-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmatrix4_mb.c
600 lines (535 loc) · 21.4 KB
/
matrix4_mb.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
/*
* This file is part of dsp.
*
* Copyright (c) 2022-2024 Michael Barbour <[email protected]>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <complex.h>
#include <math.h>
#include "matrix4_mb.h"
#include "ewma.h"
#include "biquad.h"
#include "cap5.h"
#include "util.h"
#ifdef HAVE_FFTW3
#include "fir.h"
#endif
#define DOWNSAMPLE_FACTOR 8
#define EVENT_THRESH 3.1
#define N_BANDS 10
#include "matrix4_common.h"
#if N_BANDS == 6
static const double fb_freqs[] = { 250.0, 500.0, 1000.0, 2000.0, 4000.0 };
static const int fb_ap_idx[] = { 3, 4, 1, 0, 0, 4 };
static const double fb_bp[2] = { 125.0, 8000.0 };
#define PHASE_LIN_FILTER_LEN 15
#elif N_BANDS == 10
static const double fb_freqs[] = { 249.172, 437.245, 701.191, 1070.98, 1588.74, 2313.53, 3328.04, 4748.02, 6735.46 };
static const int fb_ap_idx[] = { 5, 6, 7, 8, 3, 2, 1, 0, 2, 3, 0, 3, 7, 8, 5, 8 };
static const double fb_bp[2] = { 125.0, 9500.0 };
static const double fb_weights[] = { 0.2, 0.6, 1.3, 1.8, 1.1, 0.7, 1.1, 1.2, 0.7, 0.2 };
#define PHASE_LIN_FILTER_LEN 16
#elif N_BANDS == 12
static const double fb_freqs[] = { 236.079, 381.191, 572.544, 824.554, 1156.29, 1592.89, 2167.43, 2923.48, 3918.34, 5227.44, 6950.02 };
static const int fb_ap_idx[] = { 6, 7, 8, 9, 10, 4, 3, 2, 1, 0, 3, 4, 1, 0, 1, 4, 9, 10, 7, 6, 7, 10 };
static const double fb_bp[2] = { 125.0, 9500.0 };
#define PHASE_LIN_FILTER_LEN 18
#else
#error "unsupported number of bands"
#endif
#define DO_FILTER_BANK_TEST 0
struct filter_bank_frame {
sample_t s[N_BANDS];
};
struct filter_bank {
struct cap5_state f[LENGTH(fb_freqs)];
struct ap2_state ap[LENGTH(fb_ap_idx)];
struct biquad_state hp, lp; /* applied to lowest and highest band of s_bp, respectively */
sample_t s[N_BANDS], s_bp[N_BANDS];
};
struct matrix4_band {
struct smooth_state sm;
struct event_state ev;
struct ewma_state drift[4];
struct axes ax, ax_ev;
double fl_boost, fr_boost;
#if DOWNSAMPLE_FACTOR > 1
double lsl_m[2], lsr_m[2], rsl_m[2], rsr_m[2];
#endif
};
struct matrix4_mb_state {
int s, c0, c1;
char has_output, is_draining, disable, show_status, do_dir_boost;
struct filter_bank fb[2];
struct matrix4_band band[N_BANDS];
sample_t **bufs;
struct filter_bank_frame *fb_buf[2];
sample_t norm_mult, surr_mult;
struct event_config evc;
#if DOWNSAMPLE_FACTOR > 1
double fl_boost[2], fr_boost[2];
#else
double fl_boost, fr_boost;
#endif
ssize_t len, p, drain_frames, fade_frames, fade_p;
};
static void filter_bank_init(struct filter_bank *fb, double fs)
{
for (int i = 0; i < LENGTH(fb_freqs); ++i)
cap5_init(&fb->f[i], fs, fb_freqs[i]);
for (int i = 0; i < LENGTH(fb_ap_idx); ++i)
fb->ap[i] = fb->f[fb_ap_idx[i]].a1;
biquad_init_using_type(&fb->hp, BIQUAD_HIGHPASS, fs, fb_bp[0], 0.5, 0, 0, BIQUAD_WIDTH_Q);
