-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathm68_KS.ino
250 lines (211 loc) · 6.89 KB
/
m68_KS.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// --------------------------------------------------------------------------
// This file is part of the NOZORI firmware.
//
// NOZORI firmware is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// NOZORI firmware is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with NOZORI firmware. If not, see <http://www.gnu.org/licenses/>.
// --------------------------------------------------------------------------
//CV REC
// Pot 1 : frequency
// Pot 2 : Mod fq
// Pot 3 : audio input gain
// Pot 4 : MOD gain
// Pot 5 : decay
// Pot 6 : low pass
// CV 1 : fq (1V/Oct)
// CV 2 : fq modulation value
// CV 3 : gain modulation value
// CV 4 : noise input gain
// IN 1 : audio in1
// IN 2 : gain
// Selecteur3 : input type : normal / diff / sin(diff)
// OUT 1 : OUT CV1
// OUT 2 : OUT CV2
uint32_t pluck, pluck2, pluck2_save;
inline void KS_init_() {
filter_audio_out = 0;
init_chaos();
}
inline void KS_loop_() {
uint32_t delay_time, FB, filter_LOP;
int32_t tmpS, CV1_value, CV2_value, CV3_value, CV4_value;
int32_t freq, gain;
uint32_t toggle;
filter16_nozori_68
test_connect_loop_68();
chaos(15); // for default mod values
toggle = get_toggle();
toggle_global = toggle;
if (CV2_connect < 60) CV2_value = CV_filter16_out[index_filter_cv2] - CV2_0V; else CV2_value = chaos_dy >> 16;
if (CV3_connect < 60) CV3_value = CV_filter16_out[index_filter_cv3] - CV3_0V; else CV3_value = chaos_dx >> 16;
CV2_value = min(0x7FFF,max(-0x7FFF,CV2_value));
CV3_value = min(0x7FFF,max(-0x7FFF,CV3_value));
led2((CV2_value+0x7FFF)>>7);
led4((CV3_value+0x7FFF)>>7);
// delay time
freq = (0xFFF0-CV_filter16_out[index_filter_pot1])<<11;
freq += 0x06000000;
tmpS = CV2_value;
tmpS *= CV_filter16_out[index_filter_pot2]>>1;
tmpS >>= 4;
freq -= tmpS; // freq is used as time...
if (CV1_connect < 60) {
tmpS = CV_filter16_out[index_filter_CV1];
tmpS -= CV1_0V;
tmpS *= CV1_1V;
freq -= tmpS;
}
macro_fq2increment
delay_time_global = increment1;
// gain
gain = CV_filter16_out[index_filter_pot3];
tmpS = CV3_value;
tmpS *= CV_filter16_out[index_filter_pot4];
tmpS >>= 15;
gain += tmpS;
gain = min(0xFFFF, max(0, gain));
gain *= gain>>1;
gain_global = gain >> 7; // 24 bits
// decay
FB = CV_filter16_out[index_filter_pot5];
FB = min(max(0, FB), 0xFFFF);
FB = fast_sin(FB<<14);
FB >>= 8;
FB_global = FB; // 24 bits
// Filter coef
freq = CV_filter16_out[index_filter_pot6] * 1720;
freq += 0x07000000;
macro_fq2increment_novar
filter_LOP_global = min(0x00FFFFFF, increment1);
if ( (CV4_connect < 60) && (CV_filter16_out[index_filter_cv4] > 0xB000) && (pluck == 0) ) {
pluck = 1;
pluck2 = 0x7FFFFFFF;
} else if (CV_filter16_out[index_filter_cv4] < 0xA000) {
pluck = 0;
pluck2 = 0;
}
}
inline void KS_audio_() {
int32_t audio_in, tmpS, outS, out2S;
int32_t audio_out, delay_out, out1, out2, feedback_out;
uint32_t delay_time, FB, gain, delay_time_LSB, read_point, filter_LOP, tmp;
uint32_t pluck_filter;
uint32_t toggle, out;
toggle = toggle_global;
if (IN1_connect < 60)
