forked from naver-ai/tc-clip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
304 lines (251 loc) · 13.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""
TC-CLIP
Copyright (c) 2024-present NAVER Cloud Corp.
CC BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/)
"""
import os
import torch
import torch.nn as nn
import torch.distributed as dist
from pathlib import Path
import numpy as np
import wandb
import hydra
from omegaconf import DictConfig, OmegaConf
from apex import amp
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from datasets.build import build_train_dataloader, build_val_dataloader
from datasets.blending import CutmixMixupBlending
from trainers.build_trainer import returnCLIP
from utils.optimizer import build_optimizer, build_scheduler
from utils.tools import epoch_saving, load_checkpoint, is_main, init_dist, get_dist_info, set_random_seed
from utils.logger import create_logger
from utils.print_utils import colorstr, print_configs
from engine import train_one_epoch, validate
def main_training(logger, config):
"------------ Build dataloader, criterion -----------"
train_data, train_loader, class_names = build_train_dataloader(logger, config)
val_data, val_loader, _ = build_val_dataloader(logger, config, target_data_config=config.data.val)
mixup_fn = None
if config.aug.mixup > 0:
criterion = SoftTargetCrossEntropy()
mixup_fn = CutmixMixupBlending(num_classes=config.data.train.num_classes,
smoothing=config.aug.label_smooth,
mixup_alpha=config.aug.mixup,
cutmix_alpha=config.aug.cutmix,
switch_prob=config.aug.mixup_switch_prob)
elif config.aug.label_smooth > 0:
criterion = LabelSmoothingCrossEntropy(smoothing=config.aug.label_smooth)
else:
criterion = nn.CrossEntropyLoss()
"------------ Build model, optimizer, scheduler -----------"
model = returnCLIP(config, logger, class_names)
model = model.cuda()
optimizer = build_optimizer(logger, config, model)
lr_scheduler = build_scheduler(config, optimizer, len(train_loader))
if config.opt_level != 'O0':
model, optimizer = amp.initialize(models=model, optimizers=optimizer, opt_level=config.opt_level)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.rank], broadcast_buffers=False,
find_unused_parameters=False)
"------------ Load checkpoint -----------"
start_epoch, max_accuracy, max_accuracy_acc5, load_model_only = 0, 0.0, 0.0, True
if config.auto_resume:
resume_file = os.path.join(config.output, 'last.pth') # resume from last.pth
if resume_file:
config.resume = resume_file
logger.info(f'auto resuming from {resume_file}')
load_model_only = False
else:
logger.info(f'no checkpoint found in {config.output}, ignoring auto resume')
if config.resume:
start_epoch, max_accuracy = load_checkpoint(config, model, optimizer, lr_scheduler,
logger, model_only=load_model_only)
if not config.auto_resume and start_epoch > 1: # reset epoch only when finetuning
logger.info("resetting epochs no and max. accuracy to 0 after loading pre-trained weights")
start_epoch = 0
max_accuracy = 0
"------------ Eval only mode -----------"
if config.eval is not None:
test_stats = validate(val_loader, model, logger, config)
logger.info(f"Accuracy of the network on the {len(val_data)} test videos: Acc@1 {test_stats['acc1']:.1f}, "
f"Acc@5 {test_stats['acc5']:.1f}\n")
return
"------------ Training mode -----------"
for epoch in range(start_epoch, config.epochs):
train_loader.sampler.set_epoch(epoch)
# train
train_stats = train_one_epoch(epoch, model, criterion, optimizer, lr_scheduler, train_loader, logger, config, mixup_fn)
log_stats = {**{f'train/{k}': v for k, v in train_stats.items()},
'epoch': epoch}
logger.info("\n")
if is_main() and config.use_wandb:
wandb.log(log_stats, step=(epoch + 1) * len(train_loader) - 1)
# validation
if epoch % config.save_freq == 0 or epoch == (config.epochs - 1) or epoch == start_epoch:
test_stats = validate(val_loader, model, logger, config)
acc1, acc5 = test_stats['acc1'], test_stats['acc5']
logger.info(f"Accuracy of the network on the {len(val_data)} test videos: Acc@1 {acc1:.1f}, "
f"Acc@5 {acc5:.1f}\n")
is_best = acc1 > max_accuracy
max_accuracy = acc1 if is_best else max_accuracy
max_accuracy_acc5 = acc5 if is_best else max_accuracy_acc5
logger.info(f'Max accuracy: {max_accuracy:.2f}%\n')
if is_main() and (epoch % config.save_freq == 0 or epoch == (config.epochs - 1) or is_best):
epoch_saving(config, epoch, model, max_accuracy, optimizer, lr_scheduler, logger, config.output,
is_best)
log_stats = {'val/acc1': acc1,
'val/acc5': acc5,
'val/best': max_accuracy,
'val/best5': max_accuracy_acc5}
if is_main() and config.use_wandb:
wandb.log(log_stats, step=(epoch + 1) * len(train_loader) - 1)
# early stopping
if config.early_stop and acc1 < max_accuracy:
logger.info(f"Early stopping at epoch {epoch}...")
