forked from notaz/gpsp
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmemory.c
3293 lines (2800 loc) · 122 KB
/
memory.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* gameplaySP
*
* Copyright (C) 2006 Exophase <[email protected]>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define IN_MEMORY_C
#include "common.h"
static uint8_t IsNintendoBIOS = 0;
// This table is configured for sequential access on system defaults
u32 waitstate_cycles_sequential[16][3] =
{
{ 1, 1, 1 }, // BIOS
{ 1, 1, 1 }, // Invalid
{ 3, 3, 6 }, // EWRAM (default settings)
{ 1, 1, 1 }, // IWRAM
{ 1, 1, 1 }, // IO Registers
{ 1, 1, 2 }, // Palette RAM
{ 1, 1, 2 }, // VRAM
{ 1, 1, 2 }, // OAM
{ 3, 3, 6 }, // Gamepak (wait 0)
{ 3, 3, 6 }, // Gamepak (wait 0)
{ 5, 5, 9 }, // Gamepak (wait 1)
{ 5, 5, 9 }, // Gamepak (wait 1)
{ 9, 9, 17 }, // Gamepak (wait 2)
{ 9, 9, 17 }, // Gamepak (wait 2)
};
// Different settings for gamepak ws0-2 sequential (2nd) access
u32 gamepak_waitstate_sequential[2][3][3] =
{
{
{ 3, 3, 6 },
{ 5, 5, 9 },
{ 9, 9, 17 }
},
{
{ 2, 2, 3 },
{ 2, 2, 3 },
{ 2, 2, 3 }
}
};
FULLY_UNINITIALIZED(uint16_t palette_ram[0x200]);
FULLY_UNINITIALIZED(uint16_t oam_ram[0x200]);
FULLY_UNINITIALIZED(uint16_t palette_ram_converted[0x200]);
FULLY_UNINITIALIZED(uint16_t io_registers[1024 * 16]);
FULLY_UNINITIALIZED(uint8_t ewram[1024 * 256 * 2]);
FULLY_UNINITIALIZED(uint8_t iwram[1024 * 32 * 2]);
FULLY_UNINITIALIZED(uint8_t vram[1024 * 96 * 2]);
FULLY_UNINITIALIZED(uint8_t bios_rom[1024 * 32]);
uint32_t bios_read_protect;
// Up to 128kb, store SRAM, flash ROM, or EEPROM here.
uint8_t gamepak_backup[0x20000];
// Keeps us knowing how much we have left.
uint8_t *gamepak_rom;
uint32_t gamepak_size;
dma_transfer_type dma[4];
uint8_t *memory_regions[16];
uint32_t memory_limits[16];
typedef struct
{
uint32_t page_timestamp;
uint32_t physical_index;
} gamepak_swap_entry_type;
uint32_t gamepak_ram_buffer_size;
uint32_t gamepak_ram_pages;
// Enough to map the gamepak RAM space.
gamepak_swap_entry_type *gamepak_memory_map;
// This is global so that it can be kept open for large ROMs to swap
// pages from, so there's no slowdown with opening and closing the file
// a lot.
#ifdef PSP_BUILD
file_tag_type gamepak_file_large = -1;
#else
file_tag_type gamepak_file_large = NULL;
#endif
u32 direct_map_vram = 0;
// Writes to these respective locations should trigger an update
// so the related subsystem may react to it.
// If OAM is written to:
u32 oam_update = 1;
// If GBC audio is written to:
u32 gbc_sound_update = 0;
// If the GBC audio waveform is modified:
u32 gbc_sound_wave_update = 0;
// If the backup space is written (only update once this hits 0)
u32 backup_update = 0;
// Write out backup file this many cycles after the most recent
// backup write.
const u32 write_backup_delay = 10;
typedef enum
{
BACKUP_SRAM,
BACKUP_FLASH,
BACKUP_EEPROM,
BACKUP_NONE
} backup_type_type;
typedef enum
{
SRAM_SIZE_32KB,
SRAM_SIZE_64KB
} sram_size_type;
// Keep it 32KB until the upper 64KB is accessed, then make it 64KB.