biquad_init_using_type(&fb->lp, BIQUAD_LOWPASS, fs, fb_bp[1], 0.5, 0, 0, BIQUAD_WIDTH_Q);
}
static void filter_bank_run(struct filter_bank *fb, sample_t s)
{
#if N_BANDS == 6
cap5_run(&fb->f[2], s, &fb->s[2], &fb->s[3]); /* split in the middle (xover 2) */
fb->s[2] = ap2_run(&fb->ap[0], fb->s[2]); /* xover 3 ap */
fb->s[2] = ap2_run(&fb->ap[1], fb->s[2]); /* xover 4 ap */
fb->s[3] = ap2_run(&fb->ap[2], fb->s[3]); /* xover 1 ap */
fb->s[3] = ap2_run(&fb->ap[3], fb->s[3]); /* xover 0 ap */
cap5_run(&fb->f[1], fb->s[2], &fb->s[1], &fb->s[2]); /* split at xover 1 */
fb->s[2] = ap2_run(&fb->ap[4], fb->s[2]); /* xover 0 ap */
cap5_run(&fb->f[3], fb->s[3], &fb->s[3], &fb->s[4]); /* split at xover 3 */
fb->s[3] = ap2_run(&fb->ap[5], fb->s[3]); /* xover 4 ap */
cap5_run(&fb->f[0], fb->s[1], &fb->s[0], &fb->s[1]); /* split at xover 0 */
cap5_run(&fb->f[4], fb->s[4], &fb->s[4], &fb->s[5]); /* split at xover 4 */
#elif N_BANDS == 10
cap5_run(&fb->f[4], s, &fb->s[4], &fb->s[5]); /* split at xover 4 (1588.74Hz) */
fb->s[4] = ap2_run(&fb->ap[0], fb->s[4]); /* xover 5 ap */
fb->s[4] = ap2_run(&fb->ap[1], fb->s[4]); /* xover 6 ap */
fb->s[4] = ap2_run(&fb->ap[2], fb->s[4]); /* xover 7 ap */
fb->s[4] = ap2_run(&fb->ap[3], fb->s[4]); /* xover 8 ap */
fb->s[5] = ap2_run(&fb->ap[4], fb->s[5]); /* xover 3 ap */
fb->s[5] = ap2_run(&fb->ap[5], fb->s[5]); /* xover 2 ap */
fb->s[5] = ap2_run(&fb->ap[6], fb->s[5]); /* xover 1 ap */
fb->s[5] = ap2_run(&fb->ap[7], fb->s[5]); /* xover 0 ap */
cap5_run(&fb->f[1], fb->s[4], &fb->s[1], &fb->s[2]); /* split at xover 1 (437.245Hz) */
fb->s[1] = ap2_run(&fb->ap[8], fb->s[1]); /* xover 2 ap */
fb->s[1] = ap2_run(&fb->ap[9], fb->s[1]); /* xover 3 ap */
fb->s[2] = ap2_run(&fb->ap[10], fb->s[2]); /* xover 0 ap */
cap5_run(&fb->f[0], fb->s[1], &fb->s[0], &fb->s[1]); /* split at xover 0 (249.172Hz) */
cap5_run(&fb->f[2], fb->s[2], &fb->s[2], &fb->s[3]); /* split at xover 2 (701.191Hz) */
fb->s[2] = ap2_run(&fb->ap[11], fb->s[2]); /* xover 3 ap */
cap5_run(&fb->f[3], fb->s[3], &fb->s[3], &fb->s[4]); /* split at xover 3 (1070.98Hz) */
cap5_run(&fb->f[6], fb->s[5], &fb->s[6], &fb->s[7]); /* split at xover 6 (3328.04Hz) */
fb->s[6] = ap2_run(&fb->ap[12], fb->s[6]); /* xover 7 ap */
fb->s[6] = ap2_run(&fb->ap[13], fb->s[6]); /* xover 8 ap */
fb->s[7] = ap2_run(&fb->ap[14], fb->s[7]); /* xover 5 ap */
cap5_run(&fb->f[5], fb->s[6], &fb->s[5], &fb->s[6]); /* split at xover 5 (2313.53Hz) */
cap5_run(&fb->f[7], fb->s[7], &fb->s[7], &fb->s[8]); /* split at xover 7 (4748.02Hz) */
fb->s[7] = ap2_run(&fb->ap[15], fb->s[7]); /* xover 8 ap */
cap5_run(&fb->f[8], fb->s[8], &fb->s[8], &fb->s[9]); /* split at xover 8 (6735.46Hz) */
#elif N_BANDS == 12
cap5_run(&fb->f[5], s, &fb->s[5], &fb->s[6]); /* split in the middle (xover 5) */
fb->s[5] = ap2_run(&fb->ap[0], fb->s[5]); /* xover 6 ap */
fb->s[5] = ap2_run(&fb->ap[1], fb->s[5]); /* xover 7 ap */
