forked from zentures/bloom
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbloom.go
169 lines (139 loc) · 4.47 KB
/
bloom.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright (c) 2014 Dataence, LLC. All rights reserved.
// Copyright (c) 2020 Blocknative Corporation. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use f file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package bloom
import (
"encoding/binary"
"math"
"github.com/bits-and-blooms/bitset"
)
// Filter is the standard implementation used by this package. It is a
// variant implementation of the standard bloom filter that reduces the risk
// of false-positives by assigning a bit array to each hash function.
//
// Reference #2: Scalable Bloom Filters (http://gsd.di.uminho.pt/members/cbm/ps/dpdf)
//
// The name Partitioned Bloom Filter is my choice as there was no name assigned to f variant.
type Filter struct {
params
// m is the total number of bits for f bloom filter. m for the partitioned bloom filter
// will be divided into k partitions, or slices. So each partition contains Math.ceil(m/k) bits.
//
// m =~ n / ((log(p)*log(1-p))/abs(log e))
m uint
// k is the number of hash values used to set and test bits. Each filter partition will be
// set/tested using a single hash value. Note that the number of hash functions may not be the
// same as hash values. For example, our implementation uses 32-bit hash values. So a single
// Murmur3 128bit hash function can be used as 4 32-bit hash values. A single FNV 64bit hash function
// can be used as 2 32-bit has values.
//
// k = log2(1/e)
// Given that our e is defaulted to 0.001, therefore k ~= 10, which means we need 10 hash values
k uint
// n is the number of elements the filter is predicted to hold while maintaining the error rate
// or filter size (m). n is user supplied. But, in case you are interested, the formula is
// n =~ m * ( (log(p) * log(1-p)) / abs(log e) )
n uint
// c is the number of items we have added to the filter
c uint
// s is the size of the partition, or slice.
// s = m / k
s uint
// b is the set of bit array holding the bloom filters. There will be k b's.
b []*bitset.BitSet
// bs holds the list of bits to be set/check based on the hash values
bs []uint
}
// New initializes a new partitioned bloom filter.
// n is the number of items f bloom filter predicted to hold.
func New(n uint, opt ...Option) *Filter {
if n == 0 {
panic("n == 0")
}
var f = Filter{n: n}
for _, option := range withDefault(opt) {
option(&f.params)
}
f.k = k(f.e)
f.m = m(n, f.p, f.e)
f.s = s(f.m, f.k)
f.b = makePartitions(f.k, f.s)
f.bs = make([]uint, f.k)
return &f
}
func (f *Filter) Reset() {
for _, b := range f.b {
b.ClearAll()
}
f.h.Reset()
}
func (f *Filter) EstimatedFillRatio() float64 {
return 1 - math.Exp(-float64(f.c)/float64(f.s))
}
func (f *Filter) FillRatio() float64 {
// Since f is partitioned, we will return the average fill ratio of all partitions
t := float64(0)
for _, v := range f.b[:f.k] {
t += (float64(v.Count()) / float64(f.s))
}
return t / float64(f.k)
}
func (f *Filter) Add(item []byte) {
f.bits(item)
for i, v := range f.bs[:f.k] {
f.b[i].Set(v)
}
f.c++
}
func (f *Filter) Check(item []byte) bool {
f.bits(item)
for i, v := range f.bs[:f.k] {
if !f.b[i].Test(v) {
return false
}
}
return true
}
func (f *Filter) Count() uint {
return f.c
}
func (f *Filter) bits(item []byte) {
f.h.Reset()
f.h.Write(item)
s := f.h.Sum(nil)
a := binary.BigEndian.Uint32(s[4:8])
b := binary.BigEndian.Uint32(s[0:4])
// Reference: Less Hashing, Same Performance: Building a Better Bloom Filter
// URL: http://www.eecs.harvard.edu/~kirsch/pubs/bbbf/rsa.pdf
for i := range f.bs[:f.k] {
f.bs[i] = (uint(a) + uint(b)*uint(i)) % f.s
}
}
func makePartitions(k, s uint) []*bitset.BitSet {
b := make([]*bitset.BitSet, k)
for i := range b {
b[i] = bitset.New(s)
}
return b
}
func k(e float64) uint {
return uint(math.Ceil(math.Log2(1 / e)))
}
func m(n uint, p, e float64) uint {
// m =~ n / ((log(p)*log(1-p))/abs(log e))
return uint(math.Ceil(float64(n) / ((math.Log(p) * math.Log(1-p)) / math.Abs(math.Log(e)))))
}
func s(m, k uint) uint {
return uint(math.Ceil(float64(m) / float64(k)))
}