgWY0xT5Ne1wEWE18iK6l6stXda\na4+31i4g/G/if6y11wJPUkT3YYypi4zAMcbUA+8mnKhVVH8e+VDUBVmNMZcDDwMtwFFgk7X2TyLP\n3QH8BTBMcaWEP8hoSvi9BW5SRowx3wPeCcwAOoC7gf8Efkh4xPo64VTXo4VqYyaMMecSTqPeTHga\nJQTcSfgHmn+nuO7lNMIL52WR/9Zaa79gjGmmyO4lyhhzPnBbJCW8qO4j8sPxE4T/TlUAj1tr7y22\n+8iHog5KIiJSWkpp+k5ERIqcgpKIiHiGgpKIiHiGgpKIiHiGgpKIiHiGgpKIiHiG5ys6iAAYYz7A\naAXlGmCDtfbDkee+DKwATgBOtdZudbzvJML7dZqBQ8B11trXEnz+3UC9tfZT42jTR4A/tdZ+ILKH\n5p+stWcbY44FHrPWXpjivfOAd1trv5Hp94lMBRopiedFyq98jXAAOMNaewrwZcdLngD+H+HzaNzW\nAA9ba08Gvg78a5abF3L/2lr7VqqAFDEf+HiW2yJS9DRSkmIwGxjCcTyGtbbN8evfArjPzIoUvlxO\n+BgQgO8DXzXGzLDWHkr2ZZFqCI8BNwO/BX5GeKRVS7i6w19aawMp3j8PeMlaOzNS4ucR4BTC1UWs\ntfaDhM/OOsEYswH4vbX2SmPM2YQretQBfsKVSF5K95sjUko0UpJi0Ea4NuAbxpgfGmM+ESnPks4f\nAPustdERTBBoJ75YbxxjzIWEA9KV1tr/s9aOAFdba8+x1p5G+Ae5GzL47ugI6j3ANGvtqZED9/4y\ncv2vCdfYOyMSkCoJF4K901q7DPhHYF2kQKzIlKGgJJ5nrQ1Za98PnE/4dM73Am3GmGOy/FXvIXx2\nz7uttRZiJwJ/yhiz0RjzCnAB4XOWMtUGLDbGPGyMuYLwiC8RAwxaa38NYK19GhiMXBeZMhSUpGhY\na7daa1dba98NdBMuApvKXmBudFovEmDmEH+YotMOoJz4U4o/BPwh4bNwTgdWE060yLTNuwkfb/9L\n4I8JB9OqDN/uPlFZpOQpKInnGWPmGGPe7nh8HOHK8LtTvc9aexDYRDiwEPn/hhTrSbsJHylwTyTb\nD+AYoNNa2xc5CuJDSd7rFg2Ec4GgtfYnwK2RdjcTDqpNzuYCVZEsPowx7yI8VWgz/D6RkqD5aikG\nFcBnjTHHAwOEO/xPR5MdjDEPAn9G+ITiXxljDkXWfwBuAh4xxnyGcKLEdam+yFq7L7Ku9FQkSeFR\n4DJjzFbCB7D9hnDCQzrRNaXTgHuNMRD+IfCL1tr9xpiDgI1MCW6PrCtdATxkjIkmOqxIlVAhUop0\ndIWIiHiGpu9ERMQzFJRERMQzFJRERMQzFJRERMQzFJRERMQzFJRERMQzFJRERMQzFJRERMQz/j+D\n09/Jkop6NwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "sns.jointplot(x, y)" ] @@ -1782,7 +4903,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 86, "metadata": { "collapsed": false, "deletable": false, @@ -1794,7 +4915,36 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/matplotlib/__init__.py:892: UserWarning: axes.color_cycle is deprecated and replaced with axes.prop_cycle; please use the latter.\n", + " warnings.warn(self.msg_depr % (key, alt_key))\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGoCAYAAADmTPpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXFWd//9XdVfvW9LpLCRhC5hDCBjCgIDwlc3R4O7g\n4AiICj8UXJABZyKIQ2BACArDpomi8jAGR9SIywyiyDgoDEuQEAgJJ0gChHTSSaeTXqrX6q7fH7X0\nrdu1dXctt6rfz8eDB6lb27lZzqfPOZ/zOb5QKISIiIgXlBW6ASIiIlEKSiIi4hkKSiIi4hkKSiIi\n4hkKSiIi4hkKSiIi4hn+Qjcgi5TbLiLFxlfoBniNRkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoi\nIuIZCkoiIuIZCkoiIuIZCkoiIuIZpbR5tiTs69hPcGgo9riispLm6dMK2CIRkfxRUPKYPz/7Cr7K\nptjj8uFuPvj3JxWwRSIi+aOg5DEVFRX4a2pjj0P9/QVsjYhIfmlNSUREPENBSUREPENBSUREPENB\nSUREPENBSUREPENBSUREPENBSUREPENBSUREPENBSUREPENBSUREPENBSUREPENBSUREPENBSURE\nPENBSUREPENBSUREPENBSUREPENBSUREPENBSUREPENBSUREPENBSUREPENBSUREPENBSUREPMNf\n6AZIaqFQiM7OzrhrjY2N+Hy+ArVIRCR3FJQ8rjfQw2/+dzO1tXXhx70BPnTG0TQ1NRW4ZSIi2aeg\nVARqa+uoq28sdDNERHJOa0oiIuIZCkoiIuIZmr4rMkp8EJFSpqBUZHp7e/j9Ux00N8+IPFbig4iU\nDgWlIlRTo8QHESlNCkpFLtF0HmhKT0SKk4JSkXNP54WvaUpPRIqTglIJcE/nKRlCRIqVglIJco+e\nAoEezjh+ftzIyR2kQqEQXV1dcZ+jQCYi+aagVKKco6dAoJvfP/VayiDV2dnJ4xveora2PulrFKRE\nJNcUlKaIVEEKoH1vG3X1TUlfo3UqEckHBaUpyr0OFQh0p3yNsvxEJB8UlCQjibL8NMUnItmmoCQZ\nSzS6SrdWFQqFAOIClQKXiCSjoCSTkslaVVm5P2ngShS03NcyCWzKHhQpDSURlIwx/scee6zQzciK\njn17KQ8EY49797fTP9JJTU1t+PmOdsrKyunv7Ur4OJPX5Po9vtBw7DWdB/bFXevoaOfH2/9GQ2M4\nKHV2dlDmK489TnTN/XhgoJ/TTzichoaG2Hu6u7t5/LntVFVVJ32NSJRX/l6cffbZhwFvWWuD6V47\nVfiiP4UWM2PMYcD2QrdDRGQCDrfWvl7oRnhFSYyUgLci/z+8oK3Iju2Uxn1A6dyL7sN7SuVetjPa\nfwklMlICMMaErLVFv4BQKvcBpXMvug/vKZV7KZX7yCadPCsiIp6hoCQiIp6hoCQiIp6Rl0QHY8x8\nYA0wGxgB7rPW3m2MmQ48CBwKvA6cZ60dW8smMzdko60eUCr3AaVzL7oP7ymVeymV+8iavCQ6GGPm\nAHOstS8YY+qBvwIfBj4D7LPW3maMWQ5Mt9Z+NecNEhERT8rL9J21dre19oXIr3uALcB8woHpR5GX\n/Qj4SD7aIyIi3pT3NaXIRtfjgKeB2dbaNggHLmBWvtsjIiLekdfNs5Gpu18AX7bW9hhj3HOHE5pL\nNMb4CY+8VK5DRErKVOvf8haUIr+xvwB+bK39deRymzFmtrW2LbLutCeDz1kBXJ/ouVKpfyciU0bc\nxtkp1r8l3DScz5HSD4HN1tq7HNd+A3waWAl8Cvh1gvfFsdauAFY4r6n2nYiUAvVv+UsJPxW4AHjJ\nGLOB8DTdtYSD0c+MMRcDbwDn5aM9IiLiTXkJStbaJ4HyJE+/Ox9tEBER71NFBxER8QwFJRER8QwF\nJRER8QwFJRER8QwFJRER8QwFJREpmO9+97u85z3v4ZxzzuGJJ55I+Jp7772Xd73rXXz0ox/lox/9\nKH/+85/jnm9tbWXp0qXcf//9+WjyGJ2dnVx88cW8973v5ZJLLqG7u7sg7SgVCkoiJWZ4eDhv3zWZ\nUwZee+01fve73/Hwww9z3333ccMNNyT9vM985jM89NBDPPTQQ7zrXe+Ke+7WW2/l9NNPn3A7Jut7\n3/sep5xyCr///e856aST+O53v1uwtpSCvNa+E5mq+vr6uPLKK2lra2N4eJjPf/7znHPOOZx11lmc\nc845/PnPf6ampobbb7+dgw8+mI6ODlasWMGuXbsAuPbaa1m6dCkvvvgi3/jGNxgcHKSqqopbbrmF\nww47jIceeog//OEP9Pb2MjIywpe+9CXuueceGhoaePXVV1m2bBkLFy5kzZo1DAwM8O1vf5uDDz6Y\nP/3pT6xatYpgMMi0adP41re+RXNzM/feey+tra3s2LGD3bt3c9FFF/HJT36SnTt3cskll7BkyRI2\nb97M9773PQ466KAJ/Z489thjvO9978Pv9zN//nwOPfRQXnzxRZYsWTLmtcmC1R//+EcOPvhgampq\n4q5fd911fOITn2Dx4sVx16+55hoqKyvZtGkTgUCAr371q5xxxhkTar/zPtauXQvARz/6UT75yU/y\nla98ZVKfOZUpKInkwV/+8hdmz54d+ym6p6cn9lxTUxO//e1v+dWvfsXNN9/M6tWrufnmm/n0pz/N\n8ccfz65du7jkkkt4+OGHOeKII/jJT35CWVkZTz31FHfccQd33303AFu2bOG3v/0tDQ0NPPvss1hr\n+d3vfkdDQwPvfve7Oe+88/j5z3/OmjVrWLt2Lddccw0nnHACP/vZzwD4+c9/zn333cfy5csB2L59\nOz/+8Y/p7u5m2bJlnH/++QC8+eab3Hbbbbz97W8fc5+33HILzz777Jjr73vf+7j00kvjrrW1tXHc\nccfFHs+ePZu2traEv39r167l17/+NccccwzLly+nsbGR3t5evv/973P//ffzgx/8IO71N910U9I/\ni9bWVtatW8cbb7zBRRddxKOPPkplZWXs+UAgwAUXXIDPN7Y027e+9S2OOOKIuGsdHR20tLQAMHPm\nTDo6OpJ+t6SnoCSSBwsXLmTlypXcfvvtnH766Zxwwgmx5973vvcB8IEPfIBbb70VgKeeeopt27bF\nRgi9vb309fXR3d3N8uXLeeONN4D4qbp3vvOdNDQ0xB4fe+yxzJgxA4BDDjmEU089NdaWaODYtWsX\nV155JXv27CEYDDJ//vzY+8844wz8fj/Tp0+npaWF9vZ2AObOnZswIEF4JJJt559/Pl/4whfw+Xz8\nx3/8BytXruTmm2/mnnvu4dOf/nRslJTpVOI555wDwKGHHsohhxzCtm3bOOqoo2LP19XV8atf/WrC\n7U0UzCRzCkoieRCdYnv88ce56667OOWUU/j85z8PxHdi0V+PjIzws5/9jIqKirjPufHGGzn55JO5\n99572blzJxdddFHsudra2rjXOt/r8/lio4GysjKCwfAJCP/+7//OJZdcwhlnnMGzzz7LvffeG3uP\nc/RQVlYWC4DuqTKnW265hWeeeSbums/nSzhSmj17dmx6EmD37t3Mnj17zGc2NzfHfn3eeedx2WWX\nAfDiiy/yhz/8gW9+85t0dXVRVlZGVVUVF1xwQdL2RdsTFQqFxgQR50jJGeh8Pl/CkdKMGTNob2+n\npaWFvXv3xrVXxk9BSSQP9uzZw7Rp0/jgBz9IQ0MDv/jFL2LPPfzww1x66aX893//d2w667TTTmPN\nmjVccsklALzyyiscddRR9PT0xDruX/7yl5NuVyAQYNas8NmaDz300KQ/bzwjpbPOOouvfOUrfPrT\nn6atrY0333wz4Qhs7969zJw5E4BHH32UhQsXAvDAAw/EXnPvvfdSV1cXC0jLly/nwgsv5Nhjjx3z\neY888ggf+chH2LFjB2+99RaHH3543PPjHSmdddZZ/PKXv+Szn/0sDz30EGeffXbG75WxFJRE8mDr\n1q3cdtttlJWVUVFRwQ033BB7rquriw996ENUVVVxxx13APC1r32NG2+8kQ996EOMjIxwwgknsGLF\nCi655BKWL1/OqlWrxpVxlmxK6Qtf+AJXXHEFTU1NnHzyyezcuXNyNzoORx55JOeccw7vf//78fv9\nXH/99bF2OhMVvvnNb7JlyxbKysqYN28eN954Y9rPttbGgq3bQQcdxMc+9jECgQA33HBD3IhwIi69\n9FKuvPJK1q1bx7x587jzzjsn9XlTnW8yKZ1eET1v5LHHHoubExfxuuhP2dOmTSt0U0pGT08P1113\nXcLgcM0113DmmWfynve8pwAtSyjtAlQJ928J7137lEQKSIvi2VdfX6/RShHT9J1IAZXgEdeedsst\ntxS6CZKGRkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoi\nIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZCkoiIuIZ\nOg5dSk5nYJDV6zbS1tHL7OZaLj93CY11lYVulohkQEFJSs7qdRt5YmMrAK/uOADA8otOLGSTRCRD\nmr6TktPW0ZvysYh4l4KSlJzZzbUpH4uId2n6TkrO5ecuAYhbUxKR4qCgJCWnsa5Sa0giRUpBSYqe\nsu1ESoeCkhQ9ZduJlA4FJSl6yrYTjZZLh4KSFL3ZzbWxEVL0sUwtGi2XDgUlKXrKthONlkuHgpIU\nPWXbiUbLpUNBSUSKnkbLpUNBSUSKnkbLpUNlhkRExDMUlERExDMUlERExDMUlERExDMUlERExDPy\nkn1njPkB8AGgzVr79si164FLgT2Rl11rrX0kH+0RERFvyldK+P3APcAa1/U7rLV35KkNIiLicXmZ\nvrPWPgHsT/CULx/fLyIixaHQm2e/aIz5JPAccLW1trPA7RERkQIqZFD6DnCjtTZkjLkJuAO4JN2b\njDErgOtz3DYRkbxT/1bAoGSt3et4eB/w2wzftwJY4bxmjDkM2J6lpomIFIT6t/ymhPtwrCEZY+Y4\nnvsHYFMe2yIiIh6Ur5TwnwBnADOMMW8SHp6eaYw5DhgBXgc+l4+2SHHRiaIiU0tegpK19vwEl+/P\nx3dLcdOJoiJTiyo6iKfpRFGRqUVBSTzNfYLo/q5+rrrzcVauWU9XYLBArRKRXCn0PiWRlJwniu