-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathbase_model.py
129 lines (112 loc) · 5.16 KB
/
base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn
import torch.nn.functional as nnf
from config import config
from torch.autograd import Variable
from torch.optim import Adam
from metrics import mrr_mr_hitk
from data_utils import batch_by_size
import logging
class BaseModule(nn.Module):
def __init__(self):
super(BaseModule, self).__init__()
def score(self, src, rel, dst):
raise NotImplementedError
def dist(self, src, rel, dst):
raise NotImplementedError
def prob_logit(self, src, rel, dst):
raise NotImplementedError
def prob(self, src, rel, dst):
return nnf.softmax(self.prob_logit(src, rel, dst))
def constraint(self):
pass
def pair_loss(self, src, rel, dst, src_bad, dst_bad):
d_good = self.dist(src, rel, dst)
d_bad = self.dist(src_bad, rel, dst_bad)
return nnf.relu(self.margin + d_good - d_bad)
def softmax_loss(self, src, rel, dst, truth):
probs = self.prob(src, rel, dst)
n = probs.size(0)
truth_probs = torch.log(probs[torch.arange(0, n).type(torch.LongTensor).cuda(), truth] + 1e-30)
return -truth_probs
class BaseModel(object):
def __init__(self):
self.mdl = None # type: BaseModule
self.weight_decay = 0
def save(self, filename):
torch.save(self.mdl.state_dict(), filename)
def load(self, filename):
self.mdl.load_state_dict(torch.load(filename, map_location=lambda storage, location: storage.cuda()))
def gen_step(self, src, rel, dst, n_sample=1, temperature=1.0, train=True):
if not hasattr(self, 'opt'):
self.opt = Adam(self.mdl.parameters(), weight_decay=self.weight_decay)
n, m = dst.size()
rel_var = Variable(rel.cuda())
src_var = Variable(src.cuda())
dst_var = Variable(dst.cuda())
logits = self.mdl.prob_logit(src_var, rel_var, dst_var) / temperature
probs = nnf.softmax(logits)
row_idx = torch.arange(0, n).type(torch.LongTensor).unsqueeze(1).expand(n, n_sample)
sample_idx = torch.multinomial(probs, n_sample, replacement=True)
sample_srcs = src[row_idx, sample_idx.data.cpu()]
sample_dsts = dst[row_idx, sample_idx.data.cpu()]
rewards = yield sample_srcs, sample_dsts
if train:
self.mdl.zero_grad()
log_probs = nnf.log_softmax(logits)
reinforce_loss = -torch.sum(Variable(rewards) * log_probs[row_idx.cuda(), sample_idx.data])
reinforce_loss.backward()
self.opt.step()
self.mdl.constraint()
yield None
def dis_step(self, src, rel, dst, src_fake, dst_fake, train=True):
if not hasattr(self, 'opt'):
self.opt = Adam(self.mdl.parameters(), weight_decay=self.weight_decay)
src_var = Variable(src.cuda())
rel_var = Variable(rel.cuda())
dst_var = Variable(dst.cuda())
src_fake_var = Variable(src_fake.cuda())
dst_fake_var = Variable(dst_fake.cuda())
losses = self.mdl.pair_loss(src_var, rel_var, dst_var, src_fake_var, dst_fake_var)
fake_scores = self.mdl.score(src_fake_var, rel_var, dst_fake_var)
if train:
self.mdl.zero_grad()
torch.sum(losses).backward()
self.opt.step()
self.mdl.constraint()
return losses.data, -fake_scores.data
def test_link(self, test_data, n_ent, heads, tails, filt=True):
mrr_tot = 0
mr_tot = 0
hit10_tot = 0
count = 0
for batch_s, batch_r, batch_t in batch_by_size(config().test_batch_size, *test_data):
batch_size = batch_s.size(0)
rel_var = Variable(batch_r.unsqueeze(1).expand(batch_size, n_ent).cuda())
src_var = Variable(batch_s.unsqueeze(1).expand(batch_size, n_ent).cuda())
dst_var = Variable(batch_t.unsqueeze(1).expand(batch_size, n_ent).cuda())
all_var = Variable(torch.arange(0, n_ent).unsqueeze(0).expand(batch_size, n_ent)
.type(torch.LongTensor).cuda(), volatile=True)
batch_dst_scores = self.mdl.score(src_var, rel_var, all_var).data
batch_src_scores = self.mdl.score(all_var, rel_var, dst_var).data
for s, r, t, dst_scores, src_scores in zip(batch_s, batch_r, batch_t, batch_dst_scores, batch_src_scores):
if filt:
if tails[(s, r)]._nnz() > 1:
tmp = dst_scores[t]
dst_scores += tails[(s, r)].cuda() * 1e30
dst_scores[t] = tmp
if heads[(t, r)]._nnz() > 1:
tmp = src_scores[s]
src_scores += heads[(t, r)].cuda() * 1e30
src_scores[s] = tmp
mrr, mr, hit10 = mrr_mr_hitk(dst_scores, t)
mrr_tot += mrr
mr_tot += mr
hit10_tot += hit10
mrr, mr, hit10 = mrr_mr_hitk(src_scores, s)
mrr_tot += mrr
mr_tot += mr
hit10_tot += hit10
count += 2
logging.info('Test_MRR=%f, Test_MR=%f, Test_H@10=%f', mrr_tot / count, mr_tot / count, hit10_tot / count)
return mrr_tot / count