-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompile_results.py
333 lines (276 loc) · 10.7 KB
/
compile_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import pandas as pd
import os
import re
import seaborn as sns
import matplotlib.pyplot as plt
from tabulate import tabulate
from matplotlib.patches import Patch
import numpy as np
PRECISION = 2
TH = 0.01 # Threshold for rounding values less than 0.1 to scientific notation
EXPONENT = -4 # Exponent for scientific notation
pd.options.display.float_format = "{:,.4f}".format
RUNS_DIR = "./bundle/runs"
OUT_DIR = os.path.join(RUNS_DIR, "results_summary")
COMPONENTS = {
"ET": "Enhacing Tumor",
"TC": "Tumor Core",
"WT": "Whole Tumor",
"mean": "Average",
}
COMPONENTS_RAW = { # as the names appear in the raw csv files
"class0": "Enhacing Tumor",
"class1": "Tumor Core",
"class2": "Whole Tumor",
"mean": "Average",
}
METRICS = {
"mean_dice": "Dice Score",
"ece": "Expected Calibration Error",
"ace": "Average Calibration Error",
"mce": "Maximum Calibration Error",
}
RUNS = {
"baseline_ce_brats_2021_high": "CE",
"hardl1ace_ce_brats_2021_high": "CE + hL1-ACE",
"baseline_dice_brats_2021_high": "Dice",
"hardl1ace_dice_brats_2021_high": "Dice + hL1-ACE",
"baseline_dice_ce_brats_2021_high": "Dice + CE",
"hardl1ace_dice_ce_brats_2021_high": "Dice + CE + hL1-ACE",
}
RUNS_TEMP_SCALE = {key + "_temp_scaled": value + " + Ts" for key, value in RUNS.items()}
RUNS_SCATTER = {
"baseline_ce_brats_2021_high": "baseline",
"baseline_dice_brats_2021_high": "baseline",
"baseline_dice_ce_brats_2021_high": "baseline",
"hardl1ace_ce_brats_2021_high": "hL1-ACE",
"hardl1ace_dice_brats_2021_high": "hL1-ACE",
"hardl1ace_dice_ce_brats_2021_high": "hL1-ACE",
}
def format_value(value, precision, threshold, exponent):
"""Custom format function to display values in scientific notation with a fixed exponent."""
if value < threshold:
# Convert value to scientific notation with the fixed exponent
value_scaled = value * (10**-exponent)
return f"{value_scaled:.{precision}f}"
else:
# Standard decimal format
return f"{value:.{precision}f}"
def set_plot_style():
plt.rcParams.update(
{
"text.usetex": True, # Use LaTeX to write all text
"font.family": "serif",
"font.serif": ["Times"], # or another LaTeX-like serif font
"font.size": 10, # Match the font size used in the document
"axes.labelsize": 10, # Size of axis labels
"axes.titlesize": 10, # Size of the title
"xtick.labelsize": 10, # Size of the tick labels
"ytick.labelsize": 10, # Size of the tick labels
"legend.fontsize": 10, # Size of the legend
"figure.figsize": [
4.8,
3.0,
], # Adjust figure size to match text width (12.2cm converted to inches)
}
)
def _create_box_plot_subplot(ax, df_box, metric, component, run_names):
sns.set_theme(style="whitegrid")
df_box = df_box.melt(var_name="run", value_name=metric)
sns.boxplot(
x="run",
y=metric,
data=df_box,
ax=ax,
notch=True,
hue="run",
palette="Set2",
dodge=False, # Ensure boxes are side-by-side for each run
)
ax.set_xticks(range(len(run_names)))
ax.set_xticklabels(run_names, rotation=45, fontsize="x-small", ha="right")
ax.set_xlabel("Loss Function")
ax.set_ylabel(METRICS[metric])
ax.set_title(COMPONENTS[component])
ax.legend([], [], frameon=False) # Hide the legend
def create_box_plots():
run_names = list(RUNS.values())
num_components = len(COMPONENTS)
for metric in METRICS:
fig, axs = plt.subplots(
1, num_components, figsize=(20, 5), sharey=True
) # Adjust figsize as needed
df_box = pd.DataFrame()
for run, run_name in RUNS.items():
df_raw = pd.read_csv(
os.path.join(RUNS_DIR, f"{run}/inference_results/{metric}_raw.csv")
)
df_box[run_name] = df_raw["mean"].values
for i, (component, component_name) in enumerate(COMPONENTS.items()):
_create_box_plot_subplot(axs[i], df_box, metric, component, run_names)
plt.tight_layout()
fig.savefig(f"{OUT_DIR}/{metric}.pdf")
plt.close(fig)
def save_metric_summary_csv(print_table=True):
# Ensure OUT_DIR exists
if not os.path.exists(OUT_DIR):
os.makedirs(OUT_DIR)
for metric in METRICS:
# Initialize df_out with string data type
df_out = pd.DataFrame(
index=RUNS.values(), columns=COMPONENTS.values(), dtype="object"
)
for run, run_name in RUNS.items():
df_raw = pd.read_csv(
os.path.join(RUNS_DIR, f"{run}/inference_results/{metric}_raw.csv")
)
raw_mean = df_raw.mean(numeric_only=True)
raw_std = df_raw.std(numeric_only=True)
# Loop through COMPONENTS to set "mean ± std" in df_out
for comp in COMPONENTS_RAW.keys():