fb->s[5] = ap2_run(&fb->ap[2], fb->s[5]); /* xover 8 ap */
fb->s[5] = ap2_run(&fb->ap[3], fb->s[5]); /* xover 9 ap */
fb->s[5] = ap2_run(&fb->ap[4], fb->s[5]); /* xover 10 ap */
fb->s[6] = ap2_run(&fb->ap[5], fb->s[6]); /* xover 4 ap */
fb->s[6] = ap2_run(&fb->ap[6], fb->s[6]); /* xover 3 ap */
fb->s[6] = ap2_run(&fb->ap[7], fb->s[6]); /* xover 2 ap */
fb->s[6] = ap2_run(&fb->ap[8], fb->s[6]); /* xover 1 ap */
fb->s[6] = ap2_run(&fb->ap[9], fb->s[6]); /* xover 0 ap */
cap5_run(&fb->f[2], fb->s[5], &fb->s[2], &fb->s[3]); /* split at xover 2 */
fb->s[2] = ap2_run(&fb->ap[10], fb->s[2]); /* xover 3 ap */
fb->s[2] = ap2_run(&fb->ap[11], fb->s[2]); /* xover 4 ap */
fb->s[3] = ap2_run(&fb->ap[12], fb->s[3]); /* xover 1 ap */
fb->s[3] = ap2_run(&fb->ap[13], fb->s[3]); /* xover 0 ap */
cap5_run(&fb->f[0], fb->s[2], &fb->s[0], &fb->s[1]); /* split at xover 0 */
fb->s[0] = ap2_run(&fb->ap[14], fb->s[0]); /* xover 1 ap */
cap5_run(&fb->f[1], fb->s[1], &fb->s[1], &fb->s[2]); /* split at xover 1 */
cap5_run(&fb->f[3], fb->s[3], &fb->s[3], &fb->s[4]); /* split at xover 3 */
fb->s[3] = ap2_run(&fb->ap[15], fb->s[3]); /* xover 4 ap */
cap5_run(&fb->f[4], fb->s[4], &fb->s[4], &fb->s[5]); /* split at xover 4 */
cap5_run(&fb->f[8], fb->s[6], &fb->s[8], &fb->s[9]); /* split at xover 8 */
fb->s[8] = ap2_run(&fb->ap[16], fb->s[8]); /* xover 9 ap */
fb->s[8] = ap2_run(&fb->ap[17], fb->s[8]); /* xover 10 ap */
fb->s[9] = ap2_run(&fb->ap[18], fb->s[9]); /* xover 7 ap */
fb->s[9] = ap2_run(&fb->ap[19], fb->s[9]); /* xover 6 ap */
cap5_run(&fb->f[6], fb->s[8], &fb->s[6], &fb->s[7]); /* split at xover 6 */
fb->s[6] = ap2_run(&fb->ap[20], fb->s[6]); /* xover 7 ap */
cap5_run(&fb->f[7], fb->s[7], &fb->s[7], &fb->s[8]); /* split at xover 7 */
cap5_run(&fb->f[9], fb->s[9], &fb->s[9], &fb->s[10]); /* split at xover 9 */
fb->s[9] = ap2_run(&fb->ap[21], fb->s[9]); /* xover 10 ap */
cap5_run(&fb->f[10], fb->s[10], &fb->s[10], &fb->s[11]); /* split at xover 10 */
#endif
fb->s_bp[0] = biquad(&fb->hp, fb->s[0]);
for (int i = 1; i < N_BANDS-1; ++i)
fb->s_bp[i] = fb->s[i];
fb->s_bp[N_BANDS-1] = biquad(&fb->lp, fb->s[N_BANDS-1]);
}
#if DO_FILTER_BANK_TEST
sample_t * matrix4_mb_test_fb_effect_run(struct effect *e, ssize_t *frames, sample_t *ibuf, sample_t *obuf)
{
struct matrix4_mb_state *state = (struct matrix4_mb_state *) e->data;
for (ssize_t i = 0; i < *frames; ++i) {
const double s0 = (ibuf) ? ibuf[i*e->istream.channels + state->c0] : 0.0;
const double s1 = (ibuf) ? ibuf[i*e->istream.channels + state->c1] : 0.0;
filter_bank_run(&state->fb[0], s0);
filter_bank_run(&state->fb[1], s1);
double out_l = 0.0, out_r = 0.0;
for (int k = 0; k < N_BANDS; ++k) {
out_l += state->fb[0].s[k];
out_r += state->fb[1].s[k];
}
for (int k = 0; k < e->istream.channels; ++k) {
if (k == state->c0)
obuf[i*e->ostream.channels + k] = out_l;
else if (k == state->c1)
