-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForecasting cryptos.Rmd
476 lines (349 loc) · 11 KB
/
Forecasting cryptos.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
---
title: "Pronósticos"
output:
flexdashboard::flex_dashboard:
orientation: rows
vertical_layout: scroll
theme: paper
social: [ "twitter", "facebook", "menu"]
source_code: embed
---
```{r setup, include=FALSE}
library(flexdashboard)
library(tidyverse)
library(xml2)
library(rvest)
library(purrr)
library(prophet)
library(lubridate)
library(hablar)
```
```{r}
fuente1 <- "https://coinmarketcap.com/currencies/bitcoin/historical-data/?start=20141201&end=20200617"
fuente2 <- "https://coinmarketcap.com/currencies/ethereum/historical-data/?start=20130428&end=20200617"
fuente3 <- "https://coinmarketcap.com/currencies/xrp/historical-data/?start=20130428&end=20200617"
fuente4 <- "https://coinmarketcap.com/currencies/litecoin/historical-data/?start=20130428&end=20200617"
fuente5 <- "https://coinmarketcap.com/currencies/bitcoin-cash/historical-data/?start=20130428&end=20200617"
fuente6 <- "https://coinmarketcap.com/currencies/basic-attention-token/historical-data/?start=20130428&end=20200617"
fuente7 <- "https://coinmarketcap.com/currencies/decentraland/historical-data/?start=20130428&end=20200617"
fuente8 <- "https://coinmarketcap.com/currencies/golem-network-tokens/historical-data/?start=20130428&end=20200617"
```
Bitcoin
=====================================
Row
-------------------------------------
### Pronóstico BTC
```{r}
datos1 <- read_html(fuente1)
tabla1 <- datos1 %>%
html_nodes("table") %>%
html_table(header=T)
tabla12 <- tabla1[[3]]
tabla12$Date <- mdy(tabla12$Date)
tabla12 <- tabla12[with(tabla12, order(tabla12$Date)), ]
colnames(tabla12) <- c("Date","Open","High","Low","Close","Volume","Market_Cap")
tabla12$Close<-as.numeric(gsub(",", "", tabla12$Close))
ds1 <- tabla12$Date
y1 <- log(tabla12$Close)
df1 <- data.frame(ds1, y1)
colnames(df1) <- c("ds","y")
m1 <- prophet(df1)
future1 <- make_future_dataframe(m1, periods = 365)
forecast1 <- predict(m1, future1)
plot(m1, forecast1)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
### Tendencia BTC
```{r}
prophet_plot_components(m1, forecast1)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Row
-------------------------------
### Gráfico Interactivo BTC
```{r}
dyplot.prophet(m1, forecast1)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Ethereum
=====================================
Row
-------------------------------------
### Pronóstico ETH
```{r}
datos2 <- read_html(fuente2)
tabla2 <- datos2 %>%
html_nodes("table") %>%
html_table(header=T)
tabla22 <- tabla2[[3]]
tabla22$Date <- mdy(tabla22$Date)
tabla22 <- tabla22[with(tabla22, order(tabla22$Date)), ]
colnames(tabla22) <- c("Date","Open","High","Low","Close","Volume","Market_Cap")
tabla22$Close<-as.numeric(gsub(",", "", tabla22$Close))
ds2 <- tabla22$Date
y2 <- log(tabla22$Close)
df2 <- data.frame(ds2, y2)
colnames(df2) <- c("ds","y")
m2 <- prophet(df2)
future2 <- make_future_dataframe(m2, periods = 365)
forecast2 <- predict(m2, future2)
plot(m2, forecast2)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
### Tendencia ETH
```{r}
prophet_plot_components(m2, forecast2)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Row
-------------------------------
### Gráfico Interactivo ETH
```{r}
dyplot.prophet(m2, forecast2)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Ripple
=====================================
Row
-------------------------------------
### Pronóstico XRP
```{r}
datos3 <- read_html(fuente3)
tabla3 <- datos3 %>%
html_nodes("table") %>%
html_table(header=T)
tabla32 <- tabla3[[3]]
