diff --git a/libs/Common/Types.h b/libs/Common/Types.h index 625ae6af1..404965370 100644 --- a/libs/Common/Types.h +++ b/libs/Common/Types.h @@ -1637,7 +1637,7 @@ class TDMatrix : public cv::Mat_ /// What is the elem stride of the matrix? inline size_t elem_stride() const { ASSERT(dims == 2 && step[1] == sizeof(TYPE)); return step[1]; } /// Compute the area of the 2D matrix - inline int area() const { ASSERT(dims == 2); return cols*rows; } + inline int area() const { ASSERT(dims == 0 || dims == 2); return cols*rows; } /// Compute the memory size of this matrix (in bytes) inline size_t memory_size() const { return cv::Mat::total() * cv::Mat::elemSize(); } diff --git a/libs/MVS/DepthMap.cpp b/libs/MVS/DepthMap.cpp index 3a64232e9..c6e85bd7f 100644 --- a/libs/MVS/DepthMap.cpp +++ b/libs/MVS/DepthMap.cpp @@ -1613,7 +1613,7 @@ bool MVS::LoadConfidenceMap(const String& fileName, ConfidenceMap& confMap) // export depth map as an image (dark - far depth, light - close depth) Image8U3 MVS::DepthMap2Image(const DepthMap& depthMap, Depth minDepth, Depth maxDepth) { - ASSERT(!depthMap.empty()); + ASSERT(!depthMap.empty() && depthMap.isContinuous()); // find min and max values if (minDepth == FLT_MAX && maxDepth == 0) { cList depths(0, depthMap.area()); @@ -1653,6 +1653,7 @@ bool MVS::ExportNormalMap(const String& fileName, const NormalMap& normalMap) { if (normalMap.empty()) return false; + ASSERT(normalMap.isContinuous()); Image8U3 img(normalMap.size()); for (int i=normalMap.area(); --i >= 0; ) { img[i] = [](const Normal& n) { @@ -1673,6 +1674,7 @@ bool MVS::ExportNormalMap(const String& fileName, const NormalMap& normalMap) bool MVS::ExportConfidenceMap(const String& fileName, const ConfidenceMap& confMap) { // find min and max values + ASSERT(confMap.empty() || confMap.isContinuous()); FloatArr confs(0, confMap.area()); for (int i=confMap.area(); --i >= 0; ) { const float conf = confMap[i]; diff --git a/libs/MVS/Mesh.cpp b/libs/MVS/Mesh.cpp index 936f6db60..0ef88716a 100644 --- a/libs/MVS/Mesh.cpp +++ b/libs/MVS/Mesh.cpp @@ -1461,6 +1461,8 @@ bool Mesh::LoadGLTF(const String& fileName, bool bBinary) // export the mesh to the given file bool Mesh::Save(const String& fileName, const cList& comments, bool bBinary) const { + if (IsEmpty()) + return false; TD_TIMER_STARTD(); const String ext(Util::getFileExt(fileName).ToLower()); bool ret; diff --git a/libs/MVS/PointCloud.cpp b/libs/MVS/PointCloud.cpp index c62920961..7f10c1e6f 100644 --- a/libs/MVS/PointCloud.cpp +++ b/libs/MVS/PointCloud.cpp @@ -360,7 +360,7 @@ bool PointCloud::Load(const String& fileName) // save the dense point cloud as PLY file bool PointCloud::Save(const String& fileName, bool bViews, bool bLegacyTypes, bool bBinary) const { - if (points.empty()) + if (IsEmpty()) return false; TD_TIMER_STARTD(); diff --git a/scripts/python/MvsUtils.py b/scripts/python/MvsUtils.py index b368c3a62..dbd3f56a8 100644 --- a/scripts/python/MvsUtils.py +++ b/scripts/python/MvsUtils.py @@ -6,35 +6,35 @@ import numpy as np -def loadDMAP(dmap_path): +def loadDMAP(dmap_path: str): with open(dmap_path, 'rb') as dmap: file_type = dmap.read(2).decode() - content_type = np.frombuffer(dmap.read(1), dtype=np.dtype('B')) - reserve = np.frombuffer(dmap.read(1), dtype=np.dtype('B')) + content_type = np.frombuffer(dmap.read(1), dtype=np.uint8) + reserve = np.frombuffer(dmap.read(1), dtype=np.uint8) has_depth = content_type > 0 has_normal = content_type in [3, 7, 11, 15] has_conf = content_type in [5, 7, 13, 15] has_views = content_type in [9, 11, 13, 15] - image_width, image_height = np.frombuffer(dmap.read(8), dtype=np.dtype('I')) - depth_width, depth_height = np.frombuffer(dmap.read(8), dtype=np.dtype('I')) + image_width, image_height = np.frombuffer(dmap.read(8), dtype=np.uint32) + depth_width, depth_height = np.frombuffer(dmap.read(8), dtype=np.uint32) if (file_type != 'DR' or has_depth == False or depth_width <= 0 or depth_height <= 0 or image_width < depth_width or image_height < depth_height): print('error: opening file \'{}\' for reading depth-data'.format(dmap_path)) return - depth_min, depth_max = np.frombuffer(dmap.read(8), dtype=np.dtype('f')) + depth_min, depth_max = np.frombuffer(dmap.read(8), dtype=np.float32) - file_name_size = np.frombuffer(dmap.read(2), dtype=np.dtype('H'))[0] + file_name_size = np.frombuffer(dmap.read(2), dtype=np.uint16)[0] file_name = dmap.read(file_name_size).decode() - view_ids_size = np.frombuffer(dmap.read(4), dtype=np.dtype('I'))[0] - reference_view_id, *neighbor_view_ids = np.frombuffer(dmap.read(4 * view_ids_size), dtype=np.dtype('I')) + view_ids_size = np.frombuffer(dmap.read(4), dtype=np.uint32)[0] + reference_view_id, *neighbor_view_ids = np.frombuffer(dmap.read(4 * view_ids_size), dtype=np.uint32) - K = np.frombuffer(dmap.read(72), dtype=np.dtype('d')).reshape(3, 3) - R = np.frombuffer(dmap.read(72), dtype=np.dtype('d')).reshape(3, 3) - C = np.frombuffer(dmap.read(24), dtype=np.dtype('d')) + K = np.frombuffer(dmap.read(72), dtype=np.float64).reshape(3, 3) + R = np.frombuffer(dmap.read(72), dtype=np.float64).reshape(3, 3) + C = np.frombuffer(dmap.read(24), dtype=np.float64) data = { 'has_normal': has_normal, @@ -55,22 +55,22 @@ def loadDMAP(dmap_path): } map_size = depth_width * depth_height - depth_map = np.frombuffer(dmap.read(4 * map_size), dtype=np.dtype('f')).reshape(depth_height, depth_width) + depth_map = np.frombuffer(dmap.read(4 * map_size), dtype=np.float32).reshape(depth_height, depth_width) data.update({'depth_map': depth_map}) if has_normal: - normal_map = np.frombuffer(dmap.read(4 * map_size * 3), dtype=np.dtype('f')).reshape(depth_height, depth_width, 3) + normal_map = np.frombuffer(dmap.read(4 * map_size * 3), dtype=np.float32).reshape(depth_height, depth_width, 3) data.update({'normal_map': normal_map}) if has_conf: - confidence_map = np.frombuffer(dmap.read(4 * map_size), dtype=np.dtype('f')).reshape(depth_height, depth_width) + confidence_map = np.frombuffer(dmap.read(4 * map_size), dtype=np.float32).reshape(depth_height, depth_width) data.update({'confidence_map': confidence_map}) if has_views: - views_map = np.frombuffer(dmap.read(map_size * 4), dtype=np.dtype('B')).reshape(depth_height, depth_width, 4) + views_map = np.frombuffer(dmap.read(map_size * 4), dtype=np.uint8).reshape(depth_height, depth_width, 4) data.update({'views_map': views_map}) return data -def saveDMAP(data: dict, dmap_path: Path|str): +def saveDMAP(data: dict, dmap_path: str): assert 'depth_map' in data, 'depth_map is required' assert 'image_width' in data and data['image_width'] > 0, 'image_width is required' assert 'image_height' in data and data['image_height'] > 0, 'image_height is required' @@ -99,56 +99,106 @@ def saveDMAP(data: dict, dmap_path: Path|str): with open(dmap_path, 'wb') as dmap: dmap.write('DR'.encode()) - dmap.write(np.array([content_type], dtype=np.dtype('B'))) - dmap.write(np.array([0], dtype=np.dtype('B'))) + dmap.write(np.array([content_type], dtype=np.uint8)) + dmap.write(np.array([0], dtype=np.uint8)) - dmap.write(np.array([data['image_width'], data['image_height']], dtype=np.dtype('I'))) - dmap.write(np.array([data['depth_width'], data['depth_height']], dtype=np.dtype('I'))) + dmap.write(np.array([data['image_width'], data['image_height']], dtype=np.uint32)) + dmap.write(np.array([data['depth_width'], data['depth_height']], dtype=np.uint32)) - dmap.write(np.array([data['depth_min'], data['depth_max']], dtype=np.dtype('f'))) + dmap.write(np.array([data['depth_min'], data['depth_max']], dtype=np.float32)) file_name = data['file_name'] - dmap.write(np.array([len(file_name)], dtype=np.dtype('H'))) + dmap.write(np.array([len(file_name)], dtype=np.uint16)) dmap.write(file_name.encode()) view_ids = [data['reference_view_id']] + data['neighbor_view_ids'] - dmap.write(np.array([len(view_ids)], dtype=np.dtype('I'))) - dmap.write(np.array(view_ids, dtype=np.dtype('I'))) + dmap.write(np.array([len(view_ids)], dtype=np.uint32)) + dmap.write(np.array(view_ids, dtype=np.uint32)) - K = data['K'] - R = data['R'] - C = data['C'] - dmap.write(K.tobytes()) - dmap.write(R.tobytes()) - dmap.write(C.tobytes()) - - depth_map = data['depth_map'] - dmap.write(depth_map.tobytes()) + data['K'].astype(np.float64).tofile(dmap) + data['R'].astype(np.float64).tofile(dmap) + data['C'].astype(np.float64).tofile(dmap) + data['depth_map'].astype(np.float32).tofile(dmap) if 'normal_map' in data: - normal_map = data['normal_map'] - dmap.write(normal_map.tobytes()) + data['normal_map'].astype(np.float32).tofile(dmap) if 'confidence_map' in data: - confidence_map = data['confidence_map'] - dmap.write(confidence_map.tobytes()) + data['confidence_map'].astype(np.float32).tofile(dmap) if 'views_map' in data: - views_map = data['views_map'] - dmap.write(views_map.tobytes()) + data['views_map'].astype(np.float32).tofile(dmap) def loadMVSInterface(archive_path): + """ + Load and parse an MVS (Multi-View Stereo) interface file. + Parameters: + archive_path (str): The path to the MVS archive file. + Returns: + A dictionary containing the parsed MVS data, including project stream version, platforms, images, vertices, vertices normal, vertices color, lines, lines normal, lines color, transform, and obb (oriented bounding box). + The dictionary structure includes: + - stream_version (int): The version of the MVS stream. + - platforms (list): A list of platforms, each containing: + - name (str): The name of the platform. + - cameras (list): A list of cameras, each containing: + - name (str): The name of the camera. + - band_name (str, optional): The band name (if version > 3). + - width (int, optional): The width of the camera image (if version > 0). + - height (int, optional): The height of the camera image (if version > 0). + - K (list): The intrinsic camera matrix. + - R (list): The rotation matrix relative to the platform. + - C (list): The camera center relative to the platform. + - poses (list): A list of poses, each containing: + - R (list): The rotation matrix. + - C (list): The camera center. + - images (list): A list of images, each containing: + - name (str): The name of the image. + - mask_name (str, optional): The mask name (if version > 4). + - platform_id (int): The platform ID. + - camera_id (int): The camera ID. + - pose_id (int): The pose ID. + - id (int, optional): The image ID (if version > 2). + - min_depth (float, optional): The minimum depth (if version > 6). + - avg_depth (float, optional): The average depth (if version > 6). + - max_depth (float, optional): The maximum depth (if version > 6). + - view_scores (list, optional): A list of view scores, each containing: + - id (int): The view score ID. + - points (int): The number of points. + - scale (float): The scale. + - angle (float): The angle. + - area (float): The area. + - score (float): The score. + - vertices (list): A list of vertices, each containing: + - X (list): The vertex coordinates. + - views (list): A list of views, each containing: + - image_id (int): The image ID. + - confidence (float): The confidence. + - vertices_normal (list): A list of vertex normals. + - vertices_color (list): A list of vertex colors. + - lines (list, optional): A list of lines (if version > 0), each containing: + - pt1 (list): The first point of the line. + - pt2 (list): The second point of the line. + - views (list): A list of views, each containing: + - image_id (int): The image