7v\n6qe9M/yf16fytBYmMjEKSuJpzhNFr7rzcdo7+2PPeXkqT2thIhOj6TspGu6pPPdjL9FamMjEaKQk\nRcM5lRedEvOq2c21sRFS9LGIpKegJEXDOZXndcUUQEW8REFJJAeKKYCKeImCkkiBKVNPZJSCkkiB\nKVNPZJSy70QKTJl6IqM0UpKSVgxTY8rUExmloCQlrRimxpSpJzJKQUlKWjFMjSlTT2SU1pSkZHUG\nBtnf1R93TVNjIt6moCQla/W6jXG18lqaqjU1JuJxCkpSstxTdf2Dw6y47ykdeyHiYQpKUrLcU3U9\nfUO8uuMAT2xsZdW6jQVqlYikokQHKVnOrLbW9h4CfcHYc15MeBARjZSkhEWz2u648nSWLpwV95wS\nHkS8SSMlKbh8bHDVXiApdqFQqNBNyAsFJSk49wbXDVv3sHThrKwGp1LfC1QMlStkcnp6egrdhLxQ\nUJKC6AwMcs+Dz/Pytg56+4fingv0BWNBqpQDSTYVQ+UKkUwoKElBrF63kWdebkv5GiUjZK4YKleI\nZEJBSQpi5970UxHZSEaYKtNaKuoqpUJBSQqiO8Hm1bpqP0vNrKwmI0yVaa1UiRxTJTCXOiU6iORQ\nY11lXAkggGOOmJH1gJHtaS13B3/BskU88MiWgnf4qRI5pkpgltKgoCQFMXdmPdtau2KPW5qqueLj\nx2f9e7I9reXu4F95vSMWXL3a4Wu9qTT4fL5CNyEvFJQkb6KjjJ17ezjQ3U9dtR98cOyCFr708aU5\nGWFke3+Su0Pv7h1M+bwXaL1JiomCkuSNc5ThtGnbPlat25iTqa90+5PGu97i7uAbaisZcExDerHD\n18bh0qA1JZEsSzaK6OkbKti+pFTrLYkClruDv3DZIta61pS8QMkNUqwUlCRv3KMMt7aO3rx3pqnW\nW5IFLHfg9NoaEii5oRRpTUkky6KjiJ17e+gODNI3ECTQP1q5e3ZzbV4703Qn0+YyQSDXwVfJDVKs\nVCVc8ia6vnP31Wdy59VncuwRLdTV+KmvqeCkxbO5/Nwlee1M3SfTVvrL2Lm3J3YIoHt9KJvrRdHg\nm6vznXLZdpFc0khJ8iJc624Dm7a148NHZUUZHV0Djlf4WLVuI7vaA3Hvy2Vn6g54g8ERtrd2sT2S\nqp7LBIFcB99Ebdc6U3FTooNIFt3xk7/y/Ct7Ri/0xT+/aVt73CF8dTX+WKXwyUrWGada42rr6M1p\nZfFcp2knavvKNeu1ziSep6AkORUNCHEBKQEf8Yu4c1vqs9ZhJlunco4m9nf1x03l5Xq6qxBp2lpn\nKm5KdBDJgmR7kyBcxWF6YzWzm2sZCg7HVQ3PZlBI1hk7J0OOmD+NI+aH2LO/j+7AIK2RtaVcTXEV\n4nwnbaKVYpA2KBlj3gU8b63tMcZcApwIrLTWbs9566TopaoGftNlpzJvVj0AXYFBVrmm2LIlWWfs\nDpinLZnLvJn1PNHaSntnf6wMUqlMcWkTrRSDTEZK9wJLjDGLgauBtcAPgLNy2TApbtHEhu2O+nZu\nax/ZEuvwczlySNYZZzKdVUpTXKV++m6pU6LDqKC1NmSMOQdYZa29xxjzj7lumBS38CF+u1O+Jl8d\nfrLOONkISlNcIoWTSVDyG2NOAv4BuHQc75MpLJOAk+t1m3RSTWdpiku8RokOo74OfBd4zFr7sjFm\nIfBqbpslxS5dSSGAQH8wtqZz2blL8r6HJtkIymtTXNpfJFNJJkHJWmuPczzYaoy5NodtkiLXGRhk\nKDhMuQ+GM5gGb+voVa22FPR7IzB11pQyKTP0kwyviQDR9aS2jAIShEdV2kOTnH5vZCpJOlIyxrQA\ns4BqY8wiiO1ubALq8tA2KVKZdpqV/jLesXgOl5+7hFXrNuY0waCYp8C0v0hAa0oAFwBXAnOBhx3X\nO4HbctkoKV6JKm8nU1ERHqh3Rab76msqCBHi2AUtWU8wKOYpMK/sL8pHYC/mHx4kO5IGJWvtXcBd\nxphrrbXfyGObpIi5K2+7lfsAn4/hkRCBvnCiwyuvd8S9x+8vy3pHlG4KzMudoVf2F+UjsBfzDw+S\nHWkTHay13zDG1ALzna+31m7OZcOk+HQGBtlgU9e4m95YTWNdZaxaAkB372Dca3KxZpJuCizTztDL\nwSvX8rG2pfWz5KZKokMmZYY+D6wE9gPDkcshYEEO2yVF6J4HN8Qd2pdIolFUQ20lA47rzY1VrFyz\nflIdvzt4XLhsEZB8CizTznAq/ySfj7UtrZ9JJinhXwGOsda+kevGSHHbtK09o9c11FVy1GHNcQFj\n7SNbYo+DwZFJd/yJgodzL9SqdRvjgl2mnWE2f5IvtlFXPta2vLJ+5kVKdBi1WwFJMuE+fiKZ7sAg\nl1822gF3BuKn7/bsn3zHnyh4pBrlpOoMncEj1fHp41Vso650a1vZCLJeWT+TwskkKD1qjLkN+CkQ\n+xc5njUlY8wPgA8Abdbat0euTQceBA4FXgfOs9Z2Zt508ZrD59bz0mv7076uvbOfVes2xjofd+dc\n6Y/fPjeRjt898tnf1c+bu+OLw27Yuoer7nw81oEm6wzd1cSdR25M5if5Uls/KbYgK96USVC6KPJ/\nZxHW8a4p3Q/cA6xxXPsq8Edr7W3GmOXANZFrUmSiFcETBaTKSCbdge5+giOj11v39sR+sl6/Ob5w\n62BwZEzHP96fwlMd4BcV6Avy6o4DaTtQd7CY3ljNHVeenvS7M5XN9RMvTAWWWpD1GiU6RFhrD5/s\nl1hrnzDGHOq6/GEg+i/7R8D/oqBUlG7+wf+x5Y3Eg9ylZibXXXwyF634Hfu7R6fp9nf3pzwA0N3x\nj/cob+c00FV3Pp4yTR1Sd6C5WnzP5vqJF0YpSlKQbMgk++7oRNezkBI+y1rbFvms3caYWZP8PCmQ\nZAEJwL5xgK7AIINDI3HXuwJDY0ZITu4ObTI/hWdSHDZVB5qrxfdsrp+4fz+eemkXV9z+J+bNrM/b\nqElJCrmlRIdR/+34dTUwG3gDmPQIymVqjE2nmAM9A3zulj/SPzgcd314JMTwSPwfeaq1msn8FH75\nuUvYsHUPgb6x6eplPnjn2+em7EATBY+JTpdN5H2ZvMf9+zM8EmJ7axfbW7t45fUO7rr6zEkHpnTt\nUJKCZMO4p++MMWcD52Thu9uMMbOttW3GmDlA6l2Xo9+/Arg+C98vkxTtpNLp6RtK+bwPmNFUHXc8\nuls0aLTu7aErMMjOBGcxJes0G+sqWbpwVsKpwnccPWdCHelEp8sm8r5M3pMq8LoTSybKC1OEpS5V\n/6Y1pSSstY8ZY745ge/yQVzO8G+ATxPemPsp4NcZfv8KYIXzmjHmMGD7BNokk5BqTSiR+poKDmqp\nG5N4ECLccTqPR49yB5pZ02vZ1tpFe2d/7Kj1ZFl8MLo3aefeHlqaqqmrqSDQN0RDXWVsamsiJjqd\n6H7d+s270x50mMl3pQq842lfKkpkyD31b+NfUyoDTgSqxvMlxpifAGcAM4wxbxL+SeBW4OfGmIsJ\nTweeN57PlMLqDAzy3Ja2cb0nRIjZzbVcff7fsfaRLazfvJsBx1pTok7OHWjqauL/yjrf437/C1v3\ncu+DG3jacSz7UYc1Z+Wn+0TTiROZZhsYGt0onKxdmU5dOkeTb+3pYdCR7piNpAMlMhSW1pRGOdeU\ngoRPnf3UeL7EWnt+kqfePZ7PkdwZ71rHHQ88N2adKJ1oAVYId8DOjDqA5sbqWHmh5sZqIMQLW/fG\nfYZ7g66zY3R3mj19Q7zkqjLxwta9dAUGx7W+kuj3JtGi/qok01vO9zc3VnHy4jls2LonbUCOyjSB\nwLmm0xUYZJWrzanuJ5Pfj3wnMnghzV3yLy8p4eJ9410veGFrZiWFEol2wO5Obig4nHY6cPGCZir8\n5Qk7xkTrKv0D8YGzp29o3OsryX5v3J+RbHrLPc152pK5nHj0nLhr+7v6kwbLiSQQpHrPRNeG8p3I\noDWsqSmjNSVjzHsZHdX8wVr7aO6aJIUw3vWCkUksukZHN+5O7qo7H0/6nqqKMk48ek7Kn5Yb6yo5\nZsEMnnl5dFpxeCREeZkvLtNvvGshmf7eJJveSvT+FZeeEndkR7aSETJRLGtDxdLOfFGiQ4Qx5l8I\nT9f9Z+TSHcaYH1lrv5XTlklejWe9wF2rLlP1NRUct3AmFyxblLAKeKr9RCdmmCWXqP5eTZU/LgMw\n3VqIe9ooPJU4yjnN6Gx/sumtRL+3jXWVTG+sjkv4iGYU5nq6aiJrQ4WYStMa1tSUyUjpk8Ap1tpu\nAGPM3cCTgIJSCcl0vaAzMMilN/0u48917j26YNkiHnhkC1+5+/HYFJtzWsbZhhmN1YQI0dE1ENee\nVJ1jZ2CQl14bO624eEEz4GPTtnZ8+BgKDqdcV3JPG520eDanLZkbS0d/8W976BsYGdP+ZNNbmQar\nN3d3xzIKczldNZG1oUJMpWkzbjwlOozyRQMSgLW22xgzNX53ppBM1wvueXADfRkOlMrLfHGbNt2J\nDVHRaZlM2pCqc1y9buOY85wq/WVc8fHjWbVuYywQPvNyW8qpMvc00d79fcydWc+e/X0J91y1Jhjh\nhCLtSTWyiHayL2zdS0/f0JjNxLmarprI2lAhptK0GXdqyiQorTfG3A/cF3l8CfBc7pokXvbi3zLa\n4wyE13O6A4OxDjpZWaHxTMuk6hwTdZTzZtXTWFc5rk7VPYLpCgyyrTV5Aobzeef70o0sop3uVXc+\nnnDa0kvTVZpKk3zJJCh9Cfg6cHfk8R+Bf89Zi8TTotNWmbpu9ZMcdVhzwhFSdI1pPNMyqTrHRGtS\n82bWp32fm3vaaOfenoQFXaPtdz+fKOCNJwjW1fhZunCWp6arNJVWeEp0iLDWBlD1bgHe2tMz7vfs\n6+pn597492WSSQfhNaI7fvJXNm7dy0goxLT6Sr72mZOAxOWGLj93CcHgCC9F1o4WL2iOdZ7j6VTd\n00Yr16yPrfVAfNBorKsc83w04E00CGYziSBbCQqaSpN8SRqUjDFfBbqttd92Xf8CUGetvS3XjRPv\n6AwMcsW3/mfc7wuFwifNOlX4y4HwdfcGT2eHuXrdRp5/ZXS6cH/3ILf+aD33/9t7WblmPdtaW8eU\nG/raxSclbEeyTtW9sdWHj31d/Wmz6pztvPzcJQwFh3l5WwchQgwFR/jMBxaPeU/UW3t6+PrqJ+nu\nHaShtpKbLjs1Zx2+9vqUDiU6wLnAqQmufx94FlBQmkJWr9vI0PDEpg8a6yo56rBm/vrKbvoGRujp\nG+KJja28vK09dsZSog4z0ZRXZ09/wucmmk6drH7fqzsOxFXXTnd2U4W/PJYE8czLu6nwlyV9z9dX\nPxmb7hvo7Oe61U9y/7+9N21bJ0J7faTYpApK5dbaMXlW1toBY0wOmyRetKOtO/2Lkpg7s57lF53I\nJ657GBhdkzrQE//Xy91hJloj8vnCR6U3N8aXX9zf3R+XTh0MjiQdNaX6Tqf2zn7ufnADFf6ytMFu\nPJ1/d2/8fe/r7I9NQWaStTceSlCIV8yli7SmBA3GGL+1Ni7H1hhTAdTltlniBc5/wG/szjwoTW+o\nxBzSHDcNBuGCrE5lPh/Djn9ozY1VcaOdC5ct4rnNu+gfGn3NYHCET1z3MH5//FTGge74jt5d8y6Z\ndAcAbtrWnnBPVbrPSdX5N9RWMuCqku4crY1nui1dJ5vNBIVi7tCjNJ3pfamC0u8IV2/4Z2vtMIAx\npozwtN0j+WicFNZ4j6YA+LujZnHV+X+XsLM6ZkELzzgqdh+3cCY1Vf5YJxcMjozpMOprq+h3Zb6l\nO58JEld2gLEd64XLFgGje4XSfU6yEdB4Ov+bLjuV61Y/yb7O/rgwPd6sPUjfyWYzQaEUOvRins7U\nmhJcCzz+/ssmAAAgAElEQVQMvGaMeT5ybSnwFtk55E88brz/YA+ZXc+KS08BEv9UfcXHl3L3gxvY\ntK2d0EiI7a2dTKuvYm7kXKOvr34y7vOe3Ng64eOIw1UcxkrWsbr3CkUzBIeCw3G19JKNgELAUHCY\nXe0BWtt7uPvBDVzx8aUJg3N9ZI1tg90Tt9m3dW8PNVXx/yTTTbdla20tE8XcoUdpOtP7kgYla20P\n8C5jzLsJByOAb1trH8tLyyRnMp2GSTe15XbInMbYr5N1/hX+sth0WO/AMB1dA2yLrAV1ubL0JhqQ\nKv1l7N3fl/DwvGQdq/teo7X2Uh0B4bR63ca44PXMy7uTVo1INgIN9AcJ9Aep9Jcxf1Z9LFin4m53\nd2CQJ1pzM5ophQ5d+628L5N9Sn80xjwLHGmtfT7d68X7Mp2GuWDZooyn7yr9ZbGpMBjb+T+5sZXP\n3Ph7aqsT/5Vbv3k3ZWUZfVVMlR8a6qqprfbT2x+ksa6SrsAg7Z39bGvtigU7570l61iTdVaZTn+N\nZ+ot3QhjMDgSSw5Jx93u1gw28k5UKXToxbzfSokOEcaY9wHfBYaBw4wxJwDXW2s/mOvGSW5kOg1z\n369ezPgzB4Mj3P9fm/jSx49n9bqNtLbHb5iNHnleGUgceZwH3mVqIBhOqT5p/uzYGUvugwfbOnpd\ne5GqOWnx7DGFXifbWSUaVSYbSWQyAk0XTNyj3RWXnhLbyLstwUbebCjmDl2KRyZlhm4gfAT67wCs\ntc8ZY47Iaaskp9JNw0Q7vOftXvdbU3rxb+1cefufEpbkcaqvqUiarFBfU0HfQHBMcdJUNr22b0wh\n1qjZzbVjpsuilcuzyb2B9tgFLUlHEtHrO/f20B0YpLbaz+59veM6vjzZaHeio5lSyKwrdUp0cLDW\n7nbtTRrITXMkH9J1XBPJugPoGximbyD1EemDwZGU0xDVleVMb6xiR1vmJY16kwSklqZqLj93CSvu\neyruentnP+2d/UmnLifSQTfWVXLdxSdn1N5EI45M166iko12JzqaKYXMOikNmQSlbmPMbCLrzsaY\nM4DMV7/Fc9J1XBNdh/D5wmWF0klVGSLVFB9AXbWf3oFg3Pck+7TpjdVpDw9MdK/57qAnEgTdBw/O\nmOTIrxQy66Q0ZBKUriE8dXe4MeZ/