-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
303 lines (268 loc) · 13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import json
import torch
from torch.nn import functional as F
from torch.autograd import Variable
def load_answers(filename):
D = {}
with open(filename, encoding='utf-8') as f:
for l in f:
l = json.loads(l)
arguments = []
for event in l['event_list']:
event_type = event['event_type']
for argument in event['arguments']:
arguments.append((event_type + "-" + argument['role'], argument['argument']))
D[l["id"]] = arguments
return D
def evaluate(pred_file, gold_file):
target = load_answers(gold_file)
predict_res = load_answers(pred_file)
text_ids = predict_res.keys()
# print("t*********************ext_ids: ", text_ids)
predict_num, correct_pred_num, real_num = 0.00001, 0, 0.00001
for uid in text_ids:
pred_res = predict_res[uid] # [{}, {}, ...]
gold_res = target[uid] # [{}, {}, ]
predict_num += len(pred_res)
real_num += len(gold_res)
for item in pred_res:
if item in gold_res:
correct_pred_num += 1
p = correct_pred_num / predict_num
r = correct_pred_num / real_num
f1 = (2 * p * r) / (p + r + 0.00001)
return p, r, f1
def sequence_mask(sequence_length, device, max_len=None):
if max_len is None:
max_len = sequence_length.data.max()
batch_size = sequence_length.size(0)
# seq_range = torch.range(0, max_len - 1).long()
# 注意这里的修改
seq_range = torch.arange(0, max_len).long()
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
seq_range_expand = Variable(seq_range_expand).to(device)
seq_length_expand = (sequence_length.unsqueeze(1)
.expand_as(seq_range_expand))
return seq_range_expand < seq_length_expand
def new_masked_cross_entropy(logits, target, length, num_labels, device, label_weights=None):
# length = Variable(torch.LongTensor(length)).cuda()
"""
Args:
logits: A Variable containing a FloatTensor of size
(batch, max_len, num_classes) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Returns:
loss: An average loss value masked by the length.
"""
# print("logits: ", logits.shape)
max_batch_length = logits.shape[1]
batch = logits.shape[0]
mask = sequence_mask(sequence_length=length, device=device, max_len=max_batch_length) # mask: (batch, max_len)
# print("mask: ", mask.shape)
target = target[:, :max_batch_length].contiguous()
target = target.masked_select(mask.to(device)) # [N]
mask = mask.view(batch, max_batch_length, -1).contiguous() # [batch, len, 1]
logits = logits.masked_select(mask.to(device))
logits = logits.view(-1, num_labels) # [N, 35]
loss = F.cross_entropy(logits, target, weight=label_weights)
return loss
def convert_ids2char(ids, id2char):
chars = []
for iid in ids:
chars.append(id2char[iid])
return chars
def decode(outputs):
batch_predict_ids = []
for instance in outputs: # instance: [seq, dim]
_, instance_label_ids = torch.max(instance, dim=-1)
batch_predict_ids.append(instance_label_ids.cpu().numpy().tolist())
return batch_predict_ids
def extract_pred_res(trigger_id2label, role_id2label, tokenizer, batch_token_ids, pred_triggers, pred_arguments, lens, text_ids):
batch_size = len(lens)
all_res = []
counter = 0
for b_index in range(batch_size):
instance_res = {'id': text_ids[b_index], 'event_list': []}
length = lens[b_index]
instance_tokens_ids = batch_token_ids[b_index][1: length + 1] # remove csl and sep
instance_tokens = tokenizer.convert_ids_to_tokens(instance_tokens_ids)
for j, (trigger_start, trigger_end, event_id) in enumerate(pred_triggers[b_index]):
# event_type
if event_id != 130:
event_type = trigger_id2label[str(event_id)]
assert event_type.startswith('B-')
event_type = event_type[2:]
# if pred_arguments:
pred_argument_ids = pred_arguments[counter + j][:length] # [seq]
assert len(pred_argument_ids) == len(instance_tokens)
arguments, starting = [], False
for k, pred_id in enumerate(pred_argument_ids):
if pred_id < 242:
if pred_id % 2 == 0: # B-EventType
starting = True
role_type = role_id2label[str(pred_id)]
assert role_type.startswith('B-')
role_type = role_type[2:]
char = instance_tokens[k][2:] if instance_tokens[k].startswith("##") else instance_tokens[k]
arguments.append({'role': role_type, 'argument': char})
elif starting:
char = instance_tokens[k][2:] if instance_tokens[k].startswith("##") else instance_tokens[k]
arguments[-1]['argument'] = arguments[-1]['argument'] + char
else:
starting = False
else:
starting = False
instance_res['event_list'].append({"event_type": event_type, "arguments": arguments})
counter += len(pred_triggers[b_index])
# print("instance_res: ", instance_res)
all_res.append(instance_res)
return all_res
def write_file(all_res, out_file):
fw = open(out_file, 'w', encoding='utf-8')
for instance_res in all_res:
l = json.dumps(instance_res, ensure_ascii=False)
fw.write(l + '\n')
fw.close()
def load_data(filename, training=True):
D = []
with open(filename, encoding='utf-8') as f:
for l in f:
l = json.loads(l)
if training:
arguments = []
triggers = []
for event in l['event_list']:
triggers.append((event['event_type'], event['trigger']))
temp = []
for argument in event['arguments']:
temp.append((argument['role'], argument['argument']))
arguments.append(temp)
assert len(triggers) == len(arguments)
D.append((l['text'], arguments, triggers, l['id']))