backup_type_type backup_type = BACKUP_NONE;
sram_size_type sram_size = SRAM_SIZE_32KB;
typedef enum
{
FLASH_BASE_MODE,
FLASH_ERASE_MODE,
FLASH_ID_MODE,
FLASH_WRITE_MODE,
FLASH_BANKSWITCH_MODE
} flash_mode_type;
typedef enum
{
FLASH_SIZE_64KB,
FLASH_SIZE_128KB
} flash_size_type;
flash_mode_type flash_mode = FLASH_BASE_MODE;
u32 flash_command_position = 0;
u32 flash_bank_offset = 0;
flash_device_id_type flash_device_id = FLASH_DEVICE_MACRONIX_64KB;
flash_manufacturer_id_type flash_manufacturer_id =
FLASH_MANUFACTURER_MACRONIX;
flash_size_type flash_size = FLASH_SIZE_64KB;
u8 read_backup(u32 address)
{
u8 value = 0;
if(backup_type == BACKUP_NONE)
backup_type = BACKUP_SRAM;
if(backup_type == BACKUP_SRAM)
{
value = gamepak_backup[address];
}
else
if(flash_mode == FLASH_ID_MODE)
{
/* ID manufacturer type */
if(address == 0x0000)
value = flash_manufacturer_id;
else
/* ID device type */
if(address == 0x0001)
value = flash_device_id;
}
else
{
value = gamepak_backup[flash_bank_offset + address];
}
return value;
}
#define read_backup8() \
value = read_backup(address & 0xFFFF) \
#define read_backup16() \
value = 0 \
#define read_backup32() \
value = 0 \
// EEPROM is 512 bytes by default; it is autodetecte as 8KB if
// 14bit address DMAs are made (this is done in the DMA handler).
typedef enum
{
EEPROM_512_BYTE,
EEPROM_8_KBYTE
} eeprom_size_type;
typedef enum
{
EEPROM_BASE_MODE,
EEPROM_READ_MODE,
EEPROM_READ_HEADER_MODE,
EEPROM_ADDRESS_MODE,
EEPROM_WRITE_MODE,
EEPROM_WRITE_ADDRESS_MODE,
EEPROM_ADDRESS_FOOTER_MODE,
EEPROM_WRITE_FOOTER_MODE
} eeprom_mode_type;
eeprom_size_type eeprom_size = EEPROM_512_BYTE;
eeprom_mode_type eeprom_mode = EEPROM_BASE_MODE;
u32 eeprom_address_length;
u32 eeprom_address = 0;
s32 eeprom_counter = 0;
u8 eeprom_buffer[8];
void function_cc write_eeprom(u32 address, u32 value)
{
switch(eeprom_mode)
{
case EEPROM_BASE_MODE:
backup_type = BACKUP_EEPROM;
eeprom_buffer[0] |= (value & 0x01) << (1 - eeprom_counter);
eeprom_counter++;
if(eeprom_counter == 2)
{
if(eeprom_size == EEPROM_512_BYTE)
eeprom_address_length = 6;
else
eeprom_address_length = 14;
eeprom_counter = 0;
switch(eeprom_buffer[0] & 0x03)
{
case 0x02:
eeprom_mode = EEPROM_WRITE_ADDRESS_MODE;
break;
case 0x03:
eeprom_mode = EEPROM_ADDRESS_MODE;
break;
}
address16(eeprom_buffer, 0) = 0;
}
break;
case EEPROM_ADDRESS_MODE:
case EEPROM_WRITE_ADDRESS_MODE:
eeprom_buffer[eeprom_counter / 8]
|= (value & 0x01) << (7 - (eeprom_counter % 8));
eeprom_counter++;
if(eeprom_counter == eeprom_address_length)
{
if(eeprom_size == EEPROM_512_BYTE)
{
eeprom_address =
(address16(eeprom_buffer, 0) >> 2) * 8;
}
else
{
eeprom_address = (((u32)eeprom_buffer[1] >> 2) |
((u32)eeprom_buffer[0] << 6)) * 8;
}
address16(eeprom_buffer, 0) = 0;
eeprom_counter = 0;
if(eeprom_mode == EEPROM_ADDRESS_MODE)
{
eeprom_mode = EEPROM_ADDRESS_FOOTER_MODE;
}
else
{
eeprom_mode = EEPROM_WRITE_MODE;
memset(gamepak_backup + eeprom_address, 0, 8);
}
}
break;
case EEPROM_WRITE_MODE:
gamepak_backup[eeprom_address + (eeprom_counter / 8)] |=
(value & 0x01) << (7 - (eeprom_counter % 8));
eeprom_counter++;
if(eeprom_counter == 64)
{
backup_update = write_backup_delay;
eeprom_counter = 0;
eeprom_mode = EEPROM_WRITE_FOOTER_MODE;
}
break;