tabla32$Date <- mdy(tabla32$Date)
tabla32 <- tabla32[with(tabla32, order(tabla32$Date)), ]
colnames(tabla32) <- c("Date","Open","High","Low","Close","Volume","Market_Cap")
tabla32$Close<-as.numeric(gsub(",", "", tabla32$Close))
ds3 <- tabla32$Date
y3 <- log(tabla32$Close)
df3 <- data.frame(ds3, y3)
colnames(df3) <- c("ds","y")
m3 <- prophet(df3)
future3 <- make_future_dataframe(m3, periods = 365)
forecast3 <- predict(m3, future3)
plot(m3, forecast3)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
### Tendencia XRP
```{r}
prophet_plot_components(m3, forecast3)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Row
-------------------------------
### Gráfico Interactivo XRP
```{r}
dyplot.prophet(m3, forecast3)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Litecoin
=====================================
Row
-------------------------------------
### Pronóstico LTC
```{r}
datos4 <- read_html(fuente4)
tabla4 <- datos4 %>%
html_nodes("table") %>%
html_table(header=T)
tabla42 <- tabla4[[3]]
tabla42$Date <- mdy(tabla42$Date)
tabla42 <- tabla42[with(tabla42, order(tabla42$Date)), ]
colnames(tabla42) <- c("Date","Open","High","Low","Close","Volume","Market_Cap")
tabla42$Close<-as.numeric(gsub(",", "", tabla42$Close))
ds4 <- tabla42$Date
y4 <- log(tabla42$Close)
df4 <- data.frame(ds4, y4)
colnames(df4) <- c("ds","y")
m4 <- prophet(df4)
future4 <- make_future_dataframe(m4, periods = 365)
forecast4 <- predict(m4, future4)
plot(m4, forecast4)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
### Tendencia LTC
```{r}
prophet_plot_components(m4, forecast4)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Row
-------------------------------
### Gráfico Interactivo LTC
```{r}
dyplot.prophet(m4, forecast4)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Bitcoin Cash
=====================================
Row
-------------------------------------
### Pronóstico BCH
```{r}
datos5 <- read_html(fuente5)
tabla5 <- datos5 %>%
html_nodes("table") %>%
html_table(header=T)
tabla52 <- tabla5[[3]]
tabla52$Date <- mdy(tabla52$Date)
tabla52 <- tabla52[with(tabla52, order(tabla52$Date)), ]
colnames(tabla52) <- c("Date","Open","High","Low","Close","Volume","Market_Cap")
tabla52$Close<-as.numeric(gsub(",", "", tabla52$Close))
ds5 <- tabla52$Date
y5 <- log(tabla52$Close)
df5 <- data.frame(ds5, y5)
colnames(df5) <- c("ds","y")
m5 <- prophet(df5)
future5 <- make_future_dataframe(m5, periods = 365)
forecast5 <- predict(m5, future5)
plot(m5, forecast5)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
### Tendencia BCH
```{r}
prophet_plot_components(m5, forecast5)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Row
-------------------------------
### Gráfico Interactivo BCH
```{r}
dyplot.prophet(m5, forecast5)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Basic Attention Token
=====================================
Row
-------------------------------------
### Pronóstico BAT
```{r}
datos6 <- read_html(fuente6)
tabla6 <- datos6 %>%
html_nodes("table") %>%
html_table(header=T)
tabla62 <- tabla6[[3]]
tabla62$Date <- mdy(tabla62$Date)
tabla62 <- tabla62[with(tabla62, order(tabla62$Date)), ]
colnames(tabla62) <- c("Date","Open","High","Low","Close","Volume","Market_Cap")
tabla62$Close<-as.numeric(gsub(",", "", tabla62$Close))
ds6 <- tabla62$Date
y6 <- log(tabla62$Close)
df6 <- data.frame(ds6, y6)
colnames(df6) <- c("ds","y")
m6 <- prophet(df6)
future6 <- make_future_dataframe(m6, periods = 365)
forecast6 <- predict(m6, future6)
plot(m6, forecast6)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
### Tendencia BAT
```{r}
prophet_plot_components(m6, forecast6)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Row
