-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathIRCUR.m
181 lines (154 loc) · 5.21 KB
/
IRCUR.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
function [ C, pinv_U , R, timer, err ] = IRCUR( D, r, para )
%
% Inputs:
% D : Observed matrix. Sum of underlying low rank matrix and underlying
% sparse matrix.
% r : Target rank of underlying low rank matrix.
% params : parameters for the algorithm
% .max_iter : Maximum number of iterations. (default 200)
% .tol : Desired Frobenius norm error. (default 1e-6)
% .zeta_init : Parameter for thresholding at initialization. (default
% max(abs(D(:))))
% .gamma : Parameter for desired convergence rate. Value should between 0
% and 1. Turn this parameter bigger will slow the convergence
% speed but tolerate harder problem, such as higher alpha, r or
% mu. (default 0.7)
% .mu : Incoherence of underlying low rank matrix. Input can be in format
% of .mu = mu_max, or .mu = [mu_U, mu_V]. (default 5)
% .con : constant for row/column samples. con*r*log(n) rows and columns
% will be sampled. (default 4)
% .resample : Whether the program resamples the rows and columns every
% iteration. (default true)
%
% Outputs:
% C, pinv_U, R : CUR decomposition of D, pinv_U is the seudo inverse of U.
% timer : time consumed in each iteration.
% err: relative error of each iteration.
%
% Please cite our paper "Rapid Robust Principal Component Analysis:
% CUR Accelerated Inexact Low Rank Estimation" if you use this code
%
%% Default/Inputed parameters
max_iter = 200;
tol = 1e-5;
zeta_init = max(abs(D(:)));
gamma = 0.7;
mu = 5;
con = 4;
resample = true;
%% parameter setting
if isfield(para,'zeta_init')
zeta_init = para.zeta_init;
fprintf('zeta_init = %f set.\n', zeta_init);
else
fprintf('using default zeta_init = %f.\n', zeta_init);
end
if isfield(para,'gamma')
gamma = para.gamma;
fprintf('gamma = %f set.\n', tol);
else
fprintf('using default gamma = %f.\n', gamma);
end
if isfield(para,'mu')
mu = para.mu;
fprintf('mu = [%f,%f] set.\n', mu(1), mu(end));
else
fprintf('using default mu = [%f,%f].\n', mu, mu);
end
if isfield(para,'max_iter')
max_iter = para.max_iter;
fprintf('max_iter = %d set.\n', max_iter);
else
fprintf('using default max_iter = %d.\n', max_iter);
end
if isfield(para,'tol')
tol= para.tol;
fprintf('tol = %e set.\n', tol);
else
fprintf('using default tol = %e.\n', tol);
end
if isfield(para,'con')
con = para.con;
fprintf('sample const = %d set. \n',con);
else
fprintf('using default sample const = %d. \n',con);
end
if isfield(para,'resample')
resample = para.resample;
fprintf('resample = %d set. \n',resample);
else
fprintf('using default resample = %d. \n',resample);
end
err = -1*ones(max_iter,1);
timer = zeros(max_iter,1);
tic
[m,n] = size(D);
siz_col = ceil(con*r*log(n));
siz_row = ceil(con*r*log(m));
if ~resample
rows = randi(m,1,siz_row);
cols = randi(n,1,siz_col);
rows = unique(rows);
cols = unique(cols);
D_cols = D(:,cols);
D_rows = D(rows,:);
norm_of_D = (norm(D_rows, 'fro')+ norm(D_cols, 'fro'));
end
init_timer = toc;
%% main algorithm
for t = 1 : max_iter
tic;
%% Resample
if resample
rows = randi(m,1,siz_row);
cols = randi(n,1,siz_col);
rows = unique(rows);
cols = unique(cols);
D_cols = D(:,cols);
D_rows = D(rows,:);
norm_of_D = (norm(D_rows, 'fro')+ norm(D_cols, 'fro'));
end
%% update S
if t == 1
zeta = zeta_init;
L_cols = zeros(size(D_cols));
L_rows = zeros(size(D_rows));
S_cols = wthresh( D_cols,'h',zeta);
S_rows = wthresh( D_rows,'h',zeta);
else
zeta = gamma * zeta;
% L_cols = C*pinv_U*(R(:,cols));
L_cols = C*Vu(:,1:r)*(Su*(Uu(:,1:r))'*(R(:,cols)));
% L_rows = (C(rows,:))*pinv_U*R;
L_rows = (C(rows,:))*Vu(:,1:r)*(Su*(Uu(:,1:r))'*R);
S_rows = wthresh( D_rows-L_rows,'h',zeta);
S_cols = wthresh( D_cols-L_cols,'h',zeta);
end
%% Update L = C * pinv_U * R
C = D_cols-S_cols;
R = D_rows-S_rows;
MU = C(rows,:);
[Uu,Su,Vu] = svd(MU);
d = diag(Su);
Su = diag(1./d(1:r));
% pinv_U = Vu(:,1:r)*Su*(Uu(:,1:r))';
%% Stop Condition
% To save the computing of L_row and L_col in resample version, we are
% actually computing err with perivous L and current S.
err(t) = (norm(D_rows-L_rows-S_rows, 'fro') + norm(D_cols-L_cols-S_cols, 'fro')) / norm_of_D;
timer(t) = toc;
if err(t) < tol
fprintf('Total %d iteration, final error: %e, total time: %f \n', t, err(t), sum(timer(timer>0)));
pinv_U = Vu(:,1:r)*Su*(Uu(:,1:r))';
timer(1) = timer(1) + init_timer;
timer = timer(1:t);
err = err(1:t);
return;
else
fprintf('Iteration %d: error: %e, timer: %f \n', t, err(t), timer(t));
end
end
fprintf('Maximum iterations reached, final error: %e.\n======================================\n', err(t));
pinv_U = Vu(:,1:r)*Su*(Uu(:,1:r))';
timer(1) = timer(1) + init_timer;
end