forked from Murali-group/Beeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
178 lines (155 loc) · 6.31 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/usr/bin/env python
import argparse
import itertools
import pickle
from typing import Any, Dict
import pandas as pd
import yaml
from sklearn.metrics import (
auc,
accuracy_score,
average_precision_score,
brier_score_loss,
confusion_matrix,
f1_score,
jaccard_score,
matthews_corrcoef,
precision_recall_curve,
roc_auc_score,
roc_curve,
cohen_kappa_score
)
def read_config(path: str) -> Dict[str, Any]:
with open(path) as f:
content = yaml.load(f, Loader=yaml.FullLoader)
return content
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser(
description="Custom GRN evaluation (TPR, FPR, F1-score)"
)
# arg_parser.add_argument("--folder", help="Folder path [str]", action="store", type=str)
arg_parser.add_argument(
"--config",
help="Configuration file [str]",
action="store",
type=str,
required=True,
)
args = arg_parser.parse_args()
# config-files/Synthetic/dyn-LI.yaml
config = read_config(args.config)
DELIMINTER: str = "#"
algorithms = [x["name"] for x in config["input_settings"]["algorithms"]]
datasets = config["input_settings"]["datasets"]
metrics = {}
for dataset in datasets:
metrics[dataset["name"]] = {
alg: {
"tn": 0,
"fp": 0,
"fn": 0,
"tp": 0,
"accuracy_score": 0,
"brier_score_loss": 0,
"jaccard_score": 0,
"auroc": 0,
"auprc": 0,
"average_precision_score": 0,
"f1_micro": 0,
"f1_macro": 0,
"f1_weighted": 0,
"tpr": 0,
"fpr": 0,
"fdr": 0,
"mcc": 0,
"cohen_kappa": 0,
}
for alg in algorithms
}
in_path: str = (
f"{config['input_settings']['input_dir']}/{config['input_settings']['dataset_dir']}/{dataset['name']}"
)
out_path: str = (
f"{config['output_settings']['output_dir']}/{config['input_settings']['dataset_dir']}/{dataset['name']}"
)
for algorithm in algorithms:
expr_file: str = f"{in_path}/{dataset['exprData']}"
reference_file: str = f"{in_path}/{dataset['trueEdges']}"
infered_file: str = f"{out_path}/{algorithm}/rankedEdges.csv"
genes = pd.read_csv(expr_file, index_col=0).index
# ignores self-edge by default
pairwise_genes = list(
map(DELIMINTER.join, itertools.permutations(genes, 2))
)
# Gold standard network
gold_net = pd.read_csv(reference_file)
gold_net_interactions = gold_net[["Gene1", "Gene2"]].agg(
DELIMINTER.join, axis=1
)
# predicted network (rankedEdges.csv)
predicted = pd.read_csv(infered_file, sep="\t").query("EdgeWeight > 0")
predicted_net_interactions = predicted[["Gene1", "Gene2"]].agg(
DELIMINTER.join, axis=1
)
# predicted["key"] = predicted_net_interactions
# Dataframe containing both reference and predicted
evaluation = pd.DataFrame(
0, index=pairwise_genes, columns=["reference", "predicted"]
)
evaluation.loc[
evaluation.index.intersection(gold_net_interactions), "reference"
] = 1
evaluation.loc[
evaluation.index.intersection(predicted_net_interactions), "predicted"
] = 1
# evaluation.loc[
# evaluation.index.intersection(predicted_net_interactions), "predicted"
# ] = (
# predicted.set_index("key")
# .loc[
# evaluation.index.intersection(predicted_net_interactions),
# "EdgeWeight",
# ]
# .values
# )
y_true, y_pred = evaluation.reference.ravel(), evaluation.predicted.ravel()
TN, FP, FN, TP = confusion_matrix(y_true, y_pred).ravel()
F1 = TP / (TP + 0.5 * (FP + FN))
# TPR = TP / (TP + FN)
# FPR = FP / (FP + TN)
FDR = FP / (FP + TP)
FPR, TPR, thresholds = roc_curve(y_true, y_pred, pos_label=1)
PRECISION, RECALL, thresholds = precision_recall_curve(y_true, y_pred, pos_label=1)
metrics[dataset["name"]][algorithm]["tn"] = TN
metrics[dataset["name"]][algorithm]["fp"] = FP
metrics[dataset["name"]][algorithm]["fn"] = FN
metrics[dataset["name"]][algorithm]["tp"] = TP
metrics[dataset["name"]][algorithm]["accuracy_score"] = accuracy_score(y_true, y_pred)
metrics[dataset["name"]][algorithm]["brier_score_loss"] = brier_score_loss(y_true, y_pred)
metrics[dataset["name"]][algorithm]["jaccard_score"] = jaccard_score(y_true, y_pred)
metrics[dataset["name"]][algorithm]["auroc"] = roc_auc_score(y_true, y_pred)
metrics[dataset["name"]][algorithm]["auprc"] = auc(RECALL, PRECISION)
metrics[dataset["name"]][algorithm]["average_precision_score"] = average_precision_score(
y_true, y_pred
)
metrics[dataset["name"]][algorithm]["f1_micro"] = f1_score(
y_true, y_pred, average="micro"
)
metrics[dataset["name"]][algorithm]["f1_macro"] = f1_score(
y_true, y_pred, average="macro"
)
metrics[dataset["name"]][algorithm]["f1_weighted"] = f1_score(
y_true, y_pred, average="weighted"
)
metrics[dataset["name"]][algorithm]["tpr"] = TPR
metrics[dataset["name"]][algorithm]["fpr"] = FPR
metrics[dataset["name"]][algorithm]["fdr"] = FDR
metrics[dataset["name"]][algorithm]["mcc"] = matthews_corrcoef(
y_true, y_pred
)
metrics[dataset["name"]][algorithm]["cohen_kappa"] = cohen_kappa_score(y_true, y_pred)
metrics_path: str = (
f"{config['output_settings']['output_dir']}/{config['input_settings']['dataset_dir']}"
)
with open(f"{metrics_path}/metrics_v2.pkl", "wb") as f:
pickle.dump(metrics, f)