forked from PaddlePaddle/PARL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatari_model.py
executable file
·96 lines (76 loc) · 2.72 KB
/
atari_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import parl
import paddle.fluid as fluid
from parl import layers
class AtariModel(parl.Model):
def __init__(self, act_dim):
self.conv1 = layers.conv2d(
num_filters=32, filter_size=8, stride=4, padding=1, act='relu')
self.conv2 = layers.conv2d(
num_filters=64, filter_size=4, stride=2, padding=2, act='relu')
self.conv3 = layers.conv2d(
num_filters=64, filter_size=3, stride=1, padding=0, act='relu')
self.fc = layers.fc(size=512, act='relu')
self.policy_fc = layers.fc(size=act_dim)
self.value_fc = layers.fc(size=1)
def policy(self, obs):
"""
Args:
obs: A float32 tensor of shape [B, C, H, W]
Returns:
policy_logits: B * ACT_DIM
"""
obs = obs / 255.0
conv1 = self.conv1(obs)
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
flatten = layers.flatten(conv3, axis=1)
fc_output = self.fc(flatten)
policy_logits = self.policy_fc(fc_output)
return policy_logits
def value(self, obs):
"""
Args:
obs: A float32 tensor of shape [B, C, H, W]
Returns:
values: B
"""
obs = obs / 255.0
conv1 = self.conv1(obs)
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
flatten = layers.flatten(conv3, axis=1)
fc_output = self.fc(flatten)
values = self.value_fc(fc_output)
values = layers.squeeze(values, axes=[1])
return values
def policy_and_value(self, obs):
"""
Args:
obs: A float32 tensor of shape [B, C, H, W]
Returns:
policy_logits: B * ACT_DIM
values: B
"""
obs = obs / 255.0
conv1 = self.conv1(obs)
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
flatten = layers.flatten(conv3, axis=1)
fc_output = self.fc(flatten)
policy_logits = self.policy_fc(fc_output)
values = self.value_fc(fc_output)
values = layers.squeeze(values, axes=[1])
return policy_logits, values