-
Notifications
You must be signed in to change notification settings - Fork 788
/
Copy pathDiscreteBayesNet_FG.cpp
120 lines (99 loc) · 4.31 KB
/
DiscreteBayesNet_FG.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file DiscreteBayesNet_FG.cpp
* @brief Discrete Bayes Net example using Factor Graphs
* @author Abhijit
* @date Jun 4, 2012
*
* We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009,
* p529] You may be familiar with other graphical model packages like BNT
* (available at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this
* is used as an example. The following demo is same as that in the above link,
* except that everything is using GTSAM.
*/
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteMarginals.h>
#include <iomanip>
using namespace std;
using namespace gtsam;
int main(int argc, char **argv) {
// Define keys and a print function
Key C(1), S(2), R(3), W(4);
auto print = [=](const DiscreteFactor::Values& values) {
cout << boolalpha << "Cloudy = " << static_cast<bool>(values.at(C))
<< " Sprinkler = " << static_cast<bool>(values.at(S))
<< " Rain = " << boolalpha << static_cast<bool>(values.at(R))
<< " WetGrass = " << static_cast<bool>(values.at(W)) << endl;
};
// We assume binary state variables
// we have 0 == "False" and 1 == "True"
const size_t nrStates = 2;
// define variables
DiscreteKey Cloudy(C, nrStates), Sprinkler(S, nrStates), Rain(R, nrStates),
WetGrass(W, nrStates);
// create Factor Graph of the bayes net
DiscreteFactorGraph graph;
// add factors
graph.add(Cloudy, "0.5 0.5"); // P(Cloudy)
graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1"); // P(Sprinkler | Cloudy)
graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8"); // P(Rain | Cloudy)
graph.add(Sprinkler & Rain & WetGrass,
"1 0 0.1 0.9 0.1 0.9 0.001 0.99"); // P(WetGrass | Sprinkler, Rain)
// Alternatively we can also create a DiscreteBayesNet, add
// DiscreteConditional factors and create a FactorGraph from it. (See
// testDiscreteBayesNet.cpp)
// Since this is a relatively small distribution, we can as well print
// the whole distribution..
cout << "Distribution of Example: " << endl;
cout << setw(11) << "Cloudy(C)" << setw(14) << "Sprinkler(S)" << setw(10)
<< "Rain(R)" << setw(14) << "WetGrass(W)" << setw(15) << "P(C,S,R,W)"
<< endl;
for (size_t a = 0; a < nrStates; a++)
for (size_t m = 0; m < nrStates; m++)
for (size_t h = 0; h < nrStates; h++)
for (size_t c = 0; c < nrStates; c++) {
DiscreteFactor::Values values;
values[C] = c;
values[S] = h;
values[R] = m;
values[W] = a;
double prodPot = graph(values);
cout << setw(8) << static_cast<bool>(c) << setw(14)
<< static_cast<bool>(h) << setw(12) << static_cast<bool>(m)
<< setw(13) << static_cast<bool>(a) << setw(16) << prodPot
<< endl;
}
// "Most Probable Explanation", i.e., configuration with largest value
auto mpe = graph.optimize();
cout << "\nMost Probable Explanation (MPE):" << endl;
print(mpe);
// "Inference" We show an inference query like: probability that the Sprinkler
// was on; given that the grass is wet i.e. P( S | C=0) = ?
// add evidence that it is not Cloudy
graph.add(Cloudy, "1 0");
// solve again, now with evidence
auto mpe_with_evidence = graph.optimize();
cout << "\nMPE given C=0:" << endl;
print(mpe_with_evidence);
// we can also calculate arbitrary marginals:
DiscreteMarginals marginals(graph);
cout << "\nP(S=1|C=0):" << marginals.marginalProbabilities(Sprinkler)[1]
<< endl;
cout << "\nP(R=0|C=0):" << marginals.marginalProbabilities(Rain)[0] << endl;
cout << "\nP(W=1|C=0):" << marginals.marginalProbabilities(WetGrass)[1]
<< endl;
// We can also sample from the eliminated graph
DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential();
cout << "\n10 samples:" << endl;
for (size_t i = 0; i < 10; i++) {
auto sample = chordal->sample();
print(sample);
}
return 0;
}