-
Notifications
You must be signed in to change notification settings - Fork 362
/
Copy pathtrain.py
204 lines (161 loc) · 7.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os, sys
sys.path.append(os.getcwd())
import time
import pickle
import argparse
import numpy as np
import tensorflow as tf
import utils
import tflib as lib
import tflib.ops.linear
import tflib.ops.conv1d
import tflib.plot
import models
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--training-data', '-i',
default='data/train.txt',
dest='training_data',
help='Path to training data file (one password per line) (default: data/train.txt)')
parser.add_argument('--output-dir', '-o',
required=True,
dest='output_dir',
help='Output directory. If directory doesn\'t exist it will be created.')
parser.add_argument('--save-every', '-s',
type=int,
default=5000,
dest='save_every',
help='Save model checkpoints after this many iterations (default: 5000)')
parser.add_argument('--iters', '-n',
type=int,
default=200000,
dest='iters',
help='The number of training iterations (default: 200000)')
parser.add_argument('--batch-size', '-b',
type=int,
default=64,
dest='batch_size',
help='Batch size (default: 64).')
parser.add_argument('--seq-length', '-l',
type=int,
default=10,
dest='seq_length',
help='The maximum password length (default: 10)')
parser.add_argument('--layer-dim', '-d',
type=int,
default=128,
dest='layer_dim',
help='The hidden layer dimensionality for the generator and discriminator (default: 128)')
parser.add_argument('--critic-iters', '-c',
type=int,
default=10,
dest='critic_iters',
help='The number of discriminator weight updates per generator update (default: 10)')
parser.add_argument('--lambda', '-p',
type=int,
default=10,
dest='lamb',
help='The gradient penalty lambda hyperparameter (default: 10)')
return parser.parse_args()
args = parse_args()
lines, charmap, inv_charmap = utils.load_dataset(
path=args.training_data,
max_length=args.seq_length
)
if not os.path.isdir(args.output_dir):
os.makedirs(args.output_dir)
if not os.path.isdir(os.path.join(args.output_dir, 'checkpoints')):
os.makedirs(os.path.join(args.output_dir, 'checkpoints'))
if not os.path.isdir(os.path.join(args.output_dir, 'samples')):
os.makedirs(os.path.join(args.output_dir, 'samples'))
# pickle to avoid encoding errors with json
with open(os.path.join(args.output_dir, 'charmap.pickle'), 'wb') as f:
pickle.dump(charmap, f)
with open(os.path.join(args.output_dir, 'inv_charmap.pickle'), 'wb') as f:
pickle.dump(inv_charmap, f)
real_inputs_discrete = tf.placeholder(tf.int32, shape=[args.batch_size, args.seq_length])
real_inputs = tf.one_hot(real_inputs_discrete, len(charmap))
fake_inputs = models.Generator(args.batch_size, args.seq_length, args.layer_dim, len(charmap))
fake_inputs_discrete = tf.argmax(fake_inputs, fake_inputs.get_shape().ndims-1)
disc_real = models.Discriminator(real_inputs, args.seq_length, args.layer_dim, len(charmap))
disc_fake = models.Discriminator(fake_inputs, args.seq_length, args.layer_dim, len(charmap))
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
gen_cost = -tf.reduce_mean(disc_fake)
# WGAN lipschitz-penalty
alpha = tf.random_uniform(
shape=[args.batch_size,1,1],
minval=0.,
maxval=1.
)
differences = fake_inputs - real_inputs
interpolates = real_inputs + (alpha*differences)
gradients = tf.gradients(models.Discriminator(interpolates, args.seq_length, args.layer_dim, len(charmap)), [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1,2]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
disc_cost += args.lamb * gradient_penalty
gen_params = lib.params_with_name('Generator')
disc_params = lib.params_with_name('Discriminator')
gen_train_op = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0.5, beta2=0.9).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0.5, beta2=0.9).minimize(disc_cost, var_list=disc_params)
# Dataset iterator
def inf_train_gen():
while True:
np.random.shuffle(lines)
for i in xrange(0, len(lines)-args.batch_size+1, args.batch_size):
yield np.array(
[[charmap[c] for c in l] for l in lines[i:i+args.batch_size]],
dtype='int32'
)
# During training we monitor JS divergence between the true & generated ngram
# distributions for n=1,2,3,4. To get an idea of the optimal values, we
# evaluate these statistics on a held-out set first.
true_char_ngram_lms = [utils.NgramLanguageModel(i+1, lines[10*args.batch_size:], tokenize=False) for i in xrange(4)]
validation_char_ngram_lms = [utils.NgramLanguageModel(i+1, lines[:10*args.batch_size], tokenize=False) for i in xrange(4)]
for i in xrange(4):
print "validation set JSD for n={}: {}".format(i+1, true_char_ngram_lms[i].js_with(validation_char_ngram_lms[i]))
true_char_ngram_lms = [utils.NgramLanguageModel(i+1, lines, tokenize=False) for i in xrange(4)]
with tf.Session() as session:
session.run(tf.global_variables_initializer())
def generate_samples():
samples = session.run(fake_inputs)
samples = np.argmax(samples, axis=2)
decoded_samples = []
for i in xrange(len(samples)):
decoded = []
for j in xrange(len(samples[i])):
decoded.append(inv_charmap[samples[i][j]])
decoded_samples.append(tuple(decoded))
return decoded_samples
gen = inf_train_gen()
for iteration in xrange(args.iters):
start_time = time.time()
# Train generator
if iteration > 0:
_ = session.run(gen_train_op)
# Train critic
for i in xrange(args.critic_iters):
_data = gen.next()
_disc_cost, _ = session.run(
[disc_cost, disc_train_op],
feed_dict={real_inputs_discrete:_data}
)
lib.plot.output_dir = args.output_dir
lib.plot.plot('time', time.time() - start_time)
lib.plot.plot('train disc cost', _disc_cost)
if iteration % 100 == 0 and iteration > 0:
samples = []
for i in xrange(10):
samples.extend(generate_samples())
for i in xrange(4):
lm = utils.NgramLanguageModel(i+1, samples, tokenize=False)
lib.plot.plot('js{}'.format(i+1), lm.js_with(true_char_ngram_lms[i]))
with open(os.path.join(args.output_dir, 'samples', 'samples_{}.txt').format(iteration), 'w') as f:
for s in samples:
s = "".join(s)
f.write(s + "\n")
if iteration % args.save_every == 0 and iteration > 0:
model_saver = tf.train.Saver()
model_saver.save(session, os.path.join(args.output_dir, 'checkpoints', 'checkpoint_{}.ckpt').format(iteration))
if iteration % 100 == 0:
lib.plot.flush()
lib.plot.tick()