-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapplycals2.py
334 lines (287 loc) · 16.3 KB
/
applycals2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import numpy as n
import os, glob
# optional import for casapy-free CASA
#import casautil
#tb = casautil.tools.table()
class solutions():
""" Container for CASA caltable(s).
Provides tools for applying to data of shape (nints, nbl, nch, npol).
Initialize class based on input file(s) and selection criteria.
Optional flux scale gain file can be given. Should be gain file applied to source with setjy applied.
"""
def __init__(self, gainfile, flagants=True):
""" Initialize with a table of CASA gain solutions. Can later add BP.
"""
self.parsegain(gainfile)
self.flagants = flagants
def parsegain(self, gainfile):
"""Takes .g1 CASA cal table and places values in numpy arrays.
"""
tb.open(gainfile)
mjd = tb.getcol('TIME')/(24*3600) # mjd days, as for telcal
spw = tb.getcol('SPECTRAL_WINDOW_ID')
gain = tb.getcol('CPARAM') # dimensions of (npol, 1?, ntimes*nants)
snr = tb.getcol('SNR')
flagged = tb.getcol('FLAG')
tb.close()
tb.open(gainfile + '/ANTENNA')
antname = tb.getcol('NAME') # ant number in order written to gain file
antnum = n.array([int(antname[i][2:]) for i in range(len(antname))])
tb.close()
# # need to find parent data MS to get some metadata
# mslist = glob.glob(gainfile[:-3] + '*.ms')
# try:
# msfile = mslist[0]
# print 'Found parent data MS %s' % msfile
# except IndexError:
# print 'Could not find parent data MS for metadata...'
# tb.open(msfile + '/ANTENNA')
# antname = tb.getcol('NAME') # one name per ant
# tb.close()
# tb.open(msfile + '/SPECTRAL_WINDOW')
# reffreq = 1e-6*(tb.getcol('REF_FREQUENCY')+tb.getcol('TOTAL_BANDWIDTH')/2) # similar to telcal "skyfreq"
# specname = tb.getcol('NAME')
# tb.close()
# tb.open(msfile + '/SOURCE')
# source = [name for name in tb.getcol('NAME') if 'J' in name][0] # should return single cal name **hack**
# tb.close()
# nsol = len(gain[0,0])
# ifid0R = specname[0][7] + '-' + specname[0][8] # one value
# ifid0L = specname[0][9] + '-' + specname[0][10] # one value
# ifid1R = specname[1][7] + '-' + specname[1][8] # one value
# ifid1L = specname[1][9] + '-' + specname[1][10] # one value
# # paste R,L end to end, so first loop over time, then spw, then pol
# mjd = n.concatenate( (time, time), axis=0)
# ifid = [ifid0R]*(nsol/2) + [ifid1R]*(nsol/2) + [ifid0L]*(nsol/2) + [ifid1L]*(nsol/2) # first quarter is spw0,pol0, then spw1,pol0, ...
# skyfreq = n.concatenate( (reffreq[0]*n.ones(nsol/2), reffreq[1]*n.ones(nsol/2), reffreq[0]*n.ones(nsol/2), reffreq[1]*n.ones(nsol/2)), axis=0)
# gain = n.concatenate( (gain[0,0],gain[1,0]), axis=0)
# amp = n.abs(gain)
# phase = n.degrees(n.angle(gain))
# source = [source]*nsol*2
# flagged = n.concatenate( (flag[0,0],flag[1,0]), axis=0)
nants = len(n.unique(antnum))
nspw = len(n.unique(spw))
self.spwlist = n.unique(spw)
npol = len(gain)
# merge times less than 2s
nsol = 0
newmjd = [n.unique(mjd)[0]]
skip = []
for i in range(1, len(n.unique(mjd))):
if 24*3600*(n.unique(mjd)[i] - n.unique(mjd)[i-1]) < 30.:
skip.append(n.unique(mjd)[i])
continue
else:
newmjd.append(n.unique(mjd)[i])
self.uniquemjd = n.array(newmjd)
nsol = len(self.uniquemjd)
print 'Parsed gain table solutions for %d solutions (skipping %d), %d ants, %d spw, and %d pols' % (nsol, len(skip), nants, nspw, npol)
print 'Unique solution times', self.uniquemjd