obuf[i*e->ostream.channels + k] = out_r;
else
obuf[i*e->ostream.channels + k] = ibuf[i*e->istream.channels + k];
}
for (int k = 0; k < N_BANDS; ++k)
obuf[i*e->ostream.channels + e->istream.channels + k] = state->fb[0].s[k];
}
return obuf;
}
void matrix4_mb_test_fb_effect_destroy(struct effect *e)
{
free(e->data);
}
#else
sample_t * matrix4_mb_effect_run(struct effect *e, ssize_t *frames, sample_t *ibuf, sample_t *obuf)
{
ssize_t i, k, oframes = 0;
struct matrix4_mb_state *state = (struct matrix4_mb_state *) e->data;
for (i = 0; i < *frames; ++i) {
double norm_mult = state->norm_mult, surr_mult = state->surr_mult;
double fl_boost = 0.0, fr_boost = 0.0, f_boost_norm = 0.0;
sample_t out_ls = 0.0, out_rs = 0.0;
const sample_t s0 = (ibuf) ? ibuf[i*e->istream.channels + state->c0] : 0.0;
const sample_t s1 = (ibuf) ? ibuf[i*e->istream.channels + state->c1] : 0.0;
const sample_t s0_d = state->bufs[state->c0][state->p];
const sample_t s1_d = state->bufs[state->c1][state->p];
if (state->fade_p > 0) {
surr_mult *= fade_mult(state->fade_p, state->fade_frames, state->disable);
norm_mult = CALC_NORM_MULT(surr_mult);
--state->fade_p;
}
else if (state->disable) {
norm_mult = 1.0;
surr_mult = 0.0;
}
filter_bank_run(&state->fb[0], s0);
filter_bank_run(&state->fb[1], s1);
#if DOWNSAMPLE_FACTOR > 1
state->s = (state->s + 1 >= DOWNSAMPLE_FACTOR) ? 0 : state->s + 1;
#endif
for (k = 0; k < N_BANDS; ++k) {
struct matrix4_band *band = &state->band[k];
const sample_t s0_bp = state->fb[0].s_bp[k];
const sample_t s1_bp = state->fb[1].s_bp[k];
const sample_t s0_d_fb = state->fb_buf[0][state->p].s[k];
const sample_t s1_d_fb = state->fb_buf[1][state->p].s[k];
state->fb_buf[0][state->p].s[k] = state->fb[0].s[k];
state->fb_buf[1][state->p].s[k] = state->fb[1].s[k];
struct envs env, pwr_env;
calc_input_envs(&band->sm, s0_bp, s1_bp, &env, &pwr_env);
#if DOWNSAMPLE_FACTOR > 1
if (state->s == 0) {
#endif
const struct envs pwr_env_d = band->ev.pwr_env_buf[band->ev.buf_p];
process_events(&band->ev, &state->evc, &env, &pwr_env, band->drift, &band->ax, &band->ax_ev);
norm_axes(&band->ax);
struct matrix_coefs m = {0};
calc_matrix_coefs(&band->ax, state->do_dir_boost, norm_mult, surr_mult, &m);
band->fl_boost = m.fl_boost;
band->fr_boost = m.fr_boost;
#if N_BANDS == 10
const double weight = pwr_env_d.sum * fb_weights[k];
#else
const double weight = pwr_env_d.sum;
#endif
fl_boost += m.fl_boost * m.fl_boost * weight;
fr_boost += m.fr_boost * m.fr_boost * weight;
f_boost_norm += weight;
#if DOWNSAMPLE_FACTOR > 1
band->lsl_m[0] = band->lsl_m[1];
band->lsr_m[0] = band->lsr_m[1];
band->rsl_m[0] = band->rsl_m[1];
band->rsr_m[0] = band->rsr_m[1];
band->lsl_m[1] = m.lsl;
band->lsr_m[1] = m.lsr;
band->rsl_m[1] = m.rsl;
band->rsr_m[1] = m.rsr;
}
out_ls += s0_d_fb*oversample(band->lsl_m, state->s) + s1_d_fb*oversample(band->lsr_m, state->s);