-------------------------------
### Gráfico Interactivo BAT
```{r}
dyplot.prophet(m6, forecast6)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Decentraland
=====================================
Row
-------------------------------------
### Pronóstico MANA
```{r}
datos7 <- read_html(fuente7)
tabla7 <- datos7 %>%
html_nodes("table") %>%
html_table(header=T)
tabla72 <- tabla7[[3]]
tabla72$Date <- mdy(tabla72$Date)
tabla72 <- tabla72[with(tabla72, order(tabla72$Date)), ]
colnames(tabla72) <- c("Date","Open","High","Low","Close","Volume","Market_Cap")
tabla72$Close<-as.numeric(gsub(",", "", tabla72$Close))
ds7 <- tabla72$Date
y7 <- log(tabla72$Close)
df7 <- data.frame(ds7, y7)
colnames(df7) <- c("ds","y")
m7 <- prophet(df7)
future7 <- make_future_dataframe(m7, periods = 365)
forecast7 <- predict(m7, future7)
plot(m7, forecast7)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
### Tendencia MANA
```{r}
prophet_plot_components(m7, forecast7)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Row
-------------------------------
### Gráfico Interactivo MANA
```{r}
dyplot.prophet(m7, forecast7)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Golem
=====================================
Row
-------------------------------------
### Pronóstico GNT
```{r}
datos8 <- read_html(fuente8)
tabla8 <- datos8 %>%
html_nodes("table") %>%
html_table(header=T)
tabla82 <- tabla8[[3]]
tabla82$Date <- mdy(tabla82$Date)
tabla82 <- tabla82[with(tabla82, order(tabla82$Date)), ]
colnames(tabla82) <- c("Date","Open","High","Low","Close","Volume","Market_Cap")
tabla82$Close<-as.numeric(gsub(",", "", tabla82$Close))
ds8 <- tabla82$Date
y8 <- log(tabla82$Close)
df8 <- data.frame(ds8, y8)
colnames(df8) <- c("ds","y")
m8 <- prophet(df8)
future8 <- make_future_dataframe(m8, periods = 365)
forecast8 <- predict(m8, future8)
plot(m8, forecast8)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
### Tendencia GNT
```{r}
prophet_plot_components(m8, forecast8)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Row
-------------------------------
### Gráfico Interactivo GNT
```{r}
dyplot.prophet(m8, forecast8)
```
> Fuente: Elaboración propia con datos de Coinmarketcap
Resumen
===========================================
Acerca de la metodología
* La información es obtenida mediante scraping de: https://coinmarketcap.com
* Se implementa un modelo prophet simple, para series de tiempo no lineales de la forma:
y(t) = g(t) + s(t) + h(t) + e(t)
Donde:
g(t) = tendencia de los modelos (modelo de crecimiento saturado y un modelo lineal por partes) que describe el aumento o la disminución a largo plazo de los datos.
s(t) = modelo para la estacionalidad con la serie Fourier para describir efectos por factores estacionales como la época del año
h(t) = modelo para la estacionalidad para describir efectos por factores estacionales como efectos vacacionales y eventos de gran magnitud ("human-scale” seasonalities)
e(t) = el término de erreor asociado al modelo
* El pronóstico se realiza a 365 días a partir de `r format(Sys.Date(), format = "%B %d, %Y")`
* Para más información sobre prophet
https://towardsdatascience.com/forecasting-with-prophet-d50bbfe95f91
https://research.fb.com/blog/2017/02/prophet-forecasting-at-scale/
https://github.com/facebook/prophet
Créditos
========================================
Created by: Cesar Hernández
Correo: [email protected]
Twitter: @[cghv94](https://twitter.com/cghv94)
Esta obra fue generada mediante R en `r format(Sys.Date(), format = "%B %d, %Y")` y está bajo una [licencia de Creative Commons, Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.es).
Creative Commons (CC).