-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathclustering_comparison.py
132 lines (106 loc) · 5.04 KB
/
clustering_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import time
import warnings
from itertools import cycle, islice
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_blobs, make_circles, make_moons
from sklearn.preprocessing import StandardScaler
import dislib as ds
from dislib.cluster import KMeans, DBSCAN, GaussianMixture
def main():
np.random.seed(0)
# ============
# Generate datasets. We choose the size big enough to see the scalability
# of the algorithms, but not too big to avoid too long running times
# ============
n_samples = 1500
noisy_circles = make_circles(n_samples=n_samples, factor=.5, noise=.05,
random_state=170)
noisy_moons = make_moons(n_samples=n_samples, noise=.05)
blobs = make_blobs(n_samples=n_samples, random_state=8)
no_structure = np.random.rand(n_samples, 2), None
# Anisotropicly distributed data
random_state = 170
X, y = make_blobs(n_samples=n_samples, random_state=random_state)
transformation = [[0.6, -0.6], [-0.4, 0.8]]
X_aniso = np.dot(X, transformation)
aniso = (X_aniso, y)
# blobs with varied variances
varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5],
random_state=random_state)
# ============
# Set up cluster parameters
# ============
plt.figure(figsize=(9 * 2 + 3, 12.5))
plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,
hspace=.01)
plot_num = 1
default_base = {'quantile': .3, 'eps': .3, 'damping': .9,
'preference': -200, 'n_neighbors': 10, 'n_clusters': 3}
datasets = [(noisy_circles,
{'damping': .77, 'preference': -240, 'quantile': .2,
'n_clusters': 2}), (noisy_moons,
{'damping': .75, 'preference': -220,
'n_clusters': 2}),
(varied, {'eps': .18, 'n_neighbors': 2}),
(aniso, {'eps': .15, 'n_neighbors': 2}), (blobs, {}),
(no_structure, {})]
for i_dataset, (dataset, algo_params) in enumerate(datasets):
# update parameters with dataset-specific values
params = default_base.copy()
params.update(algo_params)
X, y = dataset
# normalize dataset for easier parameter selection
X = StandardScaler().fit_transform(X)
# ============
# Create cluster objects
# ============
kmeans = KMeans(n_clusters=params["n_clusters"])
dbscan = DBSCAN(eps=params["eps"], n_regions=1)
gm = GaussianMixture(n_components=params["n_clusters"])
clustering_algorithms = (('K-Means', kmeans), ('DBSCAN', dbscan),
('Gaussian mixture', gm))
for name, algorithm in clustering_algorithms:
t0 = time.time()
# catch warnings related to kneighbors_graph
with warnings.catch_warnings():
warnings.filterwarnings("ignore",
message="the number of connected "
"components of the "
"connectivity matrix is ["
"0-9]{1,2} > 1. Completing "
"it to avoid stopping the "
"tree early.",
category=UserWarning)
warnings.filterwarnings("ignore", message="Graph is not fully "
"connected, "
"spectral "
"embedding may not "
"work as "
"expected.",
category=UserWarning)
data = ds.array(X, block_size=(300, 2))
algorithm.fit(data)
t1 = time.time()
y_pred = algorithm.fit_predict(data).collect()
plt.subplot(len(datasets), len(clustering_algorithms), plot_num)
if i_dataset == 0:
plt.title(name, size=18)
colors = np.array(list(islice(cycle(
['#377eb8', '#ff7f00', '#4daf4a', '#f781bf', '#a65628',
'#984ea3', '#999999', '#e41a1c', '#dede00']),
int(max(y_pred) + 1))))
# add black color for outliers (if any)
colors = np.append(colors, ["#000000"])
plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred])
plt.xlim(-2.5, 2.5)
plt.ylim(-2.5, 2.5)
plt.xticks(())
plt.yticks(())
plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),
transform=plt.gca().transAxes, size=15,
horizontalalignment='right')
plot_num += 1
plt.show()
if __name__ == "__main__":
main()