forked from PaddlePaddle/PARL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
149 lines (122 loc) · 4.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Refer to https://github.com/pranz24/pytorch-soft-actor-critic
import argparse
import gym
import numpy as np
import time
import parl
from mujoco_agent import MujocoAgent
from mujoco_model import ActorModel, CriticModel
from parl.utils import logger, summary, action_mapping, ReplayMemory
ACTOR_LR = 1e-3
CRITIC_LR = 1e-3
GAMMA = 0.99
TAU = 0.005
MEMORY_SIZE = int(1e6)
WARMUP_SIZE = 1e4
BATCH_SIZE = 256
ENV_SEED = 1
def run_train_episode(env, agent, rpm):
obs = env.reset()
total_reward = 0
steps = 0
while True:
steps += 1
batch_obs = np.expand_dims(obs, axis=0)
if rpm.size() < WARMUP_SIZE:
action = env.action_space.sample()
else:
action = agent.sample(batch_obs.astype('float32'))
action = np.squeeze(action)
next_obs, reward, done, info = env.step(action)
rpm.append(obs, action, reward, next_obs, done)
if rpm.size() > WARMUP_SIZE:
batch_obs, batch_action, batch_reward, batch_next_obs, batch_terminal = rpm.sample_batch(
BATCH_SIZE)
agent.learn(batch_obs, batch_action, batch_reward, batch_next_obs,
batch_terminal)
obs = next_obs
total_reward += reward
if done:
break
return total_reward, steps
def run_evaluate_episode(env, agent):
obs = env.reset()
total_reward = 0
while True:
batch_obs = np.expand_dims(obs, axis=0)
action = agent.predict(batch_obs.astype('float32'))
action = np.squeeze(action)
next_obs, reward, done, info = env.step(action)
obs = next_obs
total_reward += reward
if done:
break
return total_reward
def main():
env = gym.make(args.env)
env.seed(ENV_SEED)
obs_dim = env.observation_space.shape[0]
act_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
actor = ActorModel(act_dim)
critic = CriticModel()
algorithm = parl.algorithms.SAC(
actor,
critic,
max_action=max_action,
gamma=GAMMA,
tau=TAU,
actor_lr=ACTOR_LR,
critic_lr=CRITIC_LR)
agent = MujocoAgent(algorithm, obs_dim, act_dim)
rpm = ReplayMemory(MEMORY_SIZE, obs_dim, act_dim)
test_flag = 0
total_steps = 0
while total_steps < args.train_total_steps:
train_reward, steps = run_train_episode(env, agent, rpm)
total_steps += steps
logger.info('Steps: {} Reward: {}'.format(total_steps, train_reward))
summary.add_scalar('train/episode_reward', train_reward, total_steps)
if total_steps // args.test_every_steps >= test_flag:
while total_steps // args.test_every_steps >= test_flag:
test_flag += 1
evaluate_reward = run_evaluate_episode(env, agent)
logger.info('Steps {}, Evaluate reward: {}'.format(
total_steps, evaluate_reward))
summary.add_scalar('eval/episode_reward', evaluate_reward,
total_steps)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--env', help='Mujoco environment name', default='HalfCheetah-v2')
parser.add_argument(
'--train_total_steps',
type=int,
default=int(1e6),
help='maximum training steps')
parser.add_argument(
'--test_every_steps',
type=int,
default=int(1e4),
help='the step interval between two consecutive evaluations')
parser.add_argument(
'--alpha',
type=float,
default=0.2,
help='Temperature parameter α determines the relative importance of the \
entropy term against the reward (default: 0.2)')
args = parser.parse_args()
main()