ID. + - confidence (float): The confidence. + - lines_normal (list, optional): A list of line normals (if version > 0). + - lines_color (list, optional): A list of line colors (if version > 0). + - transform (list, optional): The transformation matrix (if version > 1). + - obb (dict, optional): The oriented bounding box (if version > 5), containing: + - rot (list): The rotation matrix. + - pt_min (list): The minimum point. + - pt_max (list): The maximum point. + """ with open(archive_path, 'rb') as mvs: archive_type = mvs.read(4).decode() - version = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0] - reserve = np.frombuffer(mvs.read(4), dtype=np.dtype('I')) - if archive_type != 'MVSI': print('error: opening file \'{}\''.format(archive_path)) return + version = np.frombuffer(mvs.read(4), dtype=np.uint32).tolist()[0] + reserve = np.frombuffer(mvs.read(4), dtype=np.uint32) + data = { - 'project_stream': archive_type, - 'project_stream_version': version, + 'stream_version': version, 'platforms': [], 'images': [], 'vertices': [], @@ -156,102 +206,226 @@ def loadMVSInterface(archive_path): 'vertices_color': [] } - platforms_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + platforms_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for platform_index in range(platforms_size): - platform_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + platform_name_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] platform_name = mvs.read(platform_name_size).decode() - data['platforms'].append({'name': platform_name, 'cameras': []}) - cameras_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + data['platforms'].append({'name': platform_name, 'cameras': [], 'poses': []}) + cameras_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for camera_index in range(cameras_size): - camera_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + camera_name_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] camera_name = mvs.read(camera_name_size).decode() data['platforms'][platform_index]['cameras'].append({'name': camera_name}) if version > 3: - band_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + band_name_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] band_name = mvs.read(band_name_size).decode() data['platforms'][platform_index]['cameras'][camera_index].update({'band_name': band_name}) if version > 0: - width, height = np.frombuffer(mvs.read(8), dtype=np.dtype('I')).tolist() + width, height = np.frombuffer(mvs.read(8), dtype=np.uint32).tolist() data['platforms'][platform_index]['cameras'][camera_index].update({'width': width, 'height': height}) - K = np.asarray(np.frombuffer(mvs.read(72), dtype=np.dtype('d'))).reshape(3, 3).tolist() - data['platforms'][platform_index]['cameras'][camera_index].update({'K': K, 'poses': []}) - identity_matrix = np.asarray(np.frombuffer(mvs.read(96), dtype=np.dtype('d'))).reshape(4, 3) - poses_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + K = np.asarray(np.frombuffer(mvs.read(72), dtype=np.float64)).reshape(3, 3).tolist() + R = np.asarray(np.frombuffer(mvs.read(72), dtype=np.float64)).reshape(3, 3).tolist() + C = np.asarray(np.frombuffer(mvs.read(24), dtype=np.float64)).tolist() + data['platforms'][platform_index]['cameras'][camera_index].update({'K': K, 'R': R, 'C': C}) + poses_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for _ in range(poses_size): - R = np.asarray(np.frombuffer(mvs.read(72), dtype=np.dtype('d'))).reshape(3, 3).tolist() - C = np.asarray(np.frombuffer(mvs.read(24), dtype=np.dtype('d'))).tolist() - data['platforms'][platform_index]['cameras'][camera_index]['poses'].append({'R': R, 'C': C}) + R = np.asarray(np.frombuffer(mvs.read(72), dtype=np.float64)).reshape(3, 3).tolist() + C = np.asarray(np.frombuffer(mvs.read(24), dtype=np.float64)).tolist() + data['platforms'][platform_index]['poses'].append({'R': R, 