forked from maziarraissi/PINNs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02_PINN_简化.py
124 lines (102 loc) · 3.82 KB
/
02_PINN_简化.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import sys
from sklearn.model_selection import train_test_split
sys.path.append(".")
import numpy as np
import torch
from torch.autograd import grad
from network import DNN
from scipy.io import loadmat
import pandas as pd
import torch
import torch.nn as nn
import numpy as np
import os
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
torch.manual_seed(1234)
np.random.seed(1234)
N_u = 2000
data = loadmat(r"D:\02_github\03_PINNs\PINNs-torch\Burgers\burgers_shock.mat")
x = data["x"]
t = data["t"]
u = data["usol"].T
ub = np.array([x.max(), t.max()])
lb = np.array([x.min(), t.min()])
x_, t_ = np.meshgrid(x, t)
x_ = x_.reshape(-1, 1)
t_ = t_.reshape(-1, 1)
u_ = u.reshape(-1, 1)
rand_idx = np.random.choice(len(u_), N_u, replace=False)
x = torch.tensor(x_[rand_idx], dtype=torch.float32).to(device)
t = torch.tensor(t_[rand_idx], dtype=torch.float32).to(device)
xt = torch.cat((x, t), dim=1)
u = torch.tensor(u_[rand_idx], dtype=torch.float32).to(device)
noise = 0.01
noisy_u = u_ + noise * np.std(u_) * np.random.randn(*u_.shape)
noisy_u = torch.tensor(noisy_u[rand_idx], dtype=torch.float32).to(device)
class PINN:
def __init__(self, u):
self.u = u
self.lambda_1 = torch.tensor([0.0], requires_grad=True).to(device)
self.lambda_2 = torch.tensor([-6.0], requires_grad=True).to(device)
self.lambda_1 = torch.nn.Parameter(self.lambda_1)
self.lambda_2 = torch.nn.Parameter(self.lambda_2)
self.net = DNN(dim_in=2, dim_out=1, n_layer=7, n_node=20, ub=ub, lb=lb,).to(
device
)
self.net.register_parameter("lambda_1", self.lambda_1)
self.net.register_parameter("lambda_2", self.lambda_2)
self.optimizer = torch.optim.LBFGS(
self.net.parameters(),
lr=1.0,
max_iter=50000,
max_eval=50000,
history_size=50,
tolerance_grad=1e-5,
tolerance_change=1.0 * np.finfo(float).eps,
line_search_fn="strong_wolfe",
)
self.iter = 0
def f(self, xt):
xt = xt.clone()
xt.requires_grad = True
u = self.net(xt)
f = grad(u.sum(), xt, create_graph=True)[0]
f = torch.clamp(f, 0, 365)
return f
def closure(self):
self.optimizer.zero_grad()
u_pred = self.net(xt)
f_pred = self.f(xt)
mse_u = torch.mean(torch.square(u_pred - self.u))
mse_f = torch.mean(torch.square(f_pred))
loss = mse_u + mse_f
loss.backward()
self.iter += 1
print(
f"\r{self.iter} loss : {loss.item():.3e} l1 : {self.lambda_1.item():.5f}, l2 : {torch.exp(self.lambda_2).item():.5f}",
end="",
)
if self.iter % 500 == 0:
print("")
return loss
def calcError(pinn):
u_pred = pinn.net(torch.hstack((x, t)))
u_pred = u_pred.detach().cpu().numpy()
u_ = u.detach().cpu().numpy()
error_u = np.linalg.norm(u_ - u_pred, 2) / np.linalg.norm(u_, 2)
lambda1 = pinn.lambda_1.detach().cpu().item()
lambda2 = np.exp(pinn.lambda_2.detach().cpu().item())
error_lambda1 = np.abs(lambda1 - 1.0) * 100
error_lambda2 = np.abs(lambda2 - 0.01 / np.pi) * 100
print(
f"\nError u : {error_u:.5e}",
f"\nError l1 : {error_lambda1:.5f}%",
f"\nError l2 : {error_lambda2:.5f}%",
)
return (error_u, error_lambda1, error_lambda2)
if __name__ == "__main__":
pinn = PINN(u)
pinn.optimizer.step(pinn.closure)
torch.save(pinn.net.state_dict(), r"D:\02_github\03_PINNs\PINNs-torch\Burgers\Identification\weight_clean3.pt")
pinn.net.load_state_dict(torch.load(r"D:\02_github\03_PINNs\PINNs-torch\Burgers\Identification\weight_clean3.pt"))
calcError(pinn)