case EEPROM_ADDRESS_FOOTER_MODE:
case EEPROM_WRITE_FOOTER_MODE:
eeprom_counter = 0;
if(eeprom_mode == EEPROM_ADDRESS_FOOTER_MODE)
{
eeprom_mode = EEPROM_READ_HEADER_MODE;
}
else
{
eeprom_mode = EEPROM_BASE_MODE;
}
break;
default:
break;
}
}
#define read_memory_gamepak(type) \
u32 gamepak_index = address >> 15; \
u8 *map = memory_map_read[gamepak_index]; \
\
if(map == NULL) \
map = load_gamepak_page(gamepak_index & 0x3FF); \
\
value = address##type(map, address & 0x7FFF) \
#define read_open8() \
if(!(reg[REG_CPSR] & 0x20)) \
value = read_memory8(reg[REG_PC] + 4 + (address & 0x03)); \
else \
value = read_memory8(reg[REG_PC] + 2 + (address & 0x01)) \
#define read_open16() \
if(!(reg[REG_CPSR] & 0x20)) \
value = read_memory16(reg[REG_PC] + 4 + (address & 0x02)); \
else \
value = read_memory16(reg[REG_PC] + 2) \
#define read_open32() \
if(!(reg[REG_CPSR] & 0x20)) \
{ \
value = read_memory32(reg[REG_PC] + 4); \
} \
else \
{ \
u32 current_instruction = read_memory16(reg[REG_PC] + 2); \
value = current_instruction | (current_instruction << 16); \
} \
u32 function_cc read_eeprom()
{
u32 value;
switch(eeprom_mode)
{
case EEPROM_BASE_MODE:
value = 1;
break;
case EEPROM_READ_MODE:
value = (gamepak_backup[eeprom_address + (eeprom_counter / 8)] >>
(7 - (eeprom_counter % 8))) & 0x01;
eeprom_counter++;
if(eeprom_counter == 64)
{
eeprom_counter = 0;
eeprom_mode = EEPROM_BASE_MODE;
}
break;
case EEPROM_READ_HEADER_MODE:
value = 0;
eeprom_counter++;
if(eeprom_counter == 4)
{
eeprom_mode = EEPROM_READ_MODE;
eeprom_counter = 0;
}
break;
default:
value = 0;
break;
}
return value;
}
#define read_memory(type) \
switch(address >> 24) \
{ \
case 0x00: \
/* BIOS */ \
if(reg[REG_PC] >= 0x4000) \
value = address##type(&bios_read_protect, address & 0x03); \
else \
value = address##type(bios_rom, address & 0x3FFF); \
break; \
\
case 0x02: \
/* external work RAM */ \
address = (address & 0x7FFF) + ((address & 0x38000) * 2) + 0x8000; \
value = address##type(ewram, address); \
break; \
\
case 0x03: \
/* internal work RAM */ \
value = address##type(iwram, (address & 0x7FFF) + 0x8000); \
break; \
\
case 0x04: \
/* I/O registers */ \
value = address##type(io_registers, address & 0x3FF); \
break; \
\
case 0x05: \
/* palette RAM */ \
value = address##type(palette_ram, address & 0x3FF); \
break; \
\
case 0x06: \
/* VRAM */ \
address &= 0x1FFFF; \
if(address > 0x18000) \
address -= 0x8000; \
\
value = address##type(vram, address); \
break; \
\
case 0x07: \
/* OAM RAM */ \
value = address##type(oam_ram, address & 0x3FF); \
break; \
\
case 0x08: \
case 0x09: \
case 0x0A: \
case 0x0B: \
case 0x0C: \
/* gamepak ROM */ \
if((address & 0x1FFFFFF) >= gamepak_size) \
{ \
value = 0; \
} \
else \
{ \
read_memory_gamepak(type); \
} \
break; \
\
case 0x0D: \
if((address & 0x1FFFFFF) < gamepak_size) \
{ \
read_memory_gamepak(type); \
} \
else \
{ \
value = read_eeprom(); \
} \
\
break; \
\
case 0x0E: \
case 0x0F: \
read_backup##type(); \
break; \
\
default: \
read_open##type(); \
break; \
} \
#define trigger_dma(dma_number) \
if(value & 0x8000) \
{ \
if(dma[dma_number].start_type == DMA_INACTIVE) \
{ \
u32 start_type = (value >> 12) & 0x03; \
u32 dest_address = address32(io_registers, (dma_number * 12) + 0xB4) & \
0xFFFFFFF; \