out_rs += s0_d_fb*oversample(band->rsl_m, state->s) + s1_d_fb*oversample(band->rsr_m, state->s);
#else
out_ls += s0_d_fb*m.lsl + s1_d_fb*m.lsr;
out_rs += s0_d_fb*m.rsl + s1_d_fb*m.rsr;
#endif
}
#if DOWNSAMPLE_FACTOR > 1
if (state->s == 0) {
#endif
if (f_boost_norm > 0.0) {
fl_boost = sqrt(fl_boost / f_boost_norm);
fr_boost = sqrt(fr_boost / f_boost_norm);
}
else {
fl_boost = 0.0;
fr_boost = 0.0;
}
#if DOWNSAMPLE_FACTOR > 1
state->fl_boost[0] = state->fl_boost[1];
state->fr_boost[0] = state->fr_boost[1];
state->fl_boost[1] = fl_boost;
state->fr_boost[1] = fr_boost;
}
const double ll_m = norm_mult + oversample(state->fl_boost, state->s);
const double rr_m = norm_mult + oversample(state->fr_boost, state->s);
#else
state->fl_boost = fl_boost;
state->fr_boost = fr_boost;
const double ll_m = norm_mult + fl_boost;
const double rr_m = norm_mult + fr_boost;
#endif
const double lr_m = 0.0, rl_m = 0.0;
const sample_t out_l = s0_d*ll_m + s1_d*lr_m;
const sample_t out_r = s0_d*rl_m + s1_d*rr_m;
if (state->has_output) {
for (k = 0; k < e->istream.channels; ++k) {
if (k == state->c0)
obuf[oframes*e->ostream.channels + k] = out_l;
else if (k == state->c1)
obuf[oframes*e->ostream.channels + k] = out_r;
else
obuf[oframes*e->ostream.channels + k] = state->bufs[k][state->p];
state->bufs[k][state->p] = (ibuf) ? ibuf[i*e->istream.channels + k] : 0.0;
}
obuf[oframes*e->ostream.channels + k + 0] = out_ls;
obuf[oframes*e->ostream.channels + k + 1] = out_rs;
++oframes;
}
else {
for (k = 0; k < e->istream.channels; ++k) {
#ifdef SYMMETRIC_IO
obuf[oframes*e->ostream.channels + k] = 0.0;
#endif
state->bufs[k][state->p] = (ibuf) ? ibuf[i*e->istream.channels + k] : 0.0;
}
#ifdef SYMMETRIC_IO
obuf[oframes*e->ostream.channels + k + 0] = 0.0;
obuf[oframes*e->ostream.channels + k + 1] = 0.0;
++oframes;
#endif
}
state->p = (state->p + 1 >= state->len) ? 0 : state->p + 1;
if (state->p == 0)
state->has_output = 1;
}
#ifndef LADSPA_FRONTEND
/* TODO: Implement a proper way for effects to show status lines. */
if (state->show_status) {
dsp_log_acquire();
for (i = 0; i < N_BANDS; ++i) {
dsp_log_printf("\n%s%s: band %zd: lr: %+06.2f (%+06.2f); cs: %+06.2f (%+06.2f); dir_boost: l:%05.3f r:%05.3f; adj: %05.3f; ord: %zd; diff: %zd; early: %zd\033[K\r",
e->name, (state->disable) ? " [off]" : "", i,
TO_DEGREES(state->band[i].ax.lr), TO_DEGREES(state->band[i].ax_ev.lr), TO_DEGREES(state->band[i].ax.cs), TO_DEGREES(state->band[i].ax_ev.cs),
state->band[i].fl_boost, state->band[i].fr_boost, state->band[i].ev.adj, state->band[i].ev.ord_count, state->band[i].ev.diff_count, state->band[i].ev.early_count);
}
dsp_log_printf("\n%s%s: weighted RMS dir_boost: l:%05.3f r:%05.3f\033[K\r",
e->name, (state->disable) ? " [off]" : "",
#if DOWNSAMPLE_FACTOR > 1
state->fl_boost[1], state->fr_boost[1]);
#else
state->fl_boost, state->fr_boost);
#endif
dsp_log_printf("\033[%zdA", i+1);
dsp_log_release();
}
#endif
*frames = oframes;
