-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
46 lines (34 loc) · 2.14 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
output: github_document
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# easypar <a href="https://caravagnalab.github.io/easypar/"><img src="man/figures/logo.png" align="right" height="139" /></a>
<!-- badges: start -->
[![R-CMD-check](https://github.com/caravagn/easypar/workflows/R-CMD-check/badge.svg)](https://github.com/caravagn/easypar/actions)
[![R-CMD-check](https://github.com/caravagn/easypar/workflows/pkgdown/badge.svg)](https://github.com/caravagn/easypar/actions)
[![Lifecycle: stable](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://lifecycle.r-lib.org/articles/stages.html#stable)
[![R-CMD-check](https://github.com/caravagnalab/easypar/workflows/R-CMD-check/badge.svg)](https://github.com/caravagnalab/easypar/actions)
<!-- badges: end -->
`easypar` makes it easy to implement parallel computations in R. If youo have a function that
carries out your desired computation, `easypar` will take care of the burden of turning that function into a runnable parallel piece of R code. The package offers two possible solutions for parallelisation. It can generate a parallel function call exploiting the `foreach` and
`doParallel` paradigms for parallel computing, or can generate a ready-to-use array job for the popular LSF (Platform Load Sharing Facility) and Slurm workload manages for distributed high performance computing. With `easypar`, speeding up R computations through parallelism is a trivial task.
#### Help and support
[![](https://img.shields.io/badge/GitHub%20Pages-https://caravagnalab.github.io/easypar/-yellow.svg)](https://caravagnalab.github.io/easypar)
-----
### Installation
``` r
# install.packages("devtools")
devtools::install_github("caravagnalab/easypar")
```
-----
#### Copyright and contacts
Cancer Data Science (CDS) Laboratory, University of Trieste, Italy.
[![](https://img.shields.io/badge/CDS%20Lab%20Github-caravagnalab-seagreen.svg)](https://github.com/caravagnalab)
[![](https://img.shields.io/badge/CDS%20Lab%20webpage-https://www.caravagnalab.org/-red.svg)](https://www.caravagnalab.org/)