self.gain = n.zeros( (nsol, nants, nspw, npol), dtype='complex' )
flags = n.zeros( (nsol, nants, nspw, npol), dtype='complex' )
for sol in range(nsol):
for ant in range(nants):
for spw in range(nspw):
for pol in range(npol):
self.gain[sol, ant, spw, pol] = gain[pol,0,spw*nsol*nants+sol*nants+ant]
flags[sol, ant, spw, pol] = flagged[pol,0,spw*nsol*nants+sol*nants+ant]
self.gain = n.ma.masked_array(self.gain, flags)
# gain = n.concatenate( (n.concatenate( (gain[0,0,:nants*nsol].reshape(nsol,nants,1,1), gain[1,0,:nants*nsol].reshape(nsol,nants,1,1)), axis=3), n.concatenate( (gain[0,0,nants*nsol:].reshape(nsol,nants,1,1), gain[1,0,nants*nsol:].reshape(nsol,nants,1,1)), axis=3)), axis=2)
# flagged = n.concatenate( (n.concatenate( (flagged[0,0,:nants*nsol].reshape(nsol,nants,1,1), flagged[1,0,:nants*nsol].reshape(nsol,nants,1,1)), axis=3), n.concatenate( (flagged[0,0,nants*nsol:].reshape(nsol,nants,1,1), flagged[1,0,nants*nsol:].reshape(nsol,nants,1,1)), axis=3)), axis=2)
# self.gain = n.ma.masked_array(gain, flagged == True)
self.mjd = n.array(mjd); self.antnum = antnum
# make another version of ants array
# self.antnum = n.concatenate( (antnum, antnum), axis=0)
# self.amp = n.array(amp); self.phase = n.array(phase)
# self.antname = n.concatenate( (antname[antnum], antname[antnum]), axis=0)
# self.complete = n.arange(len(self.mjd))
# for consistency with telcal
#self.ifid = n.array(ifid); self.skyfreq = n.array(skyfreq); self.source = n.array(source)
def parsebp(self, bpfile, debug=False):
""" Takes bp CASA cal table and places values in numpy arrays.
Assumes two or fewer spw. :\
Assumes one bp solution per file.
"""
# bandpass. taking liberally from Corder et al's analysisutilities
([polyMode, polyType, nPolyAmp, nPolyPhase, scaleFactor, nRows, nSpws, nUniqueTimesBP, uniqueTimesBP,
nPolarizations, frequencyLimits, increments, frequenciesGHz, polynomialPhase,
polynomialAmplitude, timesBP, antennasBP, cal_desc_idBP, spwBP]) = openBpolyFile(bpfile, debug)
# index iterates over antennas, then times/sources (solution sets). each index has 2x npoly, which are 2 pols
polynomialAmplitude = n.array(polynomialAmplitude); polynomialPhase = n.array(polynomialPhase)
polynomialAmplitude[:,0] = 0.; polynomialAmplitude[:,nPolyAmp] = 0.
polynomialPhase[:,0] = 0.; polynomialPhase[nPolyPhase] = 0.
ampSolR, ampSolL = calcChebyshev(polynomialAmplitude, frequencyLimits, n.array(frequenciesGHz)*1e+9)
phaseSolR, phaseSolL = calcChebyshev(polynomialPhase, frequencyLimits, n.array(frequenciesGHz)*1e+9)
nants = len(n.unique(antennasBP))
self.bptimes = n.array(timesBP)
ptsperspec = 1000
npol = 2
print 'Parsed bp solutions for %d solutions, %d ants, %d spw, and %d pols' % (nUniqueTimesBP, nants, nSpws, nPolarizations)
self.bandpass = n.zeros( (nants, nSpws*ptsperspec, npol), dtype='complex')
for spw in range(nSpws):
ampSolR[spw*nants:(spw+1)*nants] += 1 - ampSolR[spw*nants:(spw+1)*nants].mean() # renormalize mean over ants (per spw) == 1
ampSolL[spw*nants:(spw+1)*nants] += 1 - ampSolL[spw*nants:(spw+1)*nants].mean()
for ant in range(nants):
self.bandpass[ant, spw*ptsperspec:(spw+1)*ptsperspec, 0] = ampSolR[ant+spw*nants] * n.exp(1j*phaseSolR[ant+spw*nants])
self.bandpass[ant, spw*ptsperspec:(spw+1)*ptsperspec, 1] = ampSolL[ant+spw*nants] * n.exp(1j*phaseSolL[ant+spw*nants])
self.bpfreq = n.zeros( (nSpws*ptsperspec) )
for spw in range(nSpws):
self.bpfreq[spw*ptsperspec:(spw+1)*ptsperspec] = 1e9 * frequenciesGHz[nants*spw]