\
dma[dma_number].dma_channel = dma_number; \
dma[dma_number].source_address = \
address32(io_registers, (dma_number * 12) + 0xB0) & 0xFFFFFFF; \
dma[dma_number].dest_address = dest_address; \
dma[dma_number].source_direction = (value >> 7) & 0x03; \
dma[dma_number].repeat_type = (value >> 9) & 0x01; \
dma[dma_number].start_type = start_type; \
dma[dma_number].irq = (value >> 14) & 0x01; \
\
/* If it is sound FIFO DMA make sure the settings are a certain way */ \
if((dma_number >= 1) && (dma_number <= 2) && \
(start_type == DMA_START_SPECIAL)) \
{ \
dma[dma_number].length_type = DMA_32BIT; \
dma[dma_number].length = 4; \
dma[dma_number].dest_direction = DMA_FIXED; \
if(dest_address == 0x40000A4) \
dma[dma_number].direct_sound_channel = DMA_DIRECT_SOUND_B; \
else \
dma[dma_number].direct_sound_channel = DMA_DIRECT_SOUND_A; \
} \
else \
{ \
u32 length = \
address16(io_registers, (dma_number * 12) + 0xB8); \
\
if((dma_number == 3) && ((dest_address >> 24) == 0x0D) && \
((length & 0x1F) == 17)) \
{ \
eeprom_size = EEPROM_8_KBYTE; \
} \
\
if(dma_number < 3) \
length &= 0x3FFF; \
\
if(length == 0) \
{ \
if(dma_number == 3) \
length = 0x10000; \
else \
length = 0x04000; \
} \
\
dma[dma_number].length = length; \
dma[dma_number].length_type = (value >> 10) & 0x01; \
dma[dma_number].dest_direction = (value >> 5) & 0x03; \
} \
\
address16(io_registers, (dma_number * 12) + 0xBA) = value; \
if(start_type == DMA_START_IMMEDIATELY) \
return dma_transfer(dma + dma_number); \
} \
} \
else \
{ \
dma[dma_number].start_type = DMA_INACTIVE; \
dma[dma_number].direct_sound_channel = DMA_NO_DIRECT_SOUND; \
address16(io_registers, (dma_number * 12) + 0xBA) = value; \
} \
#define access_register8_high(address) \
value = (value << 8) | (address8(io_registers, address)) \
#define access_register8_low(address) \
value = ((address8(io_registers, address + 1)) << 8) | value \
#define access_register16_high(address) \
value = (value << 16) | (address16(io_registers, address)) \
#define access_register16_low(address) \
value = ((address16(io_registers, address + 2)) << 16) | value \
cpu_alert_type function_cc write_io_register8(u32 address, u32 value)
{
switch(address)
{
case 0x00:
{
u32 dispcnt = io_registers[REG_DISPCNT];
if((value & 0x07) != (dispcnt & 0x07))
oam_update = 1;
address8(io_registers, 0x00) = value;
break;
}
// DISPSTAT (lower byte)
case 0x04:
address8(io_registers, 0x04) =
(address8(io_registers, 0x04) & 0x07) | (value & ~0x07);
break;
// VCOUNT
case 0x06:
case 0x07:
break;
// BG2 reference X
case 0x28:
access_register8_low(0x28);
access_register16_low(0x28);
affine_reference_x[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x28) = value;
break;
case 0x29:
access_register8_high(0x28);
access_register16_low(0x28);
affine_reference_x[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x28) = value;
break;
case 0x2A:
access_register8_low(0x2A);
access_register16_high(0x28);
affine_reference_x[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x28) = value;
break;
case 0x2B:
access_register8_high(0x2A);
access_register16_high(0x28);
affine_reference_x[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x28) = value;
break;
// BG2 reference Y
case 0x2C:
access_register8_low(0x2C);