gbcBH8plo6Sw3B1epsp9EMzCWqxzGsttqZnFhq17Yhl8qSRK\nYtjf1R83vZhommy8HXSiWnbzZtWnbV80GDn3SGUeBEOuR5P7jS+FzLpS193dTSgUKvlpvEyy754x\nxpwJvBPwAf9nrdVIqYT19qc/xa+xzs/wcHjqLER4lDSOZaAJ27x9HyMpvqiuxs/clnqaG6sZCg5z\n1Z2Px40+nNNkzY1VBIMjXHXn43HFWPd3xa+JpeugJ1rLLtk0aSajlI6ugZSPx6sUMutK3dObdmNM\nF01NTYVuSk6lDErGmHJgvbX2eCKJDlJaEk0dvbytI+37ugLxI5VQKPk0WnNjFQODw/QPDlNRDsMh\nGJrgkMrZ+dZV+6mp8seNfGoq/ay49BRWJZmCc05dJjsJF8I/fdXW+Dl2QQsXLluUckOqu5ad+3Ey\nyYJPJqOUbI9slFnnfbW1U2P0mjIoWWuHjTE9xphqa23qlCopSu71k46u/kmPeGqqymKHAZb5YGQE\nzKHT6O4NMru5lo+cfgQ33f/MmHp1E3HX1WfyZUfGX3tnP5+75Y9jprMSVTpINSIJAYG+IH5/GWsf\n2ZJyjcldy66hdjRgpVovmszhfs6RTUOtn83b9/Gxr/52XNOHIl6UyZqSBf5sjPkFEEuJstZ+J2et\nkrxxd8ybt6cfJaXjPJ12JAQHegZ43oZHOK/uODCp8kFOgf4gdz/4/JiRSaJ08517euKqiENm+4Va\n9/bQtr93zDVngPvqp07k1h+tj1tTikqVNDGZw/2cI5vP3Pj72Agy10dhiORaJkHJD7wMLHJcmxpb\ni6eA8ZYSyoZs/uVxlvZJptJfNiZ5oq2jN1anr62jl32dfQnXZboCg2OSKroCg2xzlfJJFgSSJU1k\nc1/QRKcPpbgcOLB/SlR1yCTR4TP5aIgUhvOn9b/tOFDUP22UJUm2SJSsNLu5Njba6AwMcs+Dz4c3\nvoZCVFWW01RfxbyZ9ex0le2pr6mgoa4y41I+ydZ+spl2nmr6UErHyEjqPYClIpMyQ59PdF3Td6XB\nOQ30wat/XeDWxHOPcA6d00BXYCB2Wq3btIYqBoaG6R8YjqsI4R4lRTfVRt3z4PNxI65jjpgR2wi7\ncs362LQfhI/bAOKuJauIkaqsUTb3BUWPwkg0fSilo7m5peTTwSGz6Tvnj2/VwJnA04CCkkdkYyqo\nM+C9KZ9G14hkX2f/mMP9Guv8jIz46BsIxk2/OTfyOmc8WpqqY0ecR7mzDZ2PU6VKO89kuumHz7Bp\nWzs+fFRWlMW1JdF3psqeG++f57xZ9VpDkpIx7uk7Y8xBwLdz1iIZt2xMBX32Ju9k/M9rqeXwedO4\ncNki7v+vTTy3ZQ/DI6GECQyBvuGEdfKSTb1HqzzEvTbFRtRkqdLOayvXrI87vJC++Ne2d/bz5dv/\nxPTG6liQSRXsJvrnqfp1pU1rSklYa3cZYxbmojEyMZOdCnrl9Q6ysTZeU1nO8EgoZUWGTAwMjTg6\nVF/K4qzj/UeaaD+P+0TcqopyugKDGXfomfx+J6q3lyzQTPTPU/XrSpvWlCJca0plhKfz9uSsRTJu\nk50KWn7vXyb1/eVlPk5YNAsfPp52jhgmyDmy2LazM+13j6SopRd9TWWFj/KycoaCw2MCzhUfXxq3\n16mjayDpAX2JjDeDMV2QmcjG2M7AIBu2xv+zVP260qI1pVHOf5lBYDPwz7lpjkzEZKeCJrtZdngk\nlFFq9nhERxbpzGmp49A5jSnTuqc3VEU+a4RnXm4bE3Aa6yqZ3lidMKMuk6B++blL6BsI8tdX4oNC\nfU0FB7XUZVRvz/150TZkWvJn9bqNY1LXVb9OilEmQWmltfYV5wVjzFHA5HdZSlakKhGTbiror1uy\nG0xybXpDZVz23aFzGmP3/vnbHhsTlCr9ZeHTbh0DLvfvQWdgMGm9u0yCemNdJTVVY/8pHbdw5riO\nVHd+3nin3dz3VF9TEfc9Wm+SYpFJUPoJcHwG1yRPxtPBpJsKWvH9p3Pa1mxqaarmpstOZe0jWxJn\nw+0bO101GBzhQE/qAqur122MG8k4U8YzXd9JFRTyUVfO/ed83MKZcX8ntN5U/KZ8ooMxpgWYBVQb\nYxYRrlEJ0ATU5aFtksR4OphSqv48vbGaebPq4+61MzAYK/kTHE6cYNEVCNLcWEWgb4iG2kouXLYo\n7nl3QHFm6GW6vpMuKORauj9nnZdU/JToABcAVwJzgYcd1zuB23LZKEltPB1Mqp/Si23qrrU9XHPO\nOTLM9JRcZ224tY9sifs9SRV43MecDwVHEmbmFSL4Z3PELN435RMdrLV3AXcZY6611n4jj22SNLLR\nwXQGBj03decjcV286PVAX5AnNrbS1z/Eis++ExgbkMvLUqeQQ7igqlOqgNJYV0mFvzy2R+qZl3cn\nzMwrxNEPU3XELKUtk82z3wAwxswiXNEhev3NHLZLUshGB3PD957IdrMmbalpoba6kvWbdzMwNDoV\n5w4xL7zaHvu1+5TcExfN5tyz38a/3vOXpBtou1zVK8Z7PLxXpr6yNWIW8ZJM9imdCawBZgPDQCWw\nj/B6kxRANjqYV9/qzlJrsmd/9yA3fPbUlIfvgXvD7NhqDL9+/LW4gOQu1NowzrUer059ebVdkhtT\nPtHB4VvA2cCDhDPuLgEOy2GbJIc6A4Pc8cBzhW5GQt2REYx7JLjptXYO9IyObsrLfLF1HXcK+Mvb\nOhgKxi8I11T5CfSP7uGZNb1mXO3y6tSXV9sluaFEBwdr7VZjTIW1NgR83xjzHHBdbpsm2eJcEHdv\n5CwUZ8HUqK7AIDf98BkgREfXAM2NVfT1DzEwFP+PcWg4FFvXcY8WEtXHq6osjwtKz9s94zql1atT\nX15tl+TGlE90cIj+K99pjPkg8DrQnLMWSdZlmqGWSHVlGf2Dk6tll0iiWYjB4Eh8YdMUoskKztFC\na3tPXFWDqooyTjx6Dm/s7oobUQ0FQ0Ao7pTWyWwu1cZUkezJJCjdZYyZDnyd8KbZJlRmqKhMZmE+\nFwEpG6LJCs7Rgnst6sSj57D8ohP5zI2/T/o50VNaJ7O51P3eF7buZfGCZnz42NfVr0AlWaE1pQhr\n7X9GfvkscGRumyO5UIgjz3Otpto/ZoQS3RTrHLF0BgbpGwgm/ZzoKa2TybBzv7anbyiuFqBXKiho\nRFfctKYUYYypBa4FFlhrz4/UvTvKWvurnLdOsiI6xbX+5VZS9M+e0NxYRf9AkN6B1P8A+/qDGY1u\nVq5ZH7eeBOF6eD4fcae0TiaTLZOg74U0cpUaKm5aUxq1CtgFRFN73gL+E1BQKhLRKS6vHXfuTtUG\nmNFUw+zm2jFrYHXV8Rl0jXWVKUc30VHB+s3xa1T1NRV895p3Z7UiQ/S1G7buGVOpO8oL6dpe3W8l\n4pRJUHq7tfZTxpj3Alhre4wxZTlul2SJc8omVxrr/HQFMhuClfnCG16jWW/udaBoQHCW9jl2QQsh\niEuCmDsznDGXbHSTLLkjWU26yWSyRd8brQa+c28PnT0DDAwO4/P5WLygOWmQy+eUmvY1STHIJCjF\nbQQxxlQTPuxPisBkMu8yEa3cfd3qJ9OmmocPA5zNFR9fGut4E41QGusque7ik+Pem+r4B+eaUrQ4\nq7uUUKW/jHcsnpPTvTzR4LRyzXq2t3bFrlf4y5MGmnxOqWlfU3FTosOoPxtjrgWqjDFnAFcB3poH\nkqRyPUXT3tnPNd/5SzhhIPUhsZHDAONrx2U6Qkn2Oue1VJUg0n1PNkcs45kmy+eUmvY1FTclOoz6\nGvCvQDfh6uC/AW7NZaMke/KRebe/ezCu4kI67lNdW/f20BUYpKGuknkz6yccEFJ16OlKC2VzxDKe\naTJNqUmmpnyigzHmdmvt1cBHrLU3Azfnr1mSLZefu4Q9HT1s3dGV/sWTEAqFp/Lqaip4Y3fqunr7\nu/rpigQk58imvbM/Nu3lDgjukcwFyxbxgOuwP3dxVqd5M1NXbcjmiGU802SaUhOJl2qkdHbk/9cA\nP89DWyRLnB14c2N1zgNS1IHuzMoXtXf2x9aHEkl03T2Sefbl3QwGR2KPw8bOt1dVlHHcwlkMBYe5\n6s7Hk07NZXPEMp5pMk2picRLFZR2GmNeAg43xjzrftJa+45sNMAY8zrh1YgRYChbnzuV5Tq5IZng\nCBnX1YuODBJNLToDQrLU7mhAcn5eIicePQcg4dRcfPCu4uTFc+IqMIh4iRId4COEq4KvBf4lh20Y\nAc6w1u7P4XdMKZOZeorOWOf6r35rew/NjdWctHg2e/f3xa0pXeDIosu0gGw0kDmDXEtTNZefu4QV\n9z0V99q2jl46A4Ncefuf4j77tCVzuePK07N0hyLZNeUTHay1Q8Azxpj3W2u35rANPpRiPkYm2WDJ\nXjOZ5IZ8/RwW6AvyzMu7OW3JXO66+sy452764dNxZXqcElUXjwafqHS/H7Oba1m9buOYYKfNpOJl\nUz7RISrHAQnC/eCjxphh4HvW2vty/H1FIVU2WDQYOSsIvLrjAK+83sFdV58Z66Cff6UtbbmeQtuw\ndU/cWk8IeG7LnqSvdx+ZXl7m498vOzW2abU7cs6SU6JkAvfoCZT5JuIFGZ2nlGOnWmt3GWNmEg5O\nW6y13jurO89SZYMlWzOKJhAsv+hEll90Iv94zX/lrH01VeWUl4Xo6ZtcFfFAX5BXdxyIG8kMu2sP\nOfhcQ6XqqnIeeGTLmCy+bY4svkTJBO7Rk3u0VWgqnipuWlPKE2vtrsj/9xpjHgLeASQNSsaYFcD1\n+Wld4bg7zebG6tg6y672QNL3RYPXX55/i/7B8Y+SyspgJIM4Mzg0QlN9JfQNpH9xAuVlPkZCobip\nuEymz6pdB/Ydu6BlXFl8Uc7RU3NjFT58rLjvKc8EABVPnZpS9W9Tfk0pyhgzAzg48nCHtXZftr48\nUoG8LFJPrw54D3BDqvdYa1cAK1yfcxiwPVvt8gL3lNNQcDijjLroFNRtD/x1Qt+bSUCC8GjGfRR5\nlM8H0xuqOPygRrp6h5jRWM3Gv+2hb2Ak7v1uiZIV3I45YgYV/vK4EcSqdRvTZvG5JTuHySsBQMVT\np6ZU/duUX1MyxhwBfI9wBl60N5xrjHkeuMxa+2oWvn828JAxJhRpywPW2j9k4XOLnnvK6ao7H497\nvrzMF9ex19X4WbpwVuwMoUIKhaCja4CjD69gxWffCaQuAQTh6bMLly3i2+teSPjc9MbqpKOYaAB3\nrinNjVSGyIQXA4AqPchUlWqktAb4DvD31toRgEh18PMjz50y2S+31m4Hjpvs50wF7k7qxEWz8fvL\nEq453PTDpwvVzDjOzt058tu2s3PMSGl6YzVrH9nCS3+LH4hX+su46+ozU06nTXYDqhcDgCo9yFSV\nKijNsNY+4LwQCU5rjTHX5bZZ4pasmnYiL/6tPW/tKi+D4SRTfs7O3Rk4EqV8z26uTThC8fnI+fqO\nFwOAKj2IW19f4Ufw+ZAqKHUYYz4B/NRaGwIwxvgIj5RK62ztIpBpJxU+/ntyC6LutOtU3EtD5T4f\nfr+PhtrK2PHk0XY5qyf83VGzeOWNDnyMnjd094Mbxnx+9LjyXFIAkGJw0uI5NDY2FroZOZcqKH0K\nWA182xizM3JtHvBC5DnJg87AIPc8uIFNr7XTPzhMZYWPtx85K+5Moqi39vTwxdsem/R3LjUtvLm7\nhwPd/QTTJD64M1SHQyGGh0IMdPaz9pEtsc7encZ+2pK5/PSm98fucdW6jbz4t/j9SRXlvthx5cVK\nqd2SLQ0NDVM70SGSyHB2ZP+QM/tub15aJkC4M3eeuNo3MPZMoqivrXqC4UlsYygv83HKsQcRDI5k\nXMMu0ZHmUc7puInsuzpsbhPzZqWu7u11Su0WGZ9MKjrsBRSICmQ8e3D2J0nRTscHzGgaPaL8i9/8\nn6Svrakqi0vtrqqMf+zkXFNKlkzQGRjkha2J/3p5IeFgsryY2SfiZRPaPGuMeclae2y2GyNjZVJJ\nG8Kd+0QHSacumRv303uyzbllPqipqqBvYDT4LTlyViwLMLoJNVGl7WTJBKvXbaSnbyjue+prKjhu\n4UxPJBxMlhcz+6Q4TYVqDpB6n9LRKd43IwdtkQQuP3cJweAILznWlJYcOWtMh33Pg89P+DuefXk3\nn7nx99x02anU11UylGQhaSSy/6ilqZqGukq6A4O0tvfQ2x+ksa6SCn950jWTZMkE7pFDXY2f717z\n7qyvuxRqbceLmX0iXpZqpLQJeJ3R0wycWnLSGhmjsa6Sr118UtrXbdw68TTwwcga0nWrn+Sow5rT\njrj6BoIMBoN0BYLhk7AYrTc3FByhIsn+qUTcI4mlC2flJFgUam1HmX2SLVMhyQFSB6XXgf9nrd3p\nfsIYsyNnLZKMOX/67x+afF2s7t7BjNY8nLXn3DZta4+rXL5h655YpYlEwSZfIwn3fW3YuoeuBBXF\nRaSwUgWldcChwJigBPwyN82R8UwzZfuE2YbaSpobqyb1GT7XwDrQF4y1MdGIIV8jCfeILNAXTJjB\nKOJV3d3dhEKhkh8xpUoJT3rarLX2y7lpjqSbZnIGrVTVwieipto/JqliPBtpW5qqOWJ+U8ID+l7Y\nuregI5PLz13CC1v3xiVVKBNOisnTm3ZjTBdNTU2FbkpOZXziqzFmmjHmI8YYrdTmUKJppqvufJyV\na9bTFQlIT2xs5dUdB8ZkrU3WjraeMZW/UwUkH+G9TXXVfo4/ahZHzG9i7/4+Wpqqqa0qj3ttT98Q\n9ySo2JAvjXWVHLdwZtw1ZcJJMamtnRp/X1Nl360Fvmmt3WiMaQY2Al1AizHma9ba7+erkVNJomkm\n5yF47qDl3jeUT0cePI07rjwdGFsF/OTFc1i/pS2u8OpL29InY+QyS06ZcCLel2pN6Xhr7cbIrz8J\nbLHWvscYMx/4L0BBKQecHeeu9sCY6SZ30MpnQKr0lzHoSBd3jjTcwXJfVz81Vf649rvXmxLJZZac\nMuFEvC/V9J2zzsxpwEMA1tq3yHyZQcYp2nHeceXpCaebLj93CS1N1Tn57vKysUGjpamatx08jdOW\nzOXuq8/ktCVzY4+dIw33VNjs5loWL2iOu+Z+nIgqIIgkpirhgDFmLrAfOIP4I3pz0ytKnGTHVUxv\nrM64Nt14uM84qq+pGHOWUaKRRmdgkKHgMPU1FYQIceyClljbV7mm4tKZTAUEFT+VUqYq4XAL4Yrg\ng8AT1trNAMaYk4E389C2KS/ZdFOy0kPZdtzCmWk79c7AIFd863/iEiRChGLvG+902WTWfe558PlY\n5t+rOw4wFBzmuotPHtf3i3iVqoRb+3NjzF+AOYSTHKLeBC7NdcMkucvPXcKmbe0c6M7dsed1NX4u\nXLaIlWvWpxx5rF63cUzG3svbOjL+nkSjm4mu+7i/dzztEBFvSDl9Z63dDex2Xcvebk2ZkBDQ05vd\ndHC3pQtnsfaRLWmTDhKt+YTGseSYzcQG9/eOpx0i4g0Z71MS77jjJ38lOJmDkxLwEU5qWDC3MZbE\n0Lq3J+41G2y4NI9TojWfYxdkXhoxm4kNx7i+dzztEPG6KV8lXLwnOtX1/Ct70r94nA6f28hdV58Z\n+55V6zbyxu7uuNcE+oNctOIRaqr8LF7QzBUfP54Lli1i8/Z9HOgewOfzcdzbWvjSx5dm/L3ZPNrh\nio8vHXdihYh4i4KSh6TLHst2rTunuTNHT3hN9T3DIyF6+oZ45uU2Vq0LLzXG1pRCIWqqK1ImR7jv\n8cJli4DsbGjVPiQpZVMhyQEUlDwl3fpKLvbs1FSV8XdHzeECR1JDa3tP+jcmaU+6Nup4cBFJRUHJ\nQ9Ktr2Q7Fby5sYp7vnIWjXWVY8oEOUU31br3Me3v6qdvMP4Yi3TTb9ocKzIxU2VNSYkOHtEZGGR/\nV/yGWHcHn+01ks6e0aSFZMGhtqqcExbN4tv/chYnL55DXY2f+poKpjdU0t7ZHzs7qb6mYkyVh0QS\nVX4QEYnSSMkjVq/bGFeloaWpekwH/+qb+7P6ncMjodiZQslGYb0Dw7ENqc6NqFfd+Tj7HfukDmqp\ny2gaTkVRRSZGa0qSV+6RyvTG6ljCQKfjyIpMTGuozHhj7c5I2vfl5y7hldc7kpYvcm9ETZQ1l0mZ\nHyUjiEgqmr7zCPc01q72ACvXrGfnnh6uvP1P48q6G0+lh+7IvqPGukpuuuzUpK9zb0S9/NwlY4qz\nOs96emJjayw7T0QkUxopeUR0GmvD1j0E+oL09A3xxMbWlKOXbGjv7Ocj//IbqivLqaxI/jPKUYfG\nV/hONOLJZhKDiquKxFOig+RVtJOf21Ifd72jK3cBKWp4JESgPxi3RuS2beeBuBNwE8lmEoNGXSJT\nk0ZKHuNeqxnJ8g9HPiZ2GNb+7kH2dw/G7S3K5UZYpY6LxFOigxSEMzuttb0nlnKdLZkGpPIy35h9\nSVHRAJHtjbDOIJcuPV5ESpOCksc412pu+uEzPPPy7jTvyI0TF83G7y+LBQjnulY0QGR7NOPOMGxp\nqmZ6Y7VSx0WmEAUlDxsKZneUlEhdjR8fPnr6Ro/CKC/zESIUSy7oihRodU/LZbOYKiROi7/jytMn\n9ZkipWKqJDooKHnY1jc7c/4dxyyYgQ8fL21rp39gmOGREMMjoVjB1eUXnZh0b1G2N8JmO8iJSPFR\nUPKwXB9S19JUjQ8fTyeZIkw3HZftjbCq9iCSnBIdpOCOWdCS9TWluho/c1vqY53+ivueSvrafI9U\nVO1BRBSUPCLRZtGPnfW2rAelpQtnsfyiE3lrTw9fvv1P7EuwD6quxs/ShbOyNlLRRliRydOakuRV\novTqzdv3ZeWzW5qqaairZN7M+lig+frqJ5NWipjbUp90xDKRAKMzlEQkUwpKHtG6t2fM49iJrlmw\n/JMnMm/WaLWI7t7k1RtSTdtNJMBoI6zI5GlNSfLKXbrnjd3dWfvs9s5+rl31BEcfPiM2wqmt9jMw\nNPqdlf4yDj2oMW2CwUQCjLLqRCRTCkoe0VBXGTedlqyawkQd6B6IG+FMq69iekMlvf1BGmrDFcKd\nI6lkJhJglFUnIplSUPKIeTPr2d7albPP9/l84FgoPdAzwGlL5qadestGfTtl1YlMnhIdJK8uP3cJ\nQ8ERntvSlvVRUktTNYPBIF2B+AoRG7bu4ao7H0+ZsKAkBRHJJx1d4REh4LW3DmQ9IJ22ZC73/9t7\nmdE0dpot0BdMezSEe81ow9Y9SY+uEJHcmSqJDgpKHrFyzbNZP8yvvMxH30CQrsAg82amXi9KlrDg\nXjMK9AV1tpGI5IyCkke89Lfs7ElyGh4J8ddX9nD3gxsIBkeoq/FTX1NBXfXYWdtkCQuXn7uE+pqK\nuGtK6RaRXFFQmgI2bWvn6Zd3x45Zr6mKD0otTdVJExYa6yo5buHMuGtK6RbJv+7u7imR7KBEhynA\nR/xcdG//EPU1FYQIceyCFr708aVxSQ65PFFWRCbm6U27MaaLpqamQjclpxSUSlxzYxWHHdTI83Zv\n7FrvwDAwDMBgMDjmrCRl3Il4T23t1JihUFAqcQODw6Q6BH3jq/tiGX/RAOReM2rd28PKNetVUFVE\nck5BqcQF+oMpDwsccc1RRwOPs2pDV2CQba0aOYlI7hU8KBljlgF3Ek66+IG1dmWBm1RyhkeGkz5X\nXuYjODwamKIjoaHgCJu2tePDR2//UNx7Xti6N+2m20QKdYSFjs6QUrD1tTd4cn0N9fUNhW7KpExr\nqObtixcmfb6gQckYUwbcC5wNtALrjTG/tta+Ush2lZrBoeTTd8HhEJX+MoaCI/j9Pjp7+rhu9ZPs\n3NIxsWIAAAwCSURBVNPDYHAk4Xt6+oZ4dceB2Kjpssg6VLpOv1BrVVojk1Kw8IhD8dXOpTdU3Jto\nR7pSl1Mr9EjpHcCr1to3AIwxPwU+DCgoZVG6KhHR4DMUDPHSa/vH9dltHb1jOv2nXtrFCYtmc4Ur\nqy9VhfFcjGain7l+c/xBidpnJcWoprZ+SlR1KHRQmgfscDx+i3CgkiLhHDFFDY+EeObl3Vzwb79L\n+94PXv3rhNejQS4Xkn1vVEONn8PmNvK3tw4wOBSiurKcBfMa2bEnQFfPAD6fj6MPn0ZddRVt+3vZ\n19lLT2+QkVB4OnTJ22bw2Y8sYe0jW2jd20NXYDDukMVEwTbToBx9XbLPdX/OBcsW8cAjW5I+nkpT\nmZrGLQ6FDkointPdF+Sl1zpijwP98Y8JJR9RDo+EeN62c53rZN/2zv5YFfhEU4eZTjE6X5foc92f\n88rrHbF2JHqc7HtKkaZxi0Ohg9JO4BDH4/mRa0kZY1YA1+ewTSKTluxk32RTh5kenpjuuvt5dzvc\nj6fSVGYxnICcqn+b0zjErKbiL4Y8rWlmyucLHZTWA0caYw4FdgH/BHwi1RustSuAFc5rxpjDgO05\naaHIBDTUVjKQoMBushJNmR6e6H6d+/Xu593tcD+eSiWjiuEE5FT9mznycObPn1+AVuVXQYOStXbY\nGPNF4A+MpoRvKWSbpHT4y334y3wMBkcIhaC6spyh4ZG4FPhEGmr9HH5QI6861pSOmNfIm1laU0ok\n09N5o9eTfa77cy5ctoi1jjUk9+OpVDJKJyAXB18pFPiL/iTx2GOPTYmfJESkZKRNpyvh/i3hvatK\nuIiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiI\neIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaC\nkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiI\neIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaC\nkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiI\neIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIaCkoiIeIa/UF9sjLkeuBTYE7l0rbX2kUK1R0RECq9g\nQSniDmvtHQVug4iIeEShp+98Bf5+ERHxkEKPlL5ojPkk8BxwtbW2s8DtERGRAsppUDLGPArMdlzy\nASHga8B3gButtSFjzE3AHcAlE/yqcoDdu3dPorUiIvl19tlnHwa8Za0NFrotXuELhUKFbgPGmEOB\n31pr357Ba1cA1+e8USIi+XG4tfZ1SNu/xV5XygoWlIwxc6y1uyO//mfgRGvt+RP8rCqgHzgSGM5e\nKwtiO3B4oRuRJaVyL7oP7ymVe9kOVKQaKRlj/MB8psiIqpBBaQ1wHDACvA58zlrbNonPC1lriz5x\nolTuA0rnXnQf3lMq91Iq95FNBUt0sNZeVKjvFhERbyp0SriIiEiMgpKIiHhGKQWlGwrdgCwplfuA\n0rkX3Yf3lMq9lMp9ZI0nUsJFRESgtEZKIiJS5BSURETEMxSURETEMxSURETEMxSURETEMwp9dMWk\nGGM+BqwAFhGunfe847lrgIuBIPBla+0fCtLIcTDGLAPuJPzDwg+stSsL3KSMGGN+AHwAaIsW1TXG\nTAceBA4lXEbqPK8fTWKMmQ+sIVzZfgS4z1p7d5HeSxXwZ6CS8L/zX1hrbyjGewEwxpQRPuLmLWvt\nh4rxPowxrwOdhP9uDVlr31GM95FrxT5Segn4KPC486IxZhFwHuFgdQ7wHWOMp+tLRf7R3Qu8F1gM\nfMIYc1RhW5Wx+wm32+mrwB+ttQb4H+CavLdq/ILAVdbaxcApwBcifwZFdy/W2gHgTGvtUsI1Js8x\nxryDIryXiC8Dmx2Pi/E+RoAzrLVLrbXviFwrxvvIqaIOSjbsVcaeYPth4KfW2mCk1PurwDvc7/eY\ndwCvWmvfsNYOAT8lfB+eZ619Atjvuvxh4EeRX/8I+EheGzUB1trd1toXIr/uAbYQrs5cdPcCYK3t\njfyyivBoKUQR3ktkBPs+4PuOy0V3H4T7KXefW4z3kVNFHZRSmAfscDzeGbnmZe42v4X325zKrGjV\n98gRJbMK3J5xMcYcRniE8TQwuxjvxRhTZozZAOwGHrXWrqc47+U/gH8hHFSjivE+QsCjxpj1xpj/\nL3KtGO8jpzy/ppTq9Fpr7W8L0yqZgKIpHWKMqQd+QXgtsscY4257UdyLtXYEWGqMaQQeMsYsZmzb\nPX0vxpj3E16rfMEYc0aKl3r6PiJOtdbuMsbMBP5gjLEU2Z9HPng+KFlr/34Cb9sJHOx4PD9yzct2\nAoc4HhdDm1NpM8bMtta2GWPmAHsK3aBMRA5U+wXwY2vtryOXi/Jeoqy1XcaY/wWWUXz3cirwIWPM\n+4AaoMEY82Ngd5HdB9baXZH/7zXG/IrwlH2x/XnkXClN3znXlX4D/JMxptIYczjhE2mfLUyzMrYe\nONIYc6gxphL4J8L3USx8jP0z+HTk158Cfu1+g0f9ENhsrb3Lca3o7sUY02KMaYr8ugb4e8JrZEV1\nL9baa621h1hrFxD+N/E/1tpPAr+liO7DGFMbGYFjjKkD3kM4Uauo/jzyoagLshpjPgLcA7QAB4AX\nrLXnRJ67BrgEGKK4UsLvYjQl/NYCNykjxpifAGcAM4A24HrgV8DPCY9Y3yCc6nqgUG3MhDHmVMJp\n1C8RnkYJAdcS/oHmZxTXvRxLeOG8LPLfg9bam40xzRTZvUQZY04Hro6khBfVfUR+OH6I8N8pP/CA\ntfbWYruPfCjqoCQiIqWllKbvRESkyCkoiYiIZygoiYiIZygoiYiIZygoiYiIZygoiYiIZ3i+ooMI\ngDHmHxmtoFwNPG+tvTDy3DeBc4HDgGOstZsd73sb4f06zcA+4CJr7WsJPv96oM5a+6/jaNOngA9Y\na/8xsofmW9baE40xBwFrrbVnp3jvocB7rLX3Zfp9IlOBRkrieZHyK98mHACOt9YeDXzT8ZKHgP9H\n+Dwat9XAPdbao4DvAN/LcvNC7l9ba3elCkgRhwOfzXJbRIqeRkpSDOYAgziOx7DWbnT8+v8A3Gdm\nRQpfLiV8DAjAfwL3GmNmWGv3JfuySDWEtcAXgf8D/pvwSKuGcHWHz1lrgynefyjwnLV2ZqTEz4+A\nowlXF7HW2n8ifHbWYcaY54G/WWvPM8acSLiiRy0QIFyJ5Ll0vzkipUQjJSkGGwnXBnzTGPNzY8yX\nI+VZ0jkY2GmtjY5gRoBW4ov1xjHGnE04IJ1nrf2LtXYY+IS19h3W2mMJ/yB3cQbfHR1BvRdosNYe\nEzlw73OR618gXGPv+EhAqiBcCPZaa+1xwL8B6yIFYkWmDAUl8Txrbcha+1HgdMKnc74f2GiMmZbl\nr3ov4bN73mOttRA7EfhfjTEbjDEvAmcSPmcpUxuBRcaYe4wxHyM84kvEAAPW2v8FsNY+BgxErotM\nGQpKUjSstZuttauste8BuggXgU1lBzAvOq0XCTBziT9M0WkrUE78KcXnA+8kfBbO24FVhBMtMm3z\ndsLH2z8KvJtwMK3M8O3uE5VFSp6CknieMWauMeZkx+P5hCvDb0/1PmvtXuAFwoGFyP+fT7GetJ3w\nkQK3RLL9AKYB7dba3shREOcnea9bNBDOA0astb8Broq0u5lwUG1yNheojGTxYYw5i/BUoc3w+0RK\nguarpRj4gRuMMYcA/YQ7/K9Fkx2MMXcB/0D4hOI/GmP2RdZ/AC4HfmSM+TrhRImLUn2RtXZnZF3p\nkUiSwhrgw8aYzYQPYPsz4YSHdKJrSscCtxpjIPxD4DestbuNMXsBG5kSfCWyrvQx4G5jTDTR4dxU\nCRUipUhHV4iIiGdo+k5ERDxDQUlERDxDQUlERDxDQUlERDxDQUlERDxDQUlERDxDQUlERDxDQUlE\nRDzj/weOIevDFLA/RwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "sns.jointplot(x, y, stat_func=spearmanr)" ] @@ -1857,7 +5007,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 87, "metadata": { "collapsed": false, "deletable": false, @@ -1869,7 +5019,23 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "ENSMUSG00000000001.4 -5.985706\n", + "ENSMUSG00000000056.7 5.218173\n", + "ENSMUSG00000000058.6 11.264661\n", + "ENSMUSG00000000078.6 -1.472789\n", + "ENSMUSG00000000085.16 -5.360020\n", + "dtype: float64" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "kallisto_diff = kallisto_log2_tpm_expressed_genes_summed['s10'] - kallisto_log2_tpm_expressed_genes_summed['s13']\n", "kallisto_diff.head()" @@ -1877,7 +5043,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 88, "metadata": { "collapsed": false, "deletable": false, @@ -1889,7 +5055,28 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEJCAYAAACQZoDoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlwnNd55/tvL2jsKxdQBLhJlB9JlEeWHCvykrEnm5Yk\nYqbuVEYa3Zur5N6K7o3lUd2kUkk0qStq6tZUFM8kskeZsZwonshjj5xoFtMZWZY0Hu/WwljURuoR\nKYELQBIkQBJbY+lG9/3j7Qa7WyDwggTQC36fKpXQL87b/QBs4IdzzvueE8lms4iIiORFy12AiIhU\nFgWDiIgUUTCIiEgRBYOIiBRRMIiISJGqCgYz21PuGkqppnBUU3iVWJdqCqdWagoVDGZ2m5m9bWbv\nmNnvz/N5M7MfmdmUmf1Oyefazexvzeygmb1lZj+91CILPHQZ564U1RSOagqvEutSTeHURE2LBoOZ\nRYHHgFuBXcDdZnZNSbNh4DPAZ+d5is8Bz7j7tcANwMGlFikiIqsnHqLNzcAhdz8KYGZPAbuBt/MN\n3H0IGDKzXy480czagJ9x93tz7dLA6PKULiIiKyFMMPQAxwse9xOERRg7CALjSwS9hX3AA+4+uaQq\nRURk1YQJhst9/puAT7v7PjN7FPgDLmHMy8zqc/+/Cphd1iovk5ltL3cNpVRTOJVYE1RmXaopnAqr\nKQbB7093nw57UphgGAC2FjzuzR0Lox847u77co+fBt43eV0qN4t+sfA4HPK1V1NfuQuYh2oKpxJr\ngsqsSzWFU4k1TZlZ6bGH3X3PfI3DBMMrwE4z2wacBO4C7l6gfST/gbsPmtlxM/uAu78D/BxwYLEX\nzBVbVHCup3D4K1/5Cps2bQpRtojI2nbq1CnuuecegJ3u/m7Y8xYNBnefNbP7gecIrmJ6wt0Pmtl9\nQNbdv2hm3QTzB61AxsweAK5z93HgnwNfMbM64D3gN5b6xeXMAmzatIne3t5LfAoRkTVpScPvoeYY\n3P1ZwEqOPV7w8SCw5SLnvgZ8ZClFiYhI+VTVnc8iIrLyFAwiIlJEwSAiIkUUDCIiUkTBICIiRRQM\nIiJSRMEgIiJFFAwiIlJEwSAiIkUUDCIiUkTBICIiRRQMIiJSRMEgIiJFVnoHN5GyyWazjI7Ov8V4\nW1sbkUhk3s+JrHUKBqlZo6Oj7P3OAZqamouOJ5MT3Pmp62hvby9TZSKVTcEgNa2pqZnmlrZylyFS\nVTTHICIiRRQMIiJSRMEgIiJFQs0xmNltwKMEQfKEuz9S8nkDvgTcBDzo7n9a8vkosA/od/c7l6Nw\nERFZGYv2GHK/1B8DbgV2AXeb2TUlzYaBzwCfvcjTPAAcuIw6RURklYQZSroZOOTuR909BTwF7C5s\n4O5D7v73QLr0ZDPrBe4A/nIZ6hURkRUWJhh6gOMFj/tzx8L6M+D3gOwSzhERkTJZ0clnM/slYNDd\n9wOR3H8iIlLBwkw+DwBbCx735o6F8XHgTjO7A2gEWs3sSXf/9YVOMrM9wEMhX0NERBbWF1wjVORh\nd98zX+MwwfAKsNPMtgEngbuAuxdoP9crcPcHgQcBzOyTwO8uFgq58/YARQWb2XagL0S9IiJSbIe7\nHwnbeNFgcPdZM7sfeI4Ll6seNLP7gKy7f9HMugkuR20FMmb2AHCdu49f0pcgIiJlE+o+Bnd/FrCS\nY48XfDwIbFnkOb4LfPcSahQRkVWkO59FRKSIgkFERIooGEREpIiCQUREiigYRESkiIJBRESKKBhk\nTXjxzZO89ObJcpchUhUUDLImvH54iNcOD5HNai1HkcWEusFNpJrNpGZJpTMATM3MlrkakcqnHoPU\nvLFkau7jkfHpMlYiUh0UDFLzxidn5j4enZhZoKWIgIJB1oCJycIeg4JBZDEKBql5hUNJoxMaShJZ\njIJBap56DCJLo2CQmjeeDMKgsT6uHoNICAoGqXnjkynqEzG62hqYmEqTns2UuySRiqZgkJqWzWYZ\nS6ZoaayjvSUBwFgyXeaqRCqbgkFq2kw6Q3o2Q2tTgrbmXDAUzDmIyPspGKSmJaeCO52bG+tob6kH\n1GMQWUyoJTHM7DbgUYIgecLdHyn5vAFfAm4CHnT3P80d7wWeBLqBDPAX7v755StfZGETU0EItDTW\n0d6soSSRMBbtMZhZFHgMuBXYBdxtZteUNBsGPgN8tuR4Gvgdd98FfBT49DzniqyYfDC0NtXRNtdj\n0FCSyELCDCXdDBxy96PungKeAnYXNnD3IXf/e4IgKDx+yt335z4eBw4CPctSuUgIF4aSEtTXxWhI\nxNRjEFlEmGDoAY4XPO7nEn65m9l24EPAS0s9V+RSzQ0lNdUB0NacYHwyRSaj5bdFLmZVlt02sxbg\naeCBXM9hsfZ7gIdWui6pfYVzDADtLfWcPjfJ2bFpOjvLWZnIquoLpoKLPOzue+ZrHCYYBoCtBY97\nc8dCMbM4QSh82d2/HuacXLF7Sp5nO9AX9nVFACamZmlIxIjHgs5xcy4gzo9paQxZU3a4+5GwjcME\nwyvATjPbBpwE7gLuXqB9pOTxXwEH3P1zYYsSWQ7ZbJbkVJqO1oa5Yw2JGAATU5qAFrmYRYPB3WfN\n7H7gOS5crnrQzO4Dsu7+RTPrBvYBrUDGzB4ArgNuAO4B3jCzV4EsweWsz67Q1yMyJ1j+Ijs3jARQ\nX5cLhklNQItcTKg5htwvcis59njBx4PAlnlO/SEQu5wCRS7VudFgwbyiYJjrMSgYRC5Gdz5LzRrP\n9Qoa6i/8/VNfF3w8oWUxRC5KwSA1KzkdBEOi7sLbXD0GkcUpGKRmTeaCIT+vAIWTzwoGkYtRMEjN\nSk7lewwXgmGux6ChJJGLUjBIzcoHQ2GPIaGrkkQWpWCQmpWcDtZJKuwxRCMR6uJRDSWJLEDBIDVr\ncp7JZ4D6OgWDyEIUDFKzJuYZSoIgKDTHIHJxCgapWZPzTD5D0GOYTmVIpTPlKEuk4ikYpGYlp9NE\nI8wtoJeXiAePxye1kJ7IfBQMUrMmp2ffN78AF4aWxrWTm8i8FAxSsyam0nO9g0L5sNA8g8j8FAxS\nsyan0tQtEAzjCgaReSkYpCal0hlm0pmLDCUFx8aSmmMQmY+CQWpSMrcRz3xDSZpjEFmYgkFq0sQC\nwXDhqiQFg8h8FAxSk5K5tZAWnmPQUJLIfBQMUpPmegwLzDFoKElkfgoGqUn5S1EX6jHoclWR+YXa\n89nMbgMeJQiSJ9z9kZLPG/Al4CbgQXf/07DniqyEhSafE/EoEXRVksjFLNpjMLMo8BhwK7ALuNvM\nrilpNgx8BvjsJZwrsuwmpuZfWRUgEonQ1BDX5LPIRYQZSroZOOTuR909BTwF7C5s4O5D7v73QOla\nxoueK7IS8sNE8/UYAJob45pjELmIMMHQAxwveNyfOxbG5ZwrcskWulwVoFk9BpGLCjXHsNrMbA/w\nULnrkOo1d7nqPENJAM0NdcykxplJzb5vWW6RGtQXTAUXedjd98zXOEwwDABbCx735o6FcUnn5ord\nU3jMzLYDfSFfV9a4xXoMTY3BW398MkWXgkFq3w53PxK2cZhgeAXYaWbbgJPAXcDdC7SPXMa5Isti\nsTmGlnwwJGfoamtYtbpEqsGiweDus2Z2P/AcFy45PWhm9wFZd/+imXUD+4BWIGNmDwDXufv4fOeu\n2FcjkpOcSlFfFyUajcz7+eaGOkDLYojMJ9Qcg7s/C1jJsccLPh4EtoQ9V2SlTUylaay/+Nu7ueHC\nUJKIFNOdz1KTklMpmhoWCIa5oSQFg0gpBYPUnGw2y8Rkisb6i08qz/UYdPezyPsoGKTmzKQzpGez\ni/QYgjmGMfUYRN5HwSA1J5mbN2haYI6hoyUBwLmxqVWpSaSaKBik5uQnlBfqMbTnguH82PSq1CRS\nTRQMUnPyK6sudlVSPBbl7Kh6DCKlFAxSc/IrqzYv0GOIRCJ0ttVzTj0GkfdRMEjNudBjWHipi67W\nBs6PTZHNZlejLJGqoWCQmjMRYo4BoKO1nvRsVlcmiZRQMEjNmcitrLrQVUkAnbk1knRlkkgxBYPU\nnPzKqov1GLpa6wE4pwlokSIKBqk5+b2c88teXEzHXI9BE9AihRQMUnPy6x+15O5uvhj1GETmp2CQ\nmhO2x9CpHoPIvBQMUnPGkjPUJ2Ik4gtfrtrZmguGUQWDSCEFg9ScsWSK1qbEou06WrVeksh8FAxS\nc8aTM7Q2LTy/AFAXj9HaVKdgECmhYJCakp7NkJxKh+oxQDDPcFZDSSJFFAxSU/JXJIUOhtZ6JiZT\nzKRmV7IskaoSas9nM7sNeJQgSJ5w90fmafN54HZgArjX3ffnjv8/wP8BZIA3gN9wd22bJSsif0VS\nS4ihJLhwZdL5sWk2djWtWF0i1WTRHoOZRYHHgFuBXcDdZnZNSZvbgavc/WrgPuALueObgc8AN7n7\nPyAIoruW9SsQKZAPhvA9hiAYzmqeQWROmKGkm4FD7n7U3VPAU8Dukja7gScB3P0loN3MunOfiwHN\nZhYHmoATy1K5yDwuZSgJdMmqSKEwwdADHC943J87tlCbAaDH3U8A/wY4ljt23t1fuPRyRRZ2ocdw\n8aGkbDbLyMgIIyMjNMQzAJw4fU7Lb4vkhJpjuFRm1kHQm9gGjABPm9k/c/evLnLeHuChlaxNatOF\nOYaL9xiSyXG+9eOzdHWt4+TwJAAvvznAz/9UD+3t7atSp8gq6zOz0mMPu/ue+RqHCYYBYGvB497c\nsdI2W+Zp8/PAe+5+FsDM/gvwMWDBYMgVW1SwmW0H+kLUK2tYfm+FtuaFh5IaG5tpbmmjK5MATpHO\nLHyXtEiV2+HuR8I2DjOU9Aqw08y2mVmCYPJ4b0mbvcCvA5jZLQRDRoMEQ0i3mFmDmUWAnwMOhi1O\nZKmWelVSfmnuyWldriqSt2gwuPsscD/wHPAW8JS7HzSz+8zst3JtniHoqhwGHgd+O3f8ZeBp4FXg\nNSACfHElvhARgLGJpV2VVF8XIxaNkJxOr2RZIlUl1ByDuz8LWMmxx0se33+Rcx8GHr7UAkWW4sJV\nSXUkJxa/0igSidDWkmB0YkaTzyI5uvNZasrY5AwNiRh1i6ysWqirtYHUbJazWn5bBFAwSI0Zm5hZ\n8Iqk+eTvfj5xJrkSJYlUHQWD1JSxZIq2JQZDV1twk9uJIQWDCCgYpIakZzNMTqdDX5GUl18WY2Bo\nYiXKEqk6CgapGUtdJymvI7cshoaSRAIKBqkZc1ckLXJzW6l4LEprU5wBDSWJAAoGqQH5tY9OnT4H\nQF00M7cWUpZwl6C2N9cxlkwxMq4rk0RWdK0kkdUwOjrK3u8cYGg8eHxyaJwXXj7K0JlBmlvaaWlZ\n/Dk6WhL0n5mk//Q47S31K1uwSIVTj0FqQlNTM0SDX+htrcE6SI1N4TfeaW8OJqyPDY6tSH0i1UTB\nIDVjeiZY76g+sfQF8TpagmDoVzCIKBikdkzNBOsdNdQtPRjaW4IJa/UYRBQMUkOmcj2GhvqlT50l\n4lE6WxPqMYigYJAaMp3rMVzKUBJAz4ZmhkamSE6llrMskaqjYJCaMddjuMRg2Lw+mKzuPz2+bDWJ\nVCMFg9SMqZk08ViUWPTS3tY9uWA4ruEkWeMUDFIzJibTNDde+q05PRuaAQWDiIJBakJ+Ab2lrpNU\naPNcj0FDSbK2KRikJiSngvmFlsalraxaqK05QVtzguOn1WOQtU3BIDVhYiq4Immpm/SU2tLdyuDw\nBDOp2eUoS6QqhRqQNbPbgEcJguQJd39knjafB24HJoB73X1/7ng78JfA9UAG+E13f2l5yhcJzAXD\nJfYY8gvxbexI8FYWvO8UW7uDRZba2tqIRCLLVqtIpVu0x2BmUeAx4FZgF3C3mV1T0uZ24Cp3vxq4\nD/hCwac/Bzzj7tcCNwAHl6l2kTkXegyXFgzJ5Djf+vG7TCSD1VW/9eJRXnj5KHu/c4DR0dFlq1Ok\nGoTpMdwMHHL3owBm9hSwG3i7oM1u4EkAd3/JzNrNrBuYBH7G3e/NfS4N6KdMlt3EZH6O4dKHkhob\nm+lONAJnmZiJ0tzStkzViVSXMMHQAxwveNxPEBYLtRnIHZsFhszsSwS9hX3AA+4+eckVi8wj32No\nvcQeQ15+/+dzY1OXXZNItVrp/RjiwE3Ap919n5k9CvwB8NBCJ5nZnsXaiBSamEqTqIuSuIQF9Ao1\nN9ZRF49yblQb9khN6TOz0mMPu/ue+RqHCYYBYGvB497csdI2Wy7S5ri778t9/DTw+4u9YK7YPYXH\nzGw70BeiXlmDJqZmL+sehrxIJEJnaz1D56fIZMLt/iZSBXa4+5GwjcNcrvoKsNPMtplZArgL2FvS\nZi/w6wBmdgtw3t0H3X0QOG5mH8i1+zngQNjiRMJITqdJpTOXPPFcqqutgUw2y+jEzLI8n0i1WTQY\n3H0WuB94DngLeMrdD5rZfWb2W