# bpSolR0 = ampSolR[:nants] * n.exp(1j*phaseSolR[:nants])
# bpSolR1 = ampSolR[nants:] * n.exp(1j*phaseSolR[nants:])
# bpSolL0 = ampSolL[:nants] * n.exp(1j*phaseSolL[:nants])
# bpSolL1 = ampSolL[nants:] * n.exp(1j*phaseSolL[nants:])
# structure close to tpipe data structure (nant, freq, pol). note that freq is oversampled to 1000 bins.
# self.bandpass = n.concatenate( (n.concatenate( (bpSolR0[:,:,None], bpSolR1[:,:,None]), axis=1), n.concatenate( (bpSolL0[:,:,None], bpSolL1[:,:,None]), axis=1)), axis=2)
# self.bpfreq = 1e9*n.concatenate( (frequenciesGHz[0], frequenciesGHz[nants]), axis=0) # freq values at bp bins
# print 'Parsed bp table solutions for %d solutions, %d ants, %d spw, and %d pols' % (nUniqueTimesBP, nants, nSpws, nPolarizations)
def setselection(self, time, freqs, spws=[0,1], pols=[0,1], verbose=0):
""" Set select parameter that defines time, spw, and pol solutions to apply.
time defines the time to find solutions near in mjd.
freqs defines frequencies to select bandpass solution
spws is list of min/max indices to be used (e.g., [0,1])
pols is index of polarizations.
pols/spws not yet implemented beyond 2sb, 2pol.
"""
# spw and pols selection not yet implemented beyond 2/2
self.spws = spws
self.pols = pols
# select by smallest time distance for source
mjddist = n.abs(time - self.uniquemjd)
closestgain = n.where(mjddist == mjddist.min())[0][0]
print 'Using gain solution at MJD %.5f, separated by %d min ' % (self.uniquemjd[closestgain], mjddist[closestgain]*24*60)
self.gain = self.gain[closestgain,:,spws[0]:spws[1]+1,pols[0]:pols[1]+1]
if hasattr(self, 'bandpass'):
bins = [n.where(n.min(n.abs(self.bpfreq-selfreq)) == n.abs(self.bpfreq-selfreq))[0][0] for selfreq in freqs]
self.bandpass = self.bandpass[:,bins,pols[0]:pols[1]+1]
self.freqs = freqs
if verbose:
print 'Using solution at BP bins: ', bins
def calc_flag(self, sig=3.0):
""" Calculates antennas to flag, based on bad gain and bp solutions.
"""
if len(self.gain.shape) == 4:
gamp = n.abs(self.gain).mean(axis=0) # mean gain amp for each ant over time
elif len(self.gain.shape) == 3:
gamp = n.abs(self.gain) # gain amp for selected time
# badgain = n.where(gamp < gamp.mean() - sig*gamp.std())
badgain = n.where( (gamp < n.median(gamp) - sig*gamp.std()) | gamp.mask)
print 'Flagging low/bad gains for ant/spw/pol:', self.antnum[badgain[0]], badgain[1], badgain[2]
badants = badgain
return badants
def apply(self, data, blarr):
""" Applies calibration solution to data array. Assumes structure of (nint, nbl, nch, npol).
blarr is array of size 2xnbl that gives pairs of antennas in each baseline (a la tpipe.blarr).
"""
ant1ind = [n.where(ant1 == n.unique(blarr))[0][0] for (ant1,ant2) in blarr]
ant2ind = [n.where(ant2 == n.unique(blarr))[0][0] for (ant1,ant2) in blarr]
# flag bad ants
if self.flagants:
badants = self.calc_flag()
else:
badants = n.array([[]])
# apply gain correction
if hasattr(self, 'bandpass'):
corr = n.ones_like(data)
flag = n.ones_like(data).astype('int')
chans_uncal = range(len(self.freqs))
for spw in range(len(self.gain[0])):
chsize = n.round(self.bpfreq[1]-self.bpfreq[0], 0)
ww = n.where( (self.freqs >= self.bpfreq[spw*1000]) & (self.freqs <= self.bpfreq[(spw+1)*1000-1]+chsize) )[0]
if len(ww) == 0:
print 'Gain solution frequencies not found in data for spw %d.' % (self.spws[spw])
firstch = ww[0]
lastch = ww[-1]+1
for ch in ww:
chans_uncal.remove(ch)
print 'Combining gain sol from spw=%d with BW chans from %d-%d' % (self.spws[spw], firstch, lastch)
for badant in n.transpose(badants):
if badant[1] == spw:
badbl = n.where((badant[0] == n.array(ant1ind)) | (badant[0] == n.array(ant2ind)))[0]