access_register16_low(0x2C);
affine_reference_y[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x2C) = value;
break;
case 0x2D:
access_register8_high(0x2C);
access_register16_low(0x2C);
affine_reference_y[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x2C) = value;
break;
case 0x2E:
access_register8_low(0x2E);
access_register16_high(0x2C);
affine_reference_y[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x2C) = value;
break;
case 0x2F:
access_register8_high(0x2E);
access_register16_high(0x2C);
affine_reference_y[0] = (s32)(value << 4) >> 4;
address32(io_registers, 0x2C) = value;
break;
// BG3 reference X
case 0x38:
access_register8_low(0x38);
access_register16_low(0x38);
affine_reference_x[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x38) = value;
break;
case 0x39:
access_register8_high(0x38);
access_register16_low(0x38);
affine_reference_x[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x38) = value;
break;
case 0x3A:
access_register8_low(0x3A);
access_register16_high(0x38);
affine_reference_x[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x38) = value;
break;
case 0x3B:
access_register8_high(0x3A);
access_register16_high(0x38);
affine_reference_x[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x38) = value;
break;
// BG3 reference Y
case 0x3C:
access_register8_low(0x3C);
access_register16_low(0x3C);
affine_reference_y[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x3C) = value;
break;
case 0x3D:
access_register8_high(0x3C);
access_register16_low(0x3C);
affine_reference_y[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x3C) = value;
break;
case 0x3E:
access_register8_low(0x3E);
access_register16_high(0x3C);
affine_reference_y[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x3C) = value;
break;
case 0x3F:
access_register8_high(0x3E);
access_register16_high(0x3C);
affine_reference_y[1] = (s32)(value << 4) >> 4;
address32(io_registers, 0x3C) = value;
break;
// Sound 1 control sweep
case 0x60:
access_register8_low(0x60);
gbc_sound_tone_control_sweep();
break;
case 0x61:
access_register8_low(0x60);
gbc_sound_tone_control_sweep();
break;
// Sound 1 control duty/length/envelope
case 0x62:
access_register8_low(0x62);
gbc_sound_tone_control_low(0, 0x62);
break;
case 0x63:
access_register8_high(0x62);
gbc_sound_tone_control_low(0, 0x62);
break;
// Sound 1 control frequency
case 0x64:
access_register8_low(0x64);
gbc_sound_tone_control_high(0, 0x64);
break;
case 0x65:
access_register8_high(0x64);
gbc_sound_tone_control_high(0, 0x64);
break;
// Sound 2 control duty/length/envelope
case 0x68:
access_register8_low(0x68);
gbc_sound_tone_control_low(1, 0x68);
break;
case 0x69:
access_register8_high(0x68);
gbc_sound_tone_control_low(1, 0x68);
break;
// Sound 2 control frequency
case 0x6C:
access_register8_low(0x6C);
gbc_sound_tone_control_high(1, 0x6C);
break;
case 0x6D:
access_register8_high(0x6C);
gbc_sound_tone_control_high(1, 0x6C);
break;
// Sound 3 control wave
case 0x70:
access_register8_low(0x70);
gbc_sound_wave_control();
break;
case 0x71:
access_register8_high(0x70);
gbc_sound_wave_control();
break;
// Sound 3 control length/volume
case 0x72:
access_register8_low(0x72);
gbc_sound_tone_control_low_wave();