audio_in = audio_inL ^0x80000000;
else {
if (CV4_connect < 60) {
audio_in = 0;
}
else {
audio_in = random32();
}
}
index_ecriture = (index_ecriture+1) & Max_Delay;
//delay_time = delay_time_global;
delay_time = filter(delay_time_global, delay_time_save, 6);
delay_time_save = delay_time;
//gain = gain_global;
gain = filter(gain_global, gain_save, 6);
gain_save = gain;
//FB = FB_global;
FB = filter(FB_global, FB_save, 6);
FB_save = FB;
//Filter
filter_LOP = filter(filter_LOP_global, filter_LOP_save, 6);
filter_LOP_save = filter_LOP;
// delay loop
delay_time_LSB = delay_time & 0xFFF; // on garde les 12 bits de poinds faible pour interpoler
delay_time >>= 12; // on les suprime pour ne garder que l'index sur 12 bit (4096 point, soit env 10Hz a 48KHz)
read_point = (index_ecriture - delay_time) & Max_Delay;
out1 = delay_line.S16[read_point];
out2 = delay_line.S16[(read_point-1) & Max_Delay];
out2 -= out1;
out2 *= delay_time_LSB;
out1 += out2 >> 12;
//input
audio_in >>= 16;
//pluck
pluck_filter = filter(pluck2, pluck2_save, 3);
pluck2_save = pluck_filter;
if (pluck_filter > 0x70000000) pluck2 = 0;
audio_in += pluck_filter>>16;
switch (toggle) { // effect
case 0:
feedback_out = max(0, min(0x7FFF, delay_out - audio_in));
feedback_out = (-fast_sin(feedback_out<<16))>>16;
feedback_out *= (gain>>8);
feedback_out >>= 16;
delay_out = out1 * (FB>>8);
delay_out >>= 16;
feedback_out = max(-0x7FFF, min(0x7FFF, feedback_out - delay_out));
break;
case 1:
feedback_out = max(0, min(0x7FFF, delay_out - audio_in ));
feedback_out *= (gain>>8);
feedback_out >>= 16;
delay_out = out1 * (FB>>8);
delay_out >>= 16;
feedback_out = max(-0x7FFF, min(0x7FFF, feedback_out - delay_out));
break;
case 2:
feedback_out = audio_in;
feedback_out *= (gain>>8);
feedback_out >>= 16;
delay_out = out1 * (FB>>8);
delay_out >>= 16;
feedback_out = max(-0x7FFF, min(0x7FFF, feedback_out - delay_out));
break;
}
//audio_out = audio_in - delay_out;
//audio_out = max(-0x7FFF, min(0x7FFF, audio_out));
audio_out = feedback_out;
// filtre LOP
//audio_outL = (audio_out<<16)^0x80000000;
//tmpS = audio_out;
tmpS = feedback_out;
tmpS -= filter_audio_out;
tmpS *= filter_LOP>>9;
tmpS >>= 15;
filter_audio_out += tmpS;
delay_line.S16[index_ecriture] = filter_audio_out;
outS = (filter_audio_out<<16);
out = outS^0x80000000;
/*
switch (toggle) { // effect
case 0:
break;
case 1:
out = fast_sin((out>>1)+0x40000000);
break;
case 2:
out = fast_sin(out<<1);
break;
}
*/
//out -= out>>2;
//out += 0x20000000; // limiter le gain
// delay loop
delay_time = delay_time_save >> 1; // on divise le delay par 2 pour la 2eme sortie en oposition de phase
delay_time_LSB = delay_time & 0xFFF; // on garde les 12 bits de poinds faible pour interpoler
delay_time >>= 12; // on les suprime pour ne garder que l'index sur 12 bit (4096 point, soit env 10Hz a 48KHz)
read_point = (index_ecriture - delay_time) & Max_Delay;
out1 = delay_line.S16[read_point];
out2 = delay_line.S16[(read_point-1) & Max_Delay];
out2 -= out1;
out2 *= delay_time_LSB;
out1 += out2 >> 12;
out2S = out1<<16;
out2 = out2S ^0x80000000;
macro_out_pan_stereo
}