return obuf;
}
ssize_t matrix4_mb_effect_delay(struct effect *e)
{
struct matrix4_mb_state *state = (struct matrix4_mb_state *) e->data;
return (state->has_output) ? state->len : state->p;
}
void matrix4_mb_effect_reset(struct effect *e)
{
int i;
struct matrix4_mb_state *state = (struct matrix4_mb_state *) e->data;
state->p = 0;
state->has_output = 0;
for (i = 0; i < e->istream.channels; ++i)
memset(state->bufs[i], 0, state->len * sizeof(sample_t));
memset(state->fb_buf[0], 0, state->len * sizeof(struct filter_bank_frame));
memset(state->fb_buf[1], 0, state->len * sizeof(struct filter_bank_frame));
}
void matrix4_mb_effect_signal(struct effect *e)
{
struct matrix4_mb_state *state = (struct matrix4_mb_state *) e->data;
state->disable = !state->disable;
state->fade_p = state->fade_frames - state->fade_p;
if (!state->show_status)
LOG_FMT(LL_NORMAL, "%s: %s", e->name, (state->disable) ? "disabled" : "enabled");
}
void matrix4_mb_effect_drain(struct effect *e, ssize_t *frames, sample_t *obuf)
{
struct matrix4_mb_state *state = (struct matrix4_mb_state *) e->data;
if (!state->has_output && state->p == 0)
*frames = -1;
else {
if (!state->is_draining) {
state->drain_frames = state->len;
state->is_draining = 1;
}
if (state->drain_frames > 0) {
*frames = MINIMUM(*frames, state->drain_frames);
state->drain_frames -= *frames;
e->run(e, frames, NULL, obuf);
}
else
*frames = -1;
}
}
void matrix4_mb_effect_destroy(struct effect *e)
{
struct matrix4_mb_state *state = (struct matrix4_mb_state *) e->data;
for (int i = 0; i < e->istream.channels; ++i)
free(state->bufs[i]);
free(state->fb_buf[0]);
free(state->fb_buf[1]);
free(state->bufs);
for (int i = 0; i < N_BANDS; ++i)
event_state_cleanup(&state->band[i].ev);
#ifndef LADSPA_FRONTEND
if (state->show_status) {
dsp_log_acquire();
for (int i = 0; i < N_BANDS+1; ++i) dsp_log_printf("\033[K\n");
dsp_log_printf("\033[K\r\033[%dA", N_BANDS+1);
dsp_log_release();
}
#endif
free(state);
}
#endif
struct effect * matrix4_mb_effect_init(const struct effect_info *ei, const struct stream_info *istream, const char *channel_selector, const char *dir, int argc, const char *const *argv)
{
struct effect *e;
struct matrix4_mb_state *state;
struct matrix4_config config = {0};
if (get_args_and_channels(ei, istream, channel_selector, argc, argv, &config))
return NULL;
if (parse_effect_opts(argv, istream, &config))
return NULL;
e = calloc(1, sizeof(struct effect));
e->name = ei->name;
e->istream.fs = e->ostream.fs = istream->fs;
#if DO_FILTER_BANK_TEST
e->istream.channels = istream->channels;
e->ostream.channels = istream->channels + N_BANDS;
e->run = matrix4_mb_test_fb_effect_run;
e->destroy = matrix4_mb_test_fb_effect_destroy;
#else
e->istream.channels = istream->channels;
e->ostream.channels = istream->channels + 2;
e->run = matrix4_mb_effect_run;
e->delay = matrix4_mb_effect_delay;
e->reset = matrix4_mb_effect_reset;