flag[:, badbl, firstch:lastch, badant[2]] = 0
corr1 = self.gain[ant1ind, spw, :][None, :, None, :] * self.bandpass[ant1ind, firstch:lastch, :][None, :, :, :]
corr2 = (self.gain[ant2ind, spw, :][None, :, None, :] * self.bandpass[ant2ind, firstch:lastch, :][None, :, :, :]).conj()
corr[:, :, firstch:lastch, :] = corr1 * corr2
if len(chans_uncal):
print 'Setting data without bp solution to zero for chan range %d-%d.' % (chans_uncal[0], chans_uncal[-1])
flag[:, :, chans_uncal,:] = 0
data[:] *= flag/corr
else:
for spw in range(len(self.gain[0,0])):
pass
def openBpolyFile(caltable, debug=False):
# mytb = au.createCasaTool(tbtool) # from analysisutilities by corder
tb.open(caltable)
desc = tb.getdesc()
if ('POLY_MODE' in desc):
polyMode = tb.getcol('POLY_MODE')
polyType = tb.getcol('POLY_TYPE')
scaleFactor = tb.getcol('SCALE_FACTOR')
antenna1 = tb.getcol('ANTENNA1')
times = tb.getcol('TIME')
cal_desc_id = tb.getcol('CAL_DESC_ID')
nRows = len(polyType)
for pType in polyType:
if (pType != 'CHEBYSHEV'):
print "I do not recognized polynomial type = %s" % (pType)
return
# Here we assume that all spws have been solved with the same mode
uniqueTimesBP = n.unique(tb.getcol('TIME'))
nUniqueTimesBP = len(uniqueTimesBP)
if (nUniqueTimesBP >= 2):
if debug:
print "Multiple BP sols found with times differing by %s seconds. Using first." % (str(uniqueTimesBP-uniqueTimesBP[0]))
nUniqueTimesBP = 1
uniqueTimesBP = uniqueTimesBP[0]
mystring = ''
nPolyAmp = tb.getcol('N_POLY_AMP')
nPolyPhase = tb.getcol('N_POLY_PHASE')
frequencyLimits = tb.getcol('VALID_DOMAIN')
increments = 0.001*(frequencyLimits[1,:]-frequencyLimits[0,:])
frequenciesGHz = []
for i in range(len(frequencyLimits[0])):
freqs = (1e-9)*n.arange(frequencyLimits[0,i],frequencyLimits[1,i],increments[i]) # **for some reason this is nch-1 long?**
frequenciesGHz.append(freqs)
polynomialAmplitude = []
polynomialPhase = []
for i in range(len(polyMode)):
polynomialAmplitude.append([1])
polynomialPhase.append([0])
if (polyMode[i] == 'A&P' or polyMode[i] == 'A'):
polynomialAmplitude[i] = tb.getcell('POLY_COEFF_AMP',i)[0][0][0]
if (polyMode[i] == 'A&P' or polyMode[i] == 'P'):
polynomialPhase[i] = tb.getcell('POLY_COEFF_PHASE',i)[0][0][0]
tb.close()
tb.open(caltable+'/CAL_DESC')
nSpws = len(tb.getcol('NUM_SPW'))
spws = tb.getcol('SPECTRAL_WINDOW_ID')
spwBP = []
for c in cal_desc_id:
spwBP.append(spws[0][c])
tb.close()
nPolarizations = len(polynomialAmplitude[0]) / nPolyAmp[0]
if debug:
mystring += '%.3f, ' % (uniqueTimesBP/(24*3600))
print 'BP solution has unique time(s) %s and %d pols' % (mystring, nPolarizations)
# This value is overridden by the new function doPolarizations in ValueMapping.
# print "Inferring %d polarizations from size of polynomial array" % (nPolarizations)
return([polyMode, polyType, nPolyAmp, nPolyPhase, scaleFactor, nRows, nSpws, nUniqueTimesBP,
uniqueTimesBP, nPolarizations, frequencyLimits, increments, frequenciesGHz,
polynomialPhase, polynomialAmplitude, times, antenna1, cal_desc_id, spwBP])
else:
tb.close()
return([])
# end of openBpolyFile()
def calcChebyshev(coeffs, validDomain, freqs):
"""
Given a set of coefficients,
this method evaluates a Chebyshev approximation.
Used for CASA bandpass reading.
input coeffs and freqs are numpy arrays
"""
domain = (validDomain[1] - validDomain[0])[0]
bins = -1 + 2* n.array([ (freqs[i]-validDomain[0,i])/domain for i in range(len(freqs))])
ncoeffs = len(coeffs[0])/2
rr = n.array([n.polynomial.chebval(bins[i], coeffs[i,:ncoeffs]) for i in range(len(coeffs))])
ll = n.array([n.polynomial.chebval(bins[i], coeffs[i,ncoeffs:]) for i in range(len(coeffs))])
return rr,ll