break
del model
torch.cuda.empty_cache()
"------------ Final testing with best checkpoint -----------"
if config.final_test and 'test' in config.data: # test best checkpoint
config.resume = os.path.join(config.output, 'best.pth')
main_testing(logger, config)
# weight-space ensembling
if config.protocol == 'zero_shot':
config.wise_ft = 0.7
main_testing(logger, config, prefix='test_w0.7')
return
def main_testing(logger, config, prefix='test'):
if config.protocol == 'fully_supervised' and config.multi_view_inference:
config.num_clip = 4
config.num_crop = 3
elif config.protocol == 'zero_shot' and config.multi_view_inference:
config.num_clip = 2
if config.num_clip != 1 or config.num_crop != 1:
logger.info(f"======== Testing with multi-view inference: "
f"{config.num_frames}x{config.num_clip}x{config.num_crop} ========")
model, clip_model = None, None
result_dict = {}
total_acc1_list = []
for dataset_config in config.data.test:
name = dataset_config.name # ex. hmdb51_val
protocol = dataset_config.get("protocol", "top1")
acc1_list, acc5_list = [], []
for test_config in dataset_config.dataset_list:
dataset_name = test_config.dataset_name
logger.info(f"======== Start evaluation on {colorstr(dataset_name)} =======")
"------------ Build dataloader, model -----------"
val_data, val_loader, class_names = build_val_dataloader(logger, config, target_data_config=test_config)
# At first iteration, build model & load checkpoints
if model is None:
model, clip_model = returnCLIP(config, logger, class_names, return_clip_model=True)
model.cuda()
if config.opt_level != 'O0':
model = amp.initialize(models=model, opt_level=config.opt_level)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.rank], broadcast_buffers=False,
find_unused_parameters=False)
if config.resume:
epoch_loaded, max_accuray_loaded = load_checkpoint(config, model, None, None, logger, model_only=True)
logger.info(
f"Loaded checkpoint at epoch {epoch_loaded} with max accuracy {max_accuray_loaded:.1f}")
# From second iteration, just rebuild classnames part only
else:
model.module._rebuild_classnames(config, class_names, clip_model, logger)
"------------ Validation -----------"
test_stats = validate(val_loader, model, logger, config)
acc1_list.append(test_stats['acc1'])
acc5_list.append(test_stats['acc5'])
logger.info(f"Accuracy of the checkpoint on {colorstr(dataset_name)} test videos (size: {len(val_data)}): "
f"Acc@1 {test_stats['acc1']:.1f}, Acc@5 {test_stats['acc5']:.1f}")
del val_loader
del val_data
torch.cuda.empty_cache()
if protocol == "avg_std":
result_dict[name] = {'acc1_avg': np.mean(acc1_list), 'acc1_std': np.std(acc1_list),
'acc5_avg': np.mean(acc5_list), 'acc5_std': np.std(acc5_list), 'protocol': protocol}
total_acc1_list.append(np.mean(acc1_list))
else:
result_dict[name] = {'acc1': acc1_list[-1], 'acc5': acc5_list[-1], 'protocol': protocol}
total_acc1_list.append(acc1_list[-1])
"------------ Log results -----------"
if is_main() and config.use_wandb:
wandb.log({f'{prefix}/acc1_total': np.mean(total_acc1_list),
f'{prefix}/mean': (max_accuray_loaded + np.mean(total_acc1_list)) / 2.})
for name, result in result_dict.items():
protocol = result.pop('protocol')
if protocol == "avg_std":