else:
D.append((l['text'], None, None, l['id']))
D.sort(key=lambda i: len(i[0]), reverse=True)
return D
def search(pattern, sequence):
"""从sequence中寻找子串pattern
如果找到,返回第一个下标;否则返回-1。
"""
n = len(pattern)
for i in range(len(sequence)):
if sequence[i:i + n] == pattern:
return i
return -1
def tokenize_encode(text, char2id):
li = []
for char in text:
li.append(char2id[char])
return li
def data_generator(data, tokenizer, argument_label2id, trigger_label2id, batch_size, training=True):
max_len = 128
batch_token_ids, batch_attn_mask, batch_trigger_labels, batch_argument_labels, batch_triggers, lens, text_ids = [], [], [], [], [], [], []
for (text, arguments, triggers, text_id) in data:
text_ids.append(text_id)
tokenize_text = tokenizer.tokenize(text)
token_ids = tokenizer.convert_tokens_to_ids(tokenize_text)
attention_mask = [1] * len(token_ids)
if training:
trigger_labels = [130] * len(token_ids)
instance_argument_labels = []
triggers_index = []
i = 0
while i < len(triggers):
# trigger
event_type, trigger = triggers[i]
tokenize_trigger = tokenizer.tokenize(trigger)
a_token_ids_trigger = tokenizer.convert_tokens_to_ids(tokenize_trigger)
start_index = search(a_token_ids_trigger, token_ids)
if start_index < 0 or start_index >= max_len:
triggers.remove((event_type, trigger))
continue
triggers_index.append((start_index, start_index + len(a_token_ids_trigger), int( int(trigger_label2id['B-'+event_type]))))
if start_index != -1:
trigger_labels[start_index] = int(trigger_label2id['B-'+event_type])
for j in range(1, len(a_token_ids_trigger)):
trigger_labels[start_index + j] = int(trigger_label2id['I-'+event_type])
event_arguments = arguments[i]
argument_labels = [242] * len(token_ids)
for (role_type, argument) in event_arguments:
tokenize_argument = tokenizer.tokenize(argument)
a_token_ids_argument = tokenizer.convert_tokens_to_ids(tokenize_argument)
start_index_argument = search(a_token_ids_argument, token_ids)
if start_index_argument != -1:
argument_labels[start_index_argument] = int(argument_label2id['B-' + role_type])
for k in range(1, len(a_token_ids_argument)):
argument_labels[start_index_argument + k] = int(argument_label2id['I-' + role_type])
i += 1
instance_argument_labels.append(argument_labels)
# print("!!:", instance_argument_labels)
# print(text_id, triggers, len(triggers), len(instance_argument_labels))
assert len(instance_argument_labels) == len(triggers)
assert len(triggers) == len(triggers_index)
length = len(token_ids)
if length < max_len:
lens.append(length)
padding_len = max_len - length
token_ids.extend([0] * padding_len)
attention_mask.extend([0] * padding_len) # [0] for [PAD] in bert
if training:
trigger_labels.extend([0] * padding_len)
for k, argument_labels in enumerate(instance_argument_labels):
instance_argument_labels[k].extend([0] * padding_len)
else:
lens.append(max_len)
token_ids = token_ids[:max_len]
attention_mask = attention_mask[:max_len]
if training:
trigger_labels = trigger_labels[:max_len]
for k, argument in enumerate(instance_argument_labels):
instance_argument_labels[k] = instance_argument_labels[k][:max_len]
batch_token_ids.append([101] + token_ids + [102])
batch_attn_mask.append(attention_mask)
if training:
batch_trigger_labels.append(trigger_labels)
batch_argument_labels.append(instance_argument_labels)
batch_triggers.append(triggers_index)
if len(batch_token_ids) == batch_size:
batch_arguments = []
if training:
for instance_argument_labels in batch_argument_labels:
batch_arguments.extend(instance_argument_labels)
yield [batch_token_ids, batch_attn_mask, batch_trigger_labels, batch_arguments, batch_triggers, lens, text_ids]
batch_token_ids, batch_attn_mask, batch_trigger_labels, batch_argument_labels, batch_triggers, lens, text_ids = [], [], [], [], [], [], []
if batch_token_ids:
batch_arguments = []
for instance_argument_labels in batch_argument_labels:
batch_arguments.extend(instance_argument_labels)
yield [batch_token_ids, batch_attn_mask, batch_trigger_labels, batch_arguments, batch_triggers, lens, text_ids]
# p,r,f = evaluate('./devres/1_dev_bertcnn.json', './data/dev.json')
# print(p,r,f)
if __name__ == '__main__':
from transformers import *
role_label2id, role_id2label = {}, {}
with open('./dict/vocab_roles_label_map.txt', 'r', encoding='utf-8') as f:
for line in f.readlines():
label, iid = line.split()
role_label2id[label] = iid
role_id2label[iid] = label
print(role_label2id, role_id2label)
trigger_label2id, trigger_id2label = {}, {}
with open('./dict/vocab_trigger_label_map.txt', 'r', encoding='utf-8') as f:
for line in f.readlines():
label, iid = line.split()
trigger_label2id[label] = iid
trigger_id2label[iid] = label
print(trigger_label2id, trigger_id2label)
D = load_data('./data/dev.json')
tokenizer = BertTokenizer.from_pretrained('../roberta-large/vocab.txt',do_lower_case=False)
for batch_token_ids, batch_attn_mask, batch_trigger_labels, batch_argument_labels, batch_triggers, lens, text_ids in data_generator(D, tokenizer, role_label2id, trigger_label2id, 2, training=True):
print("token_ids: ", batch_token_ids)
print("trigger_labels: ", batch_trigger_labels)
print("argument_labels: ", batch_argument_labels)
print("batch_triggers: ", batch_triggers)