-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.md.tpl
50 lines (35 loc) · 1.69 KB
/
README.md.tpl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# ML metrics
[![GoDoc](https://godoc.org/github.com/bsm/mlmetrics?status.svg)](https://godoc.org/github.com/bsm/mlmetrics)
[![Test](https://github.com/bsm/openmetrics/actions/workflows/test.yml/badge.svg)](https://github.com/bsm/openmetrics/actions/workflows/test.yml)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
Common metrics for evaluation of machine learning models.
Goals:
* Fast!
* Thread-safe
* Support for online evaluation
## Supported Metrics
Classification:
* [Accuracy](https://en.wikipedia.org/wiki/Accuracy_and_precision)
* [Confusion Matrix](https://en.wikipedia.org/wiki/Confusion_matrix)
* [F1 Score](https://en.wikipedia.org/wiki/F1_score)
* [Kappa](https://en.wikipedia.org/wiki/Cohen%27s_kappa)
* [Matthews](https://en.wikipedia.org/wiki/Matthews_correlation_coefficient)
* [LogLoss](https://en.wikipedia.org/wiki/Loss_functions_for_classification)
* [Precision](https://en.wikipedia.org/wiki/Information_retrieval#Precision)
* [Sensitivity](https://en.wikipedia.org/wiki/Sensitivity_(test))
Regression:
* [Mean Absolute Error](https://en.wikipedia.org/wiki/Mean_absolute_error)
* [Mean Squared Error](https://en.wikipedia.org/wiki/Mean_squared_error)
* [Root Mean Squared Error](https://en.wikipedia.org/wiki/Root-mean-square_deviation)
* [Mean Squared Error](https://en.wikipedia.org/wiki/Root-mean-square_deviation)
* [R²](https://en.wikipedia.org/wiki/Coefficient_of_determination)
## Documentation
Documentation and example are available via godoc at http://godoc.org/github.com/bsm/mlmetrics
## Example
```go
package main
import (
"github.com/bsm/mlmetrics"
)
func main() {{ "ExampleConfusionMatrix" | code }}
```