e->drain = matrix4_mb_effect_drain;
e->destroy = matrix4_mb_effect_destroy;
#endif
state = calloc(1, sizeof(struct matrix4_mb_state));
state->c0 = config.c0;
state->c1 = config.c1;
#if !(DO_FILTER_BANK_TEST)
state->show_status = config.show_status;
state->do_dir_boost = config.do_dir_boost;
e->signal = (config.enable_signal) ? matrix4_mb_effect_signal : NULL;
for (int k = 0; k < N_BANDS; ++k) {
smooth_state_init(&state->band[k].sm, istream);
event_state_init(&state->band[k].ev, istream);
drift_init(state->band[k].drift, istream);
}
state->len = TIME_TO_FRAMES(DELAY_TIME, istream->fs);
state->bufs = calloc(istream->channels, sizeof(sample_t *));
for (int i = 0; i < istream->channels; ++i)
state->bufs[i] = calloc(state->len, sizeof(sample_t));
state->fb_buf[0] = calloc(state->len, sizeof(struct filter_bank_frame));
state->fb_buf[1] = calloc(state->len, sizeof(struct filter_bank_frame));
state->surr_mult = config.surr_mult;
state->norm_mult = CALC_NORM_MULT(config.surr_mult);
state->fade_frames = TIME_TO_FRAMES(FADE_TIME, istream->fs);
event_config_init(&state->evc, istream);
#endif
filter_bank_init(&state->fb[0], istream->fs);
state->fb[1] = state->fb[0];
#ifdef HAVE_FFTW3
struct effect *e_fir = NULL;
const ssize_t phase_lin_frames = (config.do_phase_lin) ? TIME_TO_FRAMES(PHASE_LIN_FILTER_LEN, istream->fs) : 1;
if (config.do_phase_lin) {
sample_t *phase_lin_filter = calloc(phase_lin_frames, sizeof(sample_t));
filter_bank_run(&state->fb[1], 1.0);
for (int k = 0; k < N_BANDS; ++k)
phase_lin_filter[phase_lin_frames-1] += state->fb[1].s[k];
for (int i = phase_lin_frames-2; i >= 0; --i) {
filter_bank_run(&state->fb[1], 0.0);
for (int k = 0; k < N_BANDS; ++k)
phase_lin_filter[i] += state->fb[1].s[k];
}
#if DO_FILTER_BANK_TEST
e_fir = fir_effect_init_with_filter(ei, istream, channel_selector, phase_lin_filter, 1, phase_lin_frames, 0);
#else
char *fir_channel_selector = NEW_SELECTOR(e->ostream.channels);
SET_BIT(fir_channel_selector, istream->channels);
SET_BIT(fir_channel_selector, istream->channels + 1);
e_fir = fir_effect_init_with_filter(ei, &e->ostream, fir_channel_selector, phase_lin_filter, 1, phase_lin_frames, 0);
free(fir_channel_selector);
#endif
free(phase_lin_filter);
state->fb[1] = state->fb[0]; /* reset */
}
#else
const ssize_t phase_lin_frames = 1;
if (config.do_phase_lin)
LOG_FMT(LL_ERROR, "%s: warning: phase linearization not available", argv[0]);
#endif
#if !(DO_FILTER_BANK_TEST)
const ssize_t surr_delay_frames = config.surr_delay_frames - phase_lin_frames + 1;
struct effect *e_delay = matrix4_delay_effect_init(ei, &e->ostream, surr_delay_frames);
#endif
e->data = state;
#ifdef HAVE_FFTW3
#if DO_FILTER_BANK_TEST
if (e_fir) {
e_fir->next = e;
return e_fir;
}
return e;
#else
if (e_fir) {
e->next = e_fir;
e_fir->next = e_delay;
}
else {
e->next = e_delay;
}
return e;
#endif
#else
e->next = e_delay;
return e;
#endif
}