logger.info(f"Accuracy of the checkpoint on {name} test videos: "
f"Acc@1 {result['acc1_avg']:.1f} (+- {result['acc1_std']:.1f}), Acc@5 {result['acc5_avg']:.1f} (+- {result['acc5_std']:.1f})\n")
else:
logger.info(f"Accuracy of the checkpoint on {name} test videos: "
f"Acc@1 {result['acc1']:.1f}, Acc@5 {result['acc5']:.1f}\n")
if len(result_dict) > 1:
log_stats = {f"{prefix}/{name}_{k}": v for k, v in result.items()}
else:
log_stats = {f"{prefix}/{k}": v for k, v in result.items()}
if is_main() and config.use_wandb:
wandb.log(log_stats)
return
@hydra.main(version_base=None, config_path="configs", config_name="zero_shot")
def main(config: DictConfig) -> None:
if config.eval is None and config.protocol in ['zero_shot', 'few_shot', 'base2novel', 'fully_supervised']:
assert config.protocol in config.selected_option.data, "Selected data should be same with the protocol"
if config.protocol == "few_shot":
assert config.shot in [2, 4, 8, 16], "Number of shot 'config.shot' should be defined"
if config.protocol == "base2novel":
assert config.base in [1, 2, 3], "Base seed 'config.base' should be defined"
OmegaConf.set_struct(config, False) # Needed to add fields at runtime below
# Force num_workers=4 in hmdb51
if 'hmdb51' in config.selected_option.data:
config.num_workers = 4
# Init DDP
if os.getenv('RANK') is None:
raise Exception("This code only supports DDP mode. Try with DDP")
init_dist()
# Define working dir
Path(config.output).mkdir(parents=True, exist_ok=True)
# logger
logger = create_logger(output_dir=config.output, dist_rank=dist.get_rank(), name=f"{config.trainer_name}")
logger.info(f"working dir: {config.output}")
config.rank, config.world_size = get_dist_info()
config.num_gpus = config.world_size
if config.num_gpus == 1:
logger.info(colorstr('Single GPU'))
config.distributed = False
else:
logger.info(colorstr('DDP')+f' with {config.num_gpus} GPUs')
config.distributed = True
# Random seed
if config.seed is not None:
set_random_seed(config.seed + config.rank, use_cudnn=config.use_cudnn)
# Set accumulation steps
config.accumulation_steps = config.total_batch_size // (config.num_gpus*config.batch_size)
logger.info(f"Total batch size ({config.total_batch_size}) "
f"= num_gpus ({config.num_gpus}) * batch_size ({config.batch_size}) "
f"* accumulation_steps ({config.accumulation_steps})")
# wandb logger
if config.eval is not None or config.get('debug', False):
config.use_wandb = False
elif is_main() and config.use_wandb:
os.environ["WANDB_API_KEY"] = config.wandb_api_key
expr_name = os.path.split(config.output)[-1]
tags = [f"{config.shot}shot" if config.protocol == "few_shot" else None,
f"s{config.base}" if config.protocol == "base2novel" else None]
tags = [t for t in tags if t is not None]
tags.extend(config.get('wandb_tags', []))
cfg_dict = OmegaConf.to_container(config, resolve=True)
wandb.init(name=expr_name, project=config.wandb_project, dir=config.wandb_logging_dir,
config=cfg_dict, tags=tags)
# print configs
print_configs(logger, config)
if config.eval is None:
main_training(logger, config)
elif config.eval == "val":
main_training(logger, config)
elif config.eval == "test":
main_testing(logger, config)
else:
raise NotImplementedError
if is_main():
wandb.finish()
if __name__ == '__main__':
main()