if comp in raw_mean and comp in raw_std:
mean = raw_mean[comp]
std = raw_std[comp]
mean_format = format_value(mean, PRECISION, TH, EXPONENT)
std_format = format_value(std, PRECISION, TH, EXPONENT)
df_out.at[run_name, COMPONENTS_RAW[comp]] = (
f"{mean_format} ± {std_format}"
)
# Save to CSV
df_out.to_csv(f"{OUT_DIR}/{metric}_summary.csv")
# Print table if required
if print_table:
print(f"Metric: {METRICS[metric]}")
print(tabulate(df_out, headers="keys", tablefmt="pipe", showindex=True))
print("\nLaTeX version:")
print(
df_out.to_latex(
index=True, caption=METRICS[metric], label=f"tab:{metric}_summary"
)
)
def save_metric_summary_t_scale_csv(print_table=True):
# Ensure OUT_DIR exists
if not os.path.exists(OUT_DIR):
os.makedirs(OUT_DIR)
for metric in METRICS:
# Initialize df_out with string data type
df_out = pd.DataFrame(
index=RUNS_TEMP_SCALE.values(), columns=COMPONENTS.values(), dtype="object"
)
for run, run_name in RUNS_TEMP_SCALE.items():
df_raw = pd.read_csv(
os.path.join(RUNS_DIR, f"{run}/inference_results/{metric}_raw.csv")
)
raw_mean = df_raw.mean(numeric_only=True)
raw_std = df_raw.std(numeric_only=True)
# Loop through COMPONENTS to set "mean ± std" in df_out
for comp in COMPONENTS_RAW.keys():
if comp in raw_mean and comp in raw_std:
mean = raw_mean[comp]
std = raw_std[comp]
mean_format = format_value(mean, PRECISION, TH, EXPONENT)
std_format = format_value(std, PRECISION, TH, EXPONENT)
df_out.at[run_name, COMPONENTS_RAW[comp]] = (
f"{mean_format} ± {std_format}"
)
# Save to CSV
df_out.to_csv(f"{OUT_DIR}/{metric}_summary.csv")
# Print table if required
if print_table:
print(f"Metric: {METRICS[metric]}")
print(tabulate(df_out, headers="keys", tablefmt="pipe", showindex=True))
print("\nLaTeX version:")
print(
df_out.to_latex(
index=True, caption=METRICS[metric], label=f"tab:{metric}_summary"
)
)
def create_scatter_plots(
metric_x="mean_dice", metric_y="ace", pattern=None, suffix="all"
):
sns.set_theme(style="whitegrid")
sns.set_palette("Set2")
num_components = len(COMPONENTS_RAW)
fig, axs = plt.subplots(
1,
num_components,
figsize=(4.8 * num_components, 3.0),
sharex=False,
sharey=False,
)
filtered_runs = {
k: v for k, v in RUNS_SCATTER.items() if not pattern or re.search(pattern, k)
}
if num_components == 1:
axs = [axs]
for i, (comp_key, comp_name) in enumerate(COMPONENTS_RAW.items()):
for run, run_name in filtered_runs.items():
df_x = pd.read_csv(
os.path.join(RUNS_DIR, f"{run}/inference_results/{metric_x}_raw.csv")
)
df_y = pd.read_csv(
os.path.join(RUNS_DIR, f"{run}/inference_results/{metric_y}_raw.csv")
)
if comp_key in df_x.columns and comp_key in df_y.columns:
# Calculate the mean and standard deviation
x_mean = 1 - df_y[comp_key].mean()
y_mean = df_x[comp_key].mean()
x_err = df_y[comp_key].std()
y_err = df_x[comp_key].std()
# Plot the mean with error bars
ax = axs[i]
ax.errorbar(
x_mean,
y_mean,
xerr=x_err,
yerr=y_err,
fmt="o",
label=run_name,
capsize=5,
)
ax.set_title(comp_name)
ax.set_xlabel("1 - " + METRICS[metric_y])
ax.set_ylabel(METRICS[metric_x])
ax.legend(loc="lower left")
# plt.subplots_adjust(wspace=0.3)
plt.tight_layout()
plt.savefig(f"{OUT_DIR}/{metric_x}_vs_{metric_y}_{suffix}.pdf")
plt.close()
if __name__ == "__main__":
out_dir = "./bundle/runs/results_summary"
if not os.path.exists(OUT_DIR):
os.makedirs(OUT_DIR)
set_plot_style()
# create_box_plots()
save_metric_summary_csv()
save_metric_summary_t_scale_csv()
# Plot CE runs:
create_scatter_plots(
pattern=r"(?<!_dice)_ce", suffix="ce", metric_x="mean_dice", metric_y="ace"
)
create_scatter_plots(
pattern=r"(?<!_dice)_ce", suffix="ce", metric_x="mean_dice", metric_y="mce"
)
create_scatter_plots(
pattern=r"(?<!_dice)_ce", suffix="ce", metric_x="mean_dice", metric_y="ece"
)
# Plot Dice runs:
create_scatter_plots(
pattern=r"_dice_(?!ce)", suffix="dice", metric_x="mean_dice", metric_y="ace"
)
create_scatter_plots(
pattern=r"_dice_(?!ce)", suffix="dice", metric_x="mean_dice", metric_y="mce"
)
create_scatter_plots(
pattern=r"_dice_(?!ce)", suffix="dice", metric_x="mean_dice", metric_y="ece"
)
# Plot Dice + CE runs:
create_scatter_plots(
pattern=r"_dice_ce", suffix="dice_ce", metric_x="mean_dice", metric_y="ace"
)
create_scatter_plots(
pattern=r"_dice_ce", suffix="dice_ce", metric_x="mean_dice", metric_y="mce"
)
create_scatter_plots(
pattern=r"_dice_ce", suffix="dice_ce", metric_x="mean_dice", metric_y="ece"
)