7k2zxB0VQ4DjwO/XfAU/xz4ipntJ5hn+FfL/DXIGnd2JBj2uZyb\n2wp1tjYEzzuqeQZZm0LNMbj7s4CVHHu85PH9Fzn3NeAjl1qgyGKGc7/Al2MoCaAzNwF9dnSK7vbG\nZXlOkWqiO5+l6p0dXd4ew7p29RhkbVMwSNUbzg8lLVOPobUpQV08yvCIgkHWJgWDVL3hfI9hmSaf\nI5EIXW0NnB+bYlZXJskapGCQqpcf8lmuoSQIhpMyWRid0DafsvYoGKTqDY9O05CIEo8t39u5qy2Y\nZzg3pktWZe1RMEhVy2azDI9M09ywvDfxr8tdjXRuXMEga4+CQara6MQMqXSGpmUPBvUYZO1SMEhV\n6z8dbMPZ1rS8wdBYH6epIc65Mc0xyNqjYJCq1ndiBLiwKupy6mprYGIqTXI6vezPLVLJFAxS1d4b\nyAVD6/Lcw1AoP5w0cHpi2Z9bpJIpGKSq9Z0YoS4Wob15+S5VzctPQB9XMMgao2CQqpWezXD01Bi9\n3S1Eo8u/J3P+ktX+MwoGWVsUDFK1Bk6Pk0pn2NbdsiLP39XWQAToOzG2Is8vUqkUDFK13stNPG/b\ntDLBUBePsq69nvdOjJGc0tVJsnYoGKRq5SeeV6rHANCzvpHZTJY3Dg+t2GuIVBoFg1St/KWqW7qb\nV+w1Nq8PJqBffefMir2GSKVRMEhVymazvDcwyhXrmmmsX96b2wptaK+nIRHjVT+9Yq8hUmkUDFKV\nhkemGEvOsKOnbUVfJxqNsGtHByeGJjg1rKuTZG1QMEhVyWazjIyM8OahEwBs7qpnZGSELCu3b8L1\nV3YBsF/DSbJGhOqDm9ltwKMEQfKEuz8yT5vPA7cDE8C97r6/4HNRYB/Q7+53LkfhsjaNjo6y9zsH\neLs/2Jzn/Ngk3/zBaZpb2mlZoTnoD17VCcCr75zmto9uX5kXEakgi/YYcr/UHwNuBXYBd5vZNSVt\nbgeucvergfuAL5Q8zQPAgWWpWNa8pqZmTpydJhqNcOWWDTQ2Na3o63V3NtLd1cRr75xhJjW7oq8l\nUgnCDCXdDBxy96PungKeAnaXtNkNPAng7i8B7WbWDWBmvcAdwF8uW9Wypk1MpRk6P0XPhmbq4rEV\nf71IJMInbtjMxFSavd9/b8VfT6TcwgRDD3C84HF/7thCbQYK2vwZ8HuwgoPAsqYMnJkEYNumlZ14\nhgtzGr/4U920NMb52vPOsYEzZLN6O0vtWrnr/AAz+yVg0N33m9mngFAL2pjZHuChFSxNqlj/UBKA\nbVesfDAkk+N868dn6epax67t7bx0cJh/89Wf8C9/6xba29tX/PVFlkmfmZUee9jd98zXOEwwDABb\nCx735o6VttkyT5t/AtxpZncAjUCrmT3p7r++0Avmii0q2My2A30h6pUalp7NcGJokvaWBB0ty78H\nw3waG5tpbmnjpmtbeWdgnL5TU+w/NMwnf6o4GLLZLKOjo+87v62tjUhk+Rf5E1mCHe5+JGzjMMHw\nCrDTzLYBJ4G7gLtL2uwFPg18zcxuAc67+yDwYO4/zOyTwO8uFgoiC/FjI6Rns6syjFQqGo3wDz/U\nwze+/x7/+j+9wTv9E/zTXzBam+pIz2Z53fv5xvcPE48niERg68YmyExz56euU+9CqsqiweDus2Z2\nP/AcFy5XPWhm9wFZd/+iuz9jZneY2WGCy1V/Y2XLlrVq/6FhYHXmF+bTu7GVO265glfePsve77/H\n3u+/R0MiRiaTZSadKWp7/Mw0v/DhDWWpU+RyhJpjcPdnASs59njJ4/sXeY7vAt9daoEiebOzGV46\ncIZ4LELPhpVbH2kxjfEUH74ywYmRRoZHZxifDLb+vKIhQ3dXMx0dHbz57hADZ8Y5ObxyC/yJrJQV\nnXwWWU4vvXWKs6PTXLO1lVisvDftt7a08PEdG4uOnR4cIBqtY/2GDtqaEzz97UPsP3ye/1VXMEmV\n0ZIYUjX++w+Daw+u2VqeYaSl6O5qYvsVbQyem+KtvvPlLkdkSRQMUhWOnhrl9cND7NrRQUdLotzl\nhPKR67oB+K/fO1LeQkSWSMEgVSHfW/iFj5TeW1m5NnY20d3ZgB8bYTw5U+5yREJTMEjFG59M8T/3\nHWdDZyM3fmBductZku7O4F4LP3auzJWIhKdgkIr3zR/1MTUzyy99bAexaHW9ZTd0NADw9hEFg1QP\nXZUkFSl/F/FMepavf+9dGutjfGxX14rvvbDcNnQEPYa3j54tcyUi4SkYpCLl913oH84wMj7D9Tva\n+dHrAwydGVzRvReWW0MixhXrGnnn2DlmM1liUS2NIZWvuvrlsqY0NjZx4OgY0UiED1/XQ3NL24rv\nvbASdva2k5xKc3xwrNyliISiYJCK1X9mkvPj03xgWwctjXXlLueSXd0b3Hfx9hENJ0l1UDBIxXqn\nP/gL+4ad1b3e0FwwaJ5BqoSCQSrS+fFp+s8k2dDZyPqOxnKXc1l6NjTTWB/XlUlSNRQMUpF+8Pog\n2Sxcu62r3KVctmg0gm3rZODMOGO60U2qgIJBKk42m+V7+08RjUa4emtHuctZFtfkAs6PqtcglU/B\nIBXHj53jxFCSbRubaEjUxhXV+YA73K8F9aTyKRik4rzw8jEAru5tLXMly2dnby4YjisYpPIpGKSi\npGcz/Oj1E3S2Jti0rqHc5Vy2bDbLyMgIsew0na0J/OhZRkZGgju4tU+DVKja6KdLzdj/zhnGkilu\n/ekeopHqv0s4mRznWz8+S1fXOlob4xw7nWTv997VXtBS0UIFg5ndBjzKhT2fH5mnzeeB2wn2fL7X\n3febWS/wJNANZIC/cPfPL1fxUnu+v38AgJ++biPHTtbGsEtjYzPNLW1csWGSY6eTjM/E2NhWvq1J\nRRaz6FCSmUWBx4BbgV3A3WZ2TUmb24Gr3P1q4D7gC7lPpYHfcfddwEeBT5eeK5IfbhkaPseLb5xg\nXVs9G1qzVbVYXhgbO4P7MU6fTZa5EpGFhZljuBk45O5H3T0FPAXsLmmzm6BngLu/BLSbWbe7n3L3\n/bnj48BBoHp2WpFVkV8w7z8+6ySnZ9nUVc+3fvgOU5PT5S5tWW3sDNZ5On1ussyViCwsTDD0AMcL\nHvfz/l/upW0GStuY2XbgQ8BLS65Sal5TUzPHh4IguPbK7qpcLG8xDfVx2poTnD6X1MSzVLRVuSrJ\nzFqAp4EHcj0HkSLp2Qx9J0ZpbUrMDbnUoo2djUzNzDI+mS53KSIXFWbyeQDYWvC4N3estM2W+dqY\nWZwgFL7s7l8PU5SZ7QEeCtNWasPx00lS6QwfvKqDSA1cjXQxGzqbONw/wvColsaQVdVnZqXHHnb3\nPfM1DhMMrwA7zWwbcBK4C7i7pM1e4NPA18zsFuC8uw/mPvdXwAF3/1y4+iFXbFHBuaGovrDPIdXl\n3RNBR9K2dZa5kpWVn2c4c36qzJXIGrPD3Y+EbbzoUJK7zwL3A88BbwFPuftBM7vPzH4r1+YZgkQ6\nDDwO/N8AZvZx4B7gZ83sVTP7Se7SV5E5Y8kZBoYmWd/RSFdb9d/UtpBN65qIRSMMDGkCWipXqPsY\n3P1ZwEqOPV7y+P55zvshELucAqX2vfjWGbJZsK213VsAiMei9G5s4eipMYZGpnSDm1QkLYkhZfej\nNwaJAFdvqY2VVBezbVOwcc9rh7Vxj1QmBYOU1YmhcQ71j3LFukaaq3j7zqXYuilYHPC1Q8NlrkRk\nfgoGKatv/ugIAFf1tJS3kFXU3lJPe3Mdb/WdI5WeLXc5Iu+jYJCySU6leP6lo7S3JNi+aW2tHdSz\nvpHpVIY331WvQSqPgkHK5tv7jjMxlebnf2ozsWjt3rswn94NwWWr+94eXKSlyOpTMEhZZDJZ9n7/\nPeriUX72w5vLXc6q6+5qoL4uyo/fOEl6NlPuckSKKBikLPa9PcjJoQk+dVMv7c2Jcpez6mLRCJ+8\n8QrOnJvk+dyOdSKVQsEgqy6TyfLUcw7Ar/zMlWWupnzu/MRW6hMxnnrOmU5pEloqh4JBVk1+34Vv\n/vAdDh0/zy27NtLVTLDNZY3tvRBGR0s9v/KJKzk7OsUzP9RqL1I5FAyyakZHR/kv/+MtnvzmIWLR\nCL3rE7zw8lG++QOvub0XFpMPyZ//8Eaa6mP8zQvOsYEzWo5bKoKCQVbVu6dSJKdn+dAHNtC9YR3N\nLW01uffCYoK9oN/lxTdOcN32dsYn0zz4+EsMnNLlq1J+CgZZNUdPjfFG3whNDXFuumZjucspu/xe\n0Ddf38sHr1rHyMQsf/LV1xmfTJW7NFnjFAyyKpJTKf7t0wfIZLL8ow9vIRHX2op5kUiEn/lQDzt7\nWug7McYDf/odDvSp5yDlo2CQFZfNZvnzv32NU2cnuX5HO9uvaCt3SRUnEonwsevXs/sTWzlzLskf\n/vkP+A9/9xaT09rpTVZfqGW3RS7ViaFx/vxvX+P1w0Nc3dvGTVfX/tLalyoC/OKH1/HBq7r49//t\nIP/5fx7mf7xyjP/lU9u59aM7aWxYG4sMSvkpGOSyZLNZjg6c4a2+cxw8ep6zo9OMJ1PMpIK7eU+f\nnyKVznDj1ev4tU9ewdv92vL7YoIJ6bN0da3jto9s4s2+Ed7sG+GJv3uH//itw3z0g5v58LXd3HD1\nejpba3tdWXoFAAALh0lEQVRDIykvBYMs2eR0mrfeG+bVd07zk4On6D+TLPp8LBohFs0CERoTMT5+\n/Xq2dTfxw1ffo7mlnZa1s5DqkuUnpAE+cWMHN9gM+98+wYnhSb7zk36+85N+AHo3NHPdjg6u3dbB\nlu5mNnY2Es3tld3W1lbT+2bLylMwSCizmSwvvnmCb3zvMG8fHWE2E1xvXxePsHl9A9uv6KS3u5WO\nlnrq4lFODw4QjdaxfsOFq4+SSfUWlqq1KYH11LFtXQbi6zkxPMnJ4SlODE3Qf2aC514eACAei9DR\nUkdrQ5Sbr9/Mts1d9GxoYUt3K3VxTSXK0igYZEHJqRQvvHyMvd9/j8GzQc9gXVuCzesa2by+kWh6\nhLa2jqIAkOXX1NTC+g0b2NoTPD55sp9z41mmZusZHp1keGSKs6PTDI1k6Rt8D3gPCHpvWze18NFd\nG7njEztpb9EQlCwuVDCY2W3AowRXMT3h7o/M0+bzwO3ABHCvu+8Pe65Ujmw2y+mzSfYd6OfAkfO8\ncvAMk9Oz1MWjfPz6dazvqKd304a59qcHddVMOcSiETZ2JIoCeTaTpe/IMc6NTUOskfMTKc6OznD0\n5Bh9J8b4m2+/x8c+uJlfvGUbH7xqPdE1ttS5hLdoMJhZFHgM+DngBPCKmX3d3d8uaHM7cJW7X21m\nPw18AbglzLlSXuPJGV7zE7w7MDr338jEhRusGutj3Hh1J7allfGRIRpia28l1GoRi0Zoa47T0dpY\nFBiT02lef+cEx08n+d7+Ab63f4Cmhjgb2hvobEtQF49SF4vS0VrPho4G1rc3sKN3HRu7mmms16DC\nWhTmX/1m4JC7HwUws6eA3UDhL/fdwJMA7v6SmbWbWTewI8S5QvCX+mwmSywaWZaJw6mZNKMTM4xO\nzDA2McPIxDRnhkcZS6YYn0wxOpHi+OkJTg4li5ava2qIsakjxqZ1TXxgxxWsa2+Ym9ScTSXnfzGp\naI31cXZsjHFFW4J0tIt3jo8xNDJN/5lxji6yT1BLY5x17Q3EYxGyWcgSvFez2aCHkpnNMpvNkslk\nSdRFaWmso6MlwbbNnfRsaKFnQzM9G1poadIfFNUkTDD0AMcLHvcThMVibXpCnntZRidmSKVngzdp\nJvjlmk5nmEnPMpPKkErPkp7NEo9FqIvHSNRFqYvHiEQglc7MtU2lM8ykgsdZstTXxahPxKivi5Oo\ni4budseiEaLRCLFotODjCJlsllQ6w9TMLOdGpxgemeTIiXMMnk1y6uwkp4YnmZoJll6ui0dpbojT\n0lQXnJv7ujK5H8BsNli6OpMLk+DjgmOz2bnJ4YXEYxG6WqJs6GxkR+8GuruaaG6suzBx3NF4Wf82\nUlmCeYqNXLkl6E0Mnuonk43T0bWe9GyGickUY8kZTg4OMTqRIpWNMz6ZZuDMBJnc+yn/cxDJfZzN\nZohGIsRiUUYnsgzkrlB76cCZotdubapjU1cjXW31NCRi1MWjF8IlFzSRSPDzE49Fcle2RYnHIsRj\nF37+mpoaaKyvo7E+RkMiTkN9nLpYFCJBTfk/qqKRCJEIwc9KNjv3s5HNZud+PoO6L/yMFv4/WvLH\nWTYbBGK+1kwmCxGK2seiUaJRiEWjtLckqvrKsJXqJ67EdyQGcOrUqbkDz798jK897yvwUqsrEoXm\n+hht8SipdIrMDIxPRzk3nFuMOpslEsm/2YM3PADZ4F6BeDyW+6EAZmepi0BrfR11sQiJugh1sSiZ\n1CRNTQ10treSSMRIxKM0JKKcPzdMNDpFIg3nTsM54OzZIaLRGFPJ0aI65ztebW0rubZyfc2zMxeu\nFmsEOmLDdHXE6OjoBBJAYq5tcOz9z5s/nslmOTV4htGJFNlYAxNTsySnMoyPzXJwKLNmFlf/xA2b\nufeXd5W7jMLfl0tagyZMMAwAWwse9+aOlbbZMk+bRIhz38fM9gAPzfe5e+65Z9GCRUTKqe/b8OU/\nK3cVRQ6bWemxh919z3yNwwTDK8BOM9sGnATuAu4uabMX+DTwNTO7BTjv7oNmNhTi3PfJFVtUsJnV\nA1PATqCStrvqI5hLqSSqKZxKrAkqsy7VFE6l1RQDDgMN7h5605NImI1Bcpecfo4Ll5z+sZndB2Td\n/Yu5No8BtxFcrvob7v6Ti527pC+ruI6su1fUwJ1qCkc1hVeJdammcGqlplBzDO7+LGAlxx4veXx/\n2HNFRKRy6V55EREpomAQEZEi1RYMD5e7gHmopnBUU3iVWJdqCqcmago1+SwiImtHtfUYRERkhSkY\nRESkiIJBRESKKBhERKSIgkFERIpUzS4cZva7wGeB9e5+NnfsD4HfBNLAA+7+3CrV8i8J9pXIAIME\nO9adKmdNudf+E+BXgGngXYKlSUbLWZeZ/ROCda+uBT6SXyqlnDXlXrvsOwua2RPALwOD7v4Pcsc6\nga8B24AjwK+5+8gq1tRLsLdKN8H7+y/c/fPlrCu3Ttr3CBbljANPu/vD5f5e5WqLAvuAfne/s0Jq\nOgKMEPz7pdz95qXWVRU9htyb9ReAowXHrgV+jeAXzu3AvzOz1Vqj5E/c/QZ3vxH47+RWgjWz68pY\nE8BzwC53/xBwCPjDCqjrDeAfA98tPFjOf7+CnQVvBXYBd5vZNavx2iW+lKuh0B8AL7i7Ad8m92+4\nitLA77j7LuCjwKdz35uy1ZVb/O0f5X7ePgTcbmY3l7OmAg8ABwoeV0JNGeBT7n6ju+f3v1lSXVUR\nDMCfAb9Xcmw38JS7p939CMEvwmXdBOhi3H284GEzwT8EwJ3lqilX1wvunq/lRYJlzstalwcO8f49\nOsr270fBroTungLyOwuuKnf/AcEWGIV2A3+d+/ivgV9d5ZpO5fdrz73PDxK8j8pdV377wHqCXkO2\n3DXl/mC9A/jLgsNlrSknwvt/ty+prooPBjO7Ezju7m+UfKp0d7iB3LHVquv/M7NjwD8D/t9KqKnE\nbwLP5D6upLryylnTxXYcrAQb3X0Qgl/SwMZF2q8YM9tO8Bf6i0B3Oesys6iZvQqcAp5391fKXRMX\n/mAtvEu43DWRq+d5M3vFzP7PS6mrIuYYzOx5gjHNvAjBF/dHwIMEw0iVUtO/cPdvuPsfAX9kZr8P\nfIaS/SPKVVeuzb8gGFv8T5VSk1yysixNYGYtwNMEcz/jZlZax6rWlesJ32hmbcB/NbNd89SwajWZ\n2S8RzA3tN7NPLdC0HP9+H3f3k2a2AXjOzHyeOhasqyKCwd3n/cVvZtcD24HXcuPPvcBPcuOLYXaW\nW/aa5vFVgnmGPVx8J7tls1hdZnYvQff2ZwsOr2hdS/heFVrx79Uir71i753LNGhm3bmNrjYBp1e7\nADOLE4TCl93965VSF4C7j5rZdwj2filnTR8H7jSzOwh2RG01sy8Dp8r9fXL3k7n/nzGz/0YwdLqk\n71VFDyW5+5vuvsndr3T3HQRd/hvd/TTBrnH/1MwSZraDYGe3l1ejLjPbWfDwV4G3cx/vBe4qR025\num4j6NreWbJbU1nrKlA4z1DOmuZ2JTSzBMHOgntX6bVLRXj/9+Xe3Mf/O/D10hNWwV8BB9z9cwXH\nylaXma03s/bcx40EIwgHy1mTuz/o7lvd/UqC98+33f1/A75RrpoAzKwp19vDzJqBXyS4AGRJ36uK\n6DEsQZbcD5G7HzCzvyG4IiAF/La7r1a37Y/N7AMEk85Hgf+rAmoC+LcEl/Q9n9vf9UV3/+1y1mVm\nv5qraz3wd2a2391vL2dN7j5rZvcTXMWVv1z14Gq8diEz+yrwKWBdbr7qIeCPgb81s98keG/92irX\n9HHgHuCN3Jh+lmA49xHgb8pU1xXAX+euJosCX3P3Z8zsxTLWdDF/THlr6iYYassS/H7/irs/Z2b7\nllKXVlcVEZEiFT2UJCIiq0/BICIiRRQMIiJSRMEgIiJFFAwiIlJEwSAiIkUUDCIiUkTBICIiRf5/\nE/Hlh8rb7nUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "sns.distplot(kallisto_diff)" ] @@ -1918,7 +5105,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 89, "metadata": { "collapsed": false, "deletable": false, @@ -1930,7 +5117,30 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(218,)\n" + ] + }, + { + "data": { + "text/plain": [ + "0 ENSMUSG00000000827.18\n", + "1 ENSMUSG00000001418.13\n", + "2 ENSMUSG00000002699.12\n", + "3 ENSMUSG00000002885.14\n", + "4 ENSMUSG00000002996.17\n", + "dtype: object" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "kallisto_s10_specific = kallisto_diff > (kallisto_diff.mean() + 2*kallisto_diff.std())\n", "kallisto_s10_specific_genes = pd.Series(kallisto_s10_specific.index[kallisto_s10_specific])\n", @@ -1960,7 +5170,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 95, "metadata": { "collapsed": false, "deletable": false, @@ -1972,17 +5182,41 @@ "solution": true } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(162,)\n" + ] + }, + { + "data": { + "text/plain": [ + "0 ENSMUSG00000000386.14\n", + "1 ENSMUSG00000000399.10\n", + "2 ENSMUSG00000000581.8\n", + "3 ENSMUSG00000000753.15\n", + "4 ENSMUSG00000001127.12\n", + "dtype: object" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# YOUR CODE HERE\n", - "\n", + "kallisto_s13_specific = kallisto_diff < (kallisto_diff.mean() - 2*kallisto_diff.std())\n", + "kallisto_s13_specific_genes = pd.Series(kallisto_s13_specific.index[kallisto_s13_specific])\n", "print(kallisto_s13_specific_genes.shape)\n", "kallisto_s13_specific_genes.head()\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 96, "metadata": { "collapsed": true, "deletable": false, @@ -2022,7 +5256,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 97, "metadata": { "collapsed": false, "deletable": false, @@ -2034,7 +5268,23 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0 ENSMUSG00000000386\n", + "1 ENSMUSG00000000399\n", + "2 ENSMUSG00000000581\n", + "3 ENSMUSG00000000753\n", + "4 ENSMUSG00000001127\n", + "dtype: object" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "kallisto_s10_specific_genes_ensembl = kallisto_s10_specific_genes.map(lambda x: x.split('.')[0])\n", "kallisto_s13_specific_genes_ensembl = kallisto_s13_specific_genes.map(lambda x: x.split('.')[0])\n", @@ -2059,7 +5309,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 98, "metadata": { "collapsed": true, "deletable": false, @@ -2095,7 +5345,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 99, "metadata": { "collapsed": false, "deletable": false, @@ -2107,7 +5357,37 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==> kallisto_s10_specific_genes.csv <==\r\n", + "ENSMUSG00000000827\r\n", + "ENSMUSG00000001418\r\n", + "ENSMUSG00000002699\r\n", + "ENSMUSG00000002885\r\n", + "ENSMUSG00000002996\r\n", + "ENSMUSG00000003662\r\n", + "ENSMUSG00000003721\r\n", + "ENSMUSG00000004266\r\n", + "ENSMUSG00000004609\r\n", + "ENSMUSG00000004610\r\n", + "\r\n", + "==> kallisto_s13_specific_genes.csv <==\r\n", + "ENSMUSG00000000386\r\n", + "ENSMUSG00000000399\r\n", + "ENSMUSG00000000581\r\n", + "ENSMUSG00000000753\r\n", + "ENSMUSG00000001127\r\n", + "ENSMUSG00000001289\r\n", + "ENSMUSG00000001794\r\n", + "ENSMUSG00000002845\r\n", + "ENSMUSG00000004296\r\n", + "ENSMUSG00000004530\r\n" + ] + } + ], "source": [ "! head kallisto*specific_genes.csv" ] @@ -2136,9 +5416,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 101, "metadata": { - "collapsed": true, + "collapsed": false, "deletable": false, "nbgrader": { "checksum": "2bbd7ae0192d0c5b4e83790b66e4a732", @@ -2151,7 +5431,10 @@ }, "outputs": [], "source": [ - "# YOUR CODE HERE" + "# YOUR CODE HERE\n", + "#negative regulation of cellular metabolic processes\n", + "#regulation of macromolecule metabolic processes\n", + "#regulation of metabolic processes" ] }, { @@ -2179,7 +5462,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 107, "metadata": { "collapsed": false, "deletable": false, @@ -2191,16 +5474,163 @@ "solution": true } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(46983, 9)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ChrStartEndStrandLength/home/ucsd-train12/projects/shalek2013/processed_data/S13.Aligned.out.sorted.bamnew_columnfpkmtpm
Geneid
ENSMUSG00000102693.1chr130732533074322+107000NaNNaN
ENSMUSG00000064842.1chr131020163102125+11000NaNNaN
ENSMUSG00000051951.5chr1;chr1;chr13214482;3421702;36705523216968;3421901;3671498-;-;-363400NaNNaN
ENSMUSG00000102851.1chr132527573253236+48000NaNNaN
ENSMUSG00000103377.1chr133657313368549-281900NaNNaN
\n", + "