'C': C}) - images_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + images_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for image_index in range(images_size): - name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + name_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] name = mvs.read(name_size).decode() data['images'].append({'name': name}) if version > 4: - mask_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + mask_name_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] mask_name = mvs.read(mask_name_size).decode() data['images'][image_index].update({'mask_name': mask_name}) - platform_id, camera_id, pose_id = np.frombuffer(mvs.read(12), dtype=np.dtype('I')).tolist() + platform_id, camera_id, pose_id = np.frombuffer(mvs.read(12), dtype=np.uint32).tolist() data['images'][image_index].update({'platform_id': platform_id, 'camera_id': camera_id, 'pose_id': pose_id}) if version > 2: - id = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0] + id = np.frombuffer(mvs.read(4), dtype=np.uint32).tolist()[0] data['images'][image_index].update({'id': id}) if version > 6: - min_depth, avg_depth, max_depth = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() + min_depth, avg_depth, max_depth = np.frombuffer(mvs.read(12), dtype=np.float32).tolist() data['images'][image_index].update({'min_depth': min_depth, 'avg_depth': avg_depth, 'max_depth': max_depth, 'view_scores': []}) - view_score_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + view_score_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for _ in range(view_score_size): - id, points = np.frombuffer(mvs.read(8), dtype=np.dtype('I')).tolist() - scale, angle, area, score = np.frombuffer(mvs.read(16), dtype=np.dtype('f')).tolist() + id, points = np.frombuffer(mvs.read(8), dtype=np.uint32).tolist() + scale, angle, area, score = np.frombuffer(mvs.read(16), dtype=np.float32).tolist() data['images'][image_index]['view_scores'].append({'id': id, 'points': points, 'scale': scale, 'angle': angle, 'area': area, 'score': score}) - vertices_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + vertices_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for vertex_index in range(vertices_size): - X = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() + X = np.frombuffer(mvs.read(12), dtype=np.float32).tolist() data['vertices'].append({'X': X, 'views': []}) - views_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + views_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for _ in range(views_size): - image_id = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0] - confidence = np.frombuffer(mvs.read(4), dtype=np.dtype('f')).tolist()[0] + image_id = np.frombuffer(mvs.read(4), dtype=np.uint32).tolist()[0] + confidence = np.frombuffer(mvs.read(4), dtype=np.float32).tolist()[0] data['vertices'][vertex_index]['views'].append({'image_id': image_id, 'confidence': confidence}) - vertices_normal_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + vertices_normal_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for _ in range(vertices_normal_size): - normal = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() + normal = np.frombuffer(mvs.read(12), dtype=np.float32).tolist() data['vertices_normal'].append(normal) - vertices_color_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + vertices_color_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for _ in range(vertices_color_size): - color = np.frombuffer(mvs.read(3), dtype=np.dtype('B')).tolist() + color = np.frombuffer(mvs.read(3), dtype=np.uint8).tolist() data['vertices_color'].append(color) if version > 0: data.update({'lines': [], 'lines_normal': [], 'lines_color': []}) - lines_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + lines_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for line_index in range(lines_size): - pt1 = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() - pt2 = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() + pt1 = np.frombuffer(mvs.read(12), dtype=np.float32).tolist() + pt2 = np.frombuffer(mvs.read(12), dtype=np.float32).tolist() data['lines'].append({'pt1': pt1, 'pt2': pt2, 'views': []}) - views_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + views_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for _ in range(views_size): - image_id = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0] - confidence = np.frombuffer(mvs.read(4), dtype=np.dtype('f')).tolist()[0] + image_id = np.frombuffer(mvs.read(4), dtype=np.uint32).tolist()[0] + confidence = np.frombuffer(mvs.read(4), dtype=np.float32).tolist()[0] data['lines'][line_index]['views'].append({'image_id': image_id, 'confidence': confidence}) - lines_normal_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + lines_normal_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for _ in range(lines_normal_size): - normal = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() + normal = np.frombuffer(mvs.read(12), dtype=np.float32).tolist() data['lines_normal'].append(normal) - lines_color_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] + lines_color_size = np.frombuffer(mvs.read(8), dtype=np.uint64)[0] for _ in range(lines_color_size): - color = np.frombuffer(mvs.read(3), dtype=np.dtype('B')).tolist() + color = np.frombuffer(mvs.read(3), dtype=np.uint8).tolist() data['lines_color'].append(color) - if version > 1: - transform = np.frombuffer(mvs.read(128), dtype=np.dtype('d')).reshape(4, 4).tolist() - data.update({'transform': transform}) - if version > 5: - rot = np.frombuffer(mvs.read(72), dtype=np.dtype('d')).reshape(3, 3).tolist() - pt_min = np.frombuffer(mvs.read(24), dtype=np.dtype('d')).tolist() - pt_max = np.frombuffer(mvs.read(24), dtype=np.dtype('d')).tolist() - data.update({'obb': {'rot': rot, 'pt_min': pt_min, 'pt_max': pt_max}}) + + if version > 1: + transform = np.frombuffer(mvs.read(128), dtype=np.float64).reshape(4, 4).tolist() + data.update({'transform': transform}) + if version > 5: + rot = np.frombuffer(mvs.read(72), dtype=np.float64).reshape(3, 3).tolist() + pt_min = np.frombuffer(mvs.read(24), dtype=np.float64).tolist() + pt_max = np.frombuffer(mvs.read(24), dtype=np.float64).tolist() + data.update({'obb': {'rot': rot, 'pt_min': pt_min, 'pt_max': pt_max}}) return data + +def saveMVSInterface(data: dict, archive_path: str): + """ + Save a scene as an MVS (Multi-View Stereo) interface file. + Example: + scene = { + 'stream_version': 3, + 'platforms': [], + 'images': [], + 'vertices': [], + 'vertices_normal': [], + 'vertices_color': [], + 'lines': [], + 'lines_normal': [], + 'lines_color': [], + 'transform': np.eye(4, dtype=np.float32).tolist() + } + ... populate scene (at least with platforms/cameras and images) ... + saveMVSInterface(scene, 'scene.mvs') + """ + with open(archive_path, 'wb') as mvs: + mvs.write('MVSI'.encode()) + version = data.get('stream_version', 7) + mvs.write(np.array([version], dtype=np.uint32)) + mvs.write(np.array([0], dtype=np.uint32)) # reserve + + platforms_size = len(data['platforms']) + mvs.write(np.array([platforms_size], dtype=np.uint64)) + for platform in data['platforms']: + platform_name = platform['name'].encode() + mvs.write(np.array([len(platform_name)], dtype=np.uint64)) + mvs.write(platform_name) + cameras_size = len(platform['cameras']) + mvs.write(np.array([cameras_size], dtype=np.uint64)) + for camera in platform['cameras']: + camera_name = camera['name'].encode() + mvs.write(np.array([len(camera_name)], dtype=np.uint64)) + mvs.write(camera_name) + if 'band_name' in camera: + band_name = camera['band_name'].encode() + mvs.write(np.array([len(band_name)], dtype=np.uint64)) + mvs.write(band_name) + if 'width' in camera and 'height' in camera: + mvs.write(np.array([camera['width'], camera['height']], dtype=np.uint32)) + mvs.write(np.array(camera['K'], dtype=np.float64).tobytes()) + mvs.write(np.array(camera['R'], dtype=np.float64).tobytes()) + mvs.write(np.array(camera['C'], dtype=np.float64).tobytes()) + poses_size = len(platform['poses']) + mvs.write(np.array([poses_size], dtype=np.uint64)) + for pose in platform['poses']: + mvs.write(np.array(pose['R'], dtype=np.float64).tobytes()) + mvs.write(np.array(pose['C'], dtype=np.float64).tobytes()) + + images_size = len(data['images']) + mvs.write(np.array([images_size], dtype=np.uint64)) + for image in data['images']: + name = image['name'].encode() + mvs.write(np.array([len(name)], dtype=np.uint64)) + mvs.write(name) + if 'mask_name' in image: + mask_name = image['mask_name'].encode() + mvs.write(np.array([len(mask_name)], dtype=np.uint64)) + mvs.write(mask_name) + mvs.write(np.array([image['platform_id'], image['camera_id'], image['pose_id']], dtype=np.uint32)) + if 'id' in image: + mvs.write(np.array([image['id']], dtype=np.uint32)) + if 'min_depth' in image and 'avg_depth' in image and 'max_depth' in image: + mvs.write(np.array([image['min_depth'], image['avg_depth'], image['max_depth']], dtype=np.float32)) + view_scores_size = len(image['view_scores']) + mvs.write(np.array([view_scores_size], dtype=np.uint64)) + for view_score in image['view_scores']: + mvs.write(np.array([view_score['id'], view_score['points']], dtype=np.uint32)) + mvs.write(np.array([view_score['scale'], view_score['angle'], view_score['area'], view_score['score']], dtype=np.float32)) + + vertices_size = len(data['vertices']) + mvs.write(np.array([vertices_size], dtype=np.uint64)) + for vertex in data['vertices']: + mvs.write(np.array(vertex['X'], dtype=np.float32)) + views_size = len(vertex['views']) + mvs.write(np.array([views_size], dtype=np.uint64)) + for view in vertex['views']: + mvs.write(np.array([view['image_id']], dtype=np.uint32)) + mvs.write(np.array([view['confidence']], dtype=np.float32)) + + vertices_normal_size = len(data['vertices_normal']) + mvs.write(np.array([vertices_normal_size], dtype=np.uint64)) + for normal in data['vertices_normal']: + mvs.write(np.array(normal, dtype=np.float32)) + + vertices_color_size = len(data['vertices_color']) + mvs.write(np.array([vertices_color_size], dtype=np.uint64)) + for color in data['vertices_color']: + mvs.write(np.array(color, dtype=np.uint8)) + + if 'lines' in data: + lines_size = len(data['lines']) + mvs.write(np.array([lines_size], dtype=np.uint64)) + for line in data['lines']: + mvs.write(np.array(line['pt1'], dtype=np.float32)) + mvs.write(np.array(line['pt2'], dtype=np.float32)) + views_size = len(line['views']) + mvs.write(np.array([views_size], dtype=np.uint64)) + for view in line['views']: + mvs.write(np.array([view['image_id']], dtype=np.uint32)) + mvs.write(np.array([view['confidence']], dtype=np.float32)) + + lines_normal_size = len(data['lines_normal']) + mvs.write(np.array([lines_normal_size], dtype=np.uint64)) + for normal in data['lines_normal']: + mvs.write(np.array(normal, dtype=np.float32)) + + lines_color_size = len(data['lines_color']) + mvs.write(np.array([lines_color_size], dtype=np.uint64)) + for color in data['lines_color']: + mvs.write(np.array(color, dtype=np.uint8)) + + if 'transform' in data: + mvs.write(np.array(data['transform'], dtype=np.float64).tobytes()) + if 'obb' in data: + mvs.write(np.array(data['obb']['rot'], dtype=np.float64).tobytes()) + mvs.write(np.array(data['obb']['pt_min'], dtype=np.float64).tobytes()) + mvs.write(np.array(data['obb']['pt_max'], dtype=np.float64).tobytes())