break;
case 0x73:
access_register8_high(0x72);
gbc_sound_tone_control_low_wave();
break;
// Sound 3 control frequency
case 0x74:
access_register8_low(0x74);
gbc_sound_tone_control_high_wave();
break;
case 0x75:
access_register8_high(0x74);
gbc_sound_tone_control_high_wave();
break;
// Sound 4 control length/envelope
case 0x78:
access_register8_low(0x78);
gbc_sound_tone_control_low(3, 0x78);
break;
case 0x79:
access_register8_high(0x78);
gbc_sound_tone_control_low(3, 0x78);
break;
// Sound 4 control frequency
case 0x7C:
access_register8_low(0x7C);
gbc_sound_noise_control();
break;
case 0x7D:
access_register8_high(0x7C);
gbc_sound_noise_control();
break;
// Sound control L
case 0x80:
access_register8_low(0x80);
gbc_trigger_sound();
break;
case 0x81:
access_register8_high(0x80);
gbc_trigger_sound();
break;
// Sound control H
case 0x82:
access_register8_low(0x82);
trigger_sound();
break;
case 0x83:
access_register8_high(0x82);
trigger_sound();
break;
// Sound control X
case 0x84:
sound_on();
break;
// Sound wave RAM
case 0x90 ... 0x9F:
gbc_sound_wave_update = 1;
address8(io_registers, address) = value;
break;
// Sound FIFO A
case 0xA0 ... 0xA3:
address8(io_registers, address) = value;
sound_timer_queue32(0, value);
break;
// Sound FIFO B
case 0xA4 ... 0xA7:
address8(io_registers, address) = value;
sound_timer_queue32(1, value);
break;
// DMA control (trigger byte)
case 0xBB: // DMA channel 0
case 0xC7: // DMA channel 1
case 0xD3: // DMA channel 2
case 0xDF: // DMA channel 3
access_register8_high(address - 1);
trigger_dma((address - 0xBB) / 12);
break;
// Timer counts
case 0x100:
access_register8_low(0x100);
count_timer(0);
break;
case 0x101:
access_register8_high(0x100);
count_timer(0);
break;
case 0x104:
access_register8_low(0x104);
count_timer(1);
break;
case 0x105:
access_register8_high(0x104);
count_timer(1);
break;
case 0x108:
access_register8_low(0x108);
count_timer(2);
break;
case 0x109:
access_register8_high(0x108);
count_timer(2);
break;
case 0x10C:
access_register8_low(0x10C);
count_timer(3);
break;
case 0x10D:
access_register8_high(0x10C);
count_timer(3);
break;
// Timer control (trigger byte)
case 0x103: // Timer 0
case 0x107: // Timer 1
case 0x10B: // Timer 2
case 0x10F: // Timer 3
access_register8_high(address - 1);
trigger_timer((address - 0x103) / 4);
break;
case 0x128:
case 0x129:
case 0x134:
case 0x135:
// P1
case 0x130:
case 0x131:
/* Read only */
break;
// IE
case 0x200:
address8(io_registers, 0x200) = value;
break;
// IF
case 0x202:
address8(io_registers, 0x202) &= ~value;
break;
case 0x203:
address8(io_registers, 0x203) &= ~value;
break;
// Halt
case 0x301:
if((value & 0x01) == 0)
reg[CPU_HALT_STATE] = CPU_HALT;
else
reg[CPU_HALT_STATE] = CPU_STOP;
return CPU_ALERT_HALT;
break;
default:
address8(io_registers, address) = value;
break;
}
return CPU_ALERT_NONE;
}
cpu_alert_type function_cc write_io_register16(u32 address, u32 value)
{
switch(address)
{
case 0x00:
{
u32 dispcnt = io_registers[REG_DISPCNT];
if((value & 0x07) != (dispcnt & 0x07))
oam_update = 1;
address16(io_registers, 0x00) = value;
break;
}
// DISPSTAT
case 0x04:
address16(io_registers, 0x04) =
(address16(io_registers, 0x04) & 0x07) | (value & ~0x07);
break;
// VCOUNT
case 0x06:
break;