" + ], + "text/plain": [ + " Chr Start \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 chr1 3073253 \n", + "ENSMUSG00000064842.1 chr1 3102016 \n", + "ENSMUSG00000051951.5 chr1;chr1;chr1 3214482;3421702;3670552 \n", + "ENSMUSG00000102851.1 chr1 3252757 \n", + "ENSMUSG00000103377.1 chr1 3365731 \n", + "\n", + " End Strand Length \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 3074322 + 1070 \n", + "ENSMUSG00000064842.1 3102125 + 110 \n", + "ENSMUSG00000051951.5 3216968;3421901;3671498 -;-;- 3634 \n", + "ENSMUSG00000102851.1 3253236 + 480 \n", + "ENSMUSG00000103377.1 3368549 - 2819 \n", + "\n", + " /home/ucsd-train12/projects/shalek2013/processed_data/S13.Aligned.out.sorted.bam \\\n", + "Geneid \n", + "ENSMUSG00000102693.1 0 \n", + "ENSMUSG00000064842.1 0 \n", + "ENSMUSG00000051951.5 0 \n", + "ENSMUSG00000102851.1 0 \n", + "ENSMUSG00000103377.1 0 \n", + "\n", + " new_column fpkm tpm \n", + "Geneid \n", + "ENSMUSG00000102693.1 0 NaN NaN \n", + "ENSMUSG00000064842.1 0 NaN NaN \n", + "ENSMUSG00000051951.5 0 NaN NaN \n", + "ENSMUSG00000102851.1 0 NaN NaN \n", + "ENSMUSG00000103377.1 0 NaN NaN " + ] + }, + "execution_count": 107, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# YOUR CODE HERE\n", + "s13_featurecounts = pd.read_table('s13_featureCounts.txt', skiprows=1, index_col=0)\n", + "reads = s13_featurecounts['/home/ucsd-train12/projects/shalek2013/processed_data/S13.Aligned.out.sorted.bam']\n", + "s13_featurecounts['new_column'] = (s13_featurecounts['Length'].sum() * reads)/2e3\n", + "s13_featurecounts['fpkm'] = (reads * 1e9)/(reads.sum() * s13_featurecounts.Length)\n", + "s13_featurecounts['tpm'] = (s13_featurecounts.fpkm * 1e6)/s13_featurecounts['fpkm'].sum()\n", "print(s13_featurecounts.shape)\n", "s13_featurecounts.head()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 108, "metadata": { "collapsed": false, "deletable": false, @@ -2213,7 +5643,19 @@ "solution": false } }, - "outputs": [], + "outputs": [ + { + "ename": "AssertionError", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32massert\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms13_featurecounts\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mintersection\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'fpkm'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'tpm'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'log2_tpm'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m3\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;32massert\u001b[0m \u001b[0ms13_featurecounts\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'ENSMUSG00000064370.1'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'log2_tpm'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;36m13.15202328657807\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mAssertionError\u001b[0m: " + ] + } + ], "source": [ "assert len(s13_featurecounts.columns.intersection(['fpkm', 'tpm', 'log2_tpm'])) == 3\n", "assert s13_featurecounts.loc['ENSMUSG00000064370.1', 'log2_tpm'] == 13.15202328657807" @@ -2274,7 +5716,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 109, "metadata": { "collapsed": false, "deletable": false, @@ -2284,11 +5726,34 @@ "grade_id": "ex14_answer", "locked": false, "solution": true - } + }, + "scrolled": true }, - "outputs": [], + "outputs": [ + { + "ename": "KeyError", + "evalue": "'log2_tpm'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# YOUR CODE HERE\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mfeaturecounts_diff\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0ms10_featurecounts\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'log2_tpm'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m-\u001b[0m \u001b[0ms13_featurecounts\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'log2_tpm'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfeaturecounts_diff\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mfeaturecounts_diff\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhead\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 1967\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1968\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1969\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1970\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1971\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 1974\u001b[0m \u001b[1;31m# get column\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1975\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1976\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1977\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1978\u001b[0m \u001b[1;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[1;34m(self, item)\u001b[0m\n\u001b[0;32m 1089\u001b[0m \u001b[0mres\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1090\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1091\u001b[1;33m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1092\u001b[0m \u001b[0mres\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1093\u001b[0m \u001b[0mcache\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mres\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/pandas/core/internals.py\u001b[0m in \u001b[0;36mget\u001b[1;34m(self, item, fastpath)\u001b[0m\n\u001b[0;32m 3209\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3210\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0misnull\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3211\u001b[1;33m \u001b[0mloc\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3212\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3213\u001b[0m \u001b[0mindexer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0misnull\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m/home/ucsd-train12/anaconda3/lib/python3.5/site-packages/pandas/core/index.py\u001b[0m in \u001b[0;36mget_loc\u001b[1;34m(self, key, method, tolerance)\u001b[0m\n\u001b[0;32m 1757\u001b[0m 'backfill or nearest lookups')\n\u001b[0;32m 1758\u001b[0m \u001b[0mkey\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_values_from_object\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1759\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1760\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1761\u001b[0m indexer = self.get_indexer([key], method=method,\n", + "\u001b[1;32mpandas/index.pyx\u001b[0m in \u001b[0;36mpandas.index.IndexEngine.get_loc (pandas/index.c:3979)\u001b[1;34m()\u001b[0m\n", + "\u001b[1;32mpandas/index.pyx\u001b[0m in \u001b[0;36mpandas.index.IndexEngine.get_loc (pandas/index.c:3843)\u001b[1;34m()\u001b[0m\n", + "\u001b[1;32mpandas/hashtable.pyx\u001b[0m in \u001b[0;36mpandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:12265)\u001b[1;34m()\u001b[0m\n", + "\u001b[1;32mpandas/hashtable.pyx\u001b[0m in \u001b[0;36mpandas.hashtable.PyObjectHashTable.get_item (pandas/hashtable.c:12216)\u001b[1;34m()\u001b[0m\n", + "\u001b[1;31mKeyError\u001b[0m: 'log2_tpm'" + ] + } + ], "source": [ "# YOUR CODE HERE\n", + "featurecounts_diff = s10_featurecounts['log2_tpm'] - s13_featurecounts['log2_tpm']\n", "print(featurecounts_diff.shape)\n", "featurecounts_diff.head()" ] @@ -2428,6 +5893,10 @@ "outputs": [], "source": [ "# YOUR CODE HERE\n", + "kallisto_s10_specific = featurecounts_diff_nonzero < (kallisto_diff_nonzero.mean() - 2*kallisto_diff_nonzero.std())\n", + "kallisto_s10_specific_genes = pd.Series(kallisto_s10_specific.index[kallisto_s10_specific])\n", + "kallisto_s13_specific = featurecounts_diff_nonzero < (kallisto_diff_nonzero.mean() - 2*kallisto_diff_nonzero.std())\n", + "kallisto_s13_specific_genes = pd.Series(kallisto_s13_specific.index[kallisto_s13_specific])\n", "print('featurecounts_s10_specific_genes.shape', featurecounts_s10_specific_genes.shape)\n", "print('featurecounts_s13_specific_genes.shape', featurecounts_s13_specific_genes.shape)\n", "\n", @@ -2511,6 +5980,8 @@ "outputs": [], "source": [ "# YOUR CODE HERE\n", + "featurecounts_s10_specific_genes_ensembl = featurecounts_s10_specific_genes.index.map(lambda x: x.split('|')[1])\n", + "featurecounts_s13_specific_genes_ensembl = featurecounts_s13_specific_genes.index.map(lambda x: x.split('|')[1])\n", "featurecounts_s13_specific_genes_ensembl.head()" ] }, @@ -2619,4 +6090,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +}