-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathm68_CV_REC.ino
149 lines (132 loc) · 4.67 KB
/
m68_CV_REC.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// --------------------------------------------------------------------------
// This file is part of the NOZORI firmware.
//
// NOZORI firmware is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// NOZORI firmware is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with NOZORI firmware. If not, see <http://www.gnu.org/licenses/>.
// --------------------------------------------------------------------------
//CV REC
// Pot 1 : Clock Speed
// Pot 2 : Mod time
// Pot 3 : CV1
// Pot 4 : MOD CV1
// Pot 5 : CV2
// Pot 6 : Mod CV2
// CV 1 : SYNCRO
// CV 2 : clock modulation value
// CV 3 : rec CV1
// CV 4 : rec CV2
// IN 1 : CV1 modulation value
// IN 2 : CV2 modulation value
// Selecteur3 : REC 1 / play / REC 2
// OUT 1 : OUT CV1
// OUT 2 : OUT CV2
inline void CV_REC_init_() {
int i;
for (i=0; i <= Max_Delay; i++) {
delay_line.U16[i] = 0x7FFF;
}
}
inline void CV_REC_loop_() {
uint32_t toggle, tmp;
int32_t freq, tmpS;
filter16_nozori_68
test_connect_loop_68();
toggle = get_toggle();
toggle_global = toggle;
// CLOCK
if (CV1_connect < 60) { // syncro sur l'entree
//freq = CV_filter16_out[index_filter_pot1] / 7282; // from 0 to 8.999
freq = (CV_filter16_out[index_filter_pot1] + 4095) / 8192; // from 0.5 to 8.5
//tmp = CV_filter16_out[index_filter_pot2]/9363; // from 0 to 6.999
tmp = (CV_filter16_out[index_filter_pot2] + 5461)/10923; // from 0.5 to 6.5
clock_diviseur = tab_diviseur[freq] * tab_diviseur2[tmp];
clock_multiplieur = tab_multiplieur[freq] * tab_multiplieur2[tmp];
}
else { // pas de syncro, on calcul l'increment normallement
freq = CV_filter16_out[index_filter_pot1] * 1400;
freq += 0x02000000;
macro_FqMod_fine(pot2, CV2)
macro_fq2increment
increment1 = min(increment1<<1, 0x7FFFFFFF>>14); // demi periode pour le "pos"
LFO1_increment = increment1;
}
}
inline void CV_REC_audio_() {
int32_t modulation1, modulation2;
uint32_t toggle, pos, current_tick, increment1;
int32_t tmpS, tmp;
int32_t out1, out2;
toggle = toggle_global;
nb_tick++;
if( (last_clock_ == 0) && (CV1_connect < 60) && (CV_filter16_out[index_filter_cv1] > 0xA000) ) { // mode syncro, on a une syncro
last_clock_ = 1;
current_tick = nb_tick;
nb_tick = 0;
increment1 = 0xFFFFFFFF / current_tick;
increment1 /= clock_diviseur;
increment1 *= clock_multiplieur;
LFO1_increment = min(increment1, 0x7FFFFFFF>>14);
}
else if (CV_filter16_out[index_filter_CV1] < 0x9000){
last_clock_ = 0;
}
LFO1_phase += LFO1_increment;
pos = LFO1_phase >> 18;
modulation1 = CV_filter16_out[index_filter_pot3];
modulation1 -= modulation1>>2;
modulation1 += 1<<13;
if (IN1_connect < 60) tmpS = audio_inL^0x80000000; else tmpS = 0;
tmpS >>= 16;
tmpS*= CV_filter16_out[index_filter_pot4]>>1;
tmpS >>= 15;
modulation1 += tmpS;
modulation1 = min(0xFFFF, max(0,modulation1));
modulation2 = CV_filter16_out[index_filter_pot5];
modulation2 -= modulation2>>2;
modulation2 += 1<<13;
if (IN2_connect < 60) tmpS = audio_inR^0x80000000; else tmpS = 0;
tmpS >>= 16;
tmpS *= CV_filter16_out[index_filter_pot6]>>1;
tmpS >>= 15;
modulation2 += tmpS;
modulation2 = min(0xFFFF, max(0,modulation2));
//audio_outL = LFO1_phase<<15;
//audio_outR = LFO1_phase;
//audio_outL = delay_line.S16[pos]<<16;
//audio_outR = delay_line.U16[pos+((Max_Delay+1)>>1)]<<16;
tmpS = (LFO1_phase>>9) & 0x1FF; // interpolation time
out1 = delay_line.U16[pos];
out2 = delay_line.U16[(pos+1) & (Max_Delay>>1)];
out2 -= out1;
out2 *= tmpS;
out1 <<= 16;
out1 += out2 << 7;
audio_outL = out1;
out1 = delay_line.U16[(pos & (Max_Delay>>1)) + ((Max_Delay+1)>>1)];
out2 = delay_line.U16[((pos+1) & (Max_Delay>>1)) + ((Max_Delay+1)>>1)];
out2 -= out1;
out2 *= tmpS;
out1 <<= 16;
out1 += out2 << 7;
audio_outR = out1;
if ((toggle == 0) || ((CV3_connect < 60) && (CV_filter16_out[index_filter_CV3] > 0xA000)) ) { // rec CV1
delay_line.U16[pos] = modulation1;
audio_outL = modulation1<<16;
}
if ((toggle == 2) || ((CV4_connect < 60) && (CV_filter16_out[index_filter_CV4] > 0xA000)) ) { // rec CV2
delay_line.U16[pos+((Max_Delay+1)>>1)] = modulation2;
audio_outR = modulation2<<16;
}
led2(LFO1_phase>>23);
led4(audio_outL>>23);
}