-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathm84_CLOCK.ino
236 lines (212 loc) · 6.83 KB
/
m84_CLOCK.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// --------------------------------------------------------------------------
// This file is part of the NOZORI firmware.
//
// NOZORI firmware is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// NOZORI firmware is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with NOZORI firmware. If not, see <http://www.gnu.org/licenses/>.
// --------------------------------------------------------------------------
// Stochastic clock + ADSR + VCA
// Pot 1 : Clock FQ
// Pot 2 : A
// Pot 3 : Hold %
// Pot 4 : D
// Pot 5 : Syncop %
// Pot 6 : S
// Pot 7 : MOD (ou clock diviseur)
// Pot 8 : R
// IN 1 : MOD (ou clock)
// IN 2 : audio in
// Selecteur3 : mod (FQ clock / Syncop modulation / clock )
// OUT 1 : clock
// OUT 2 : ADSR / audio
// ADSR : Attack curve
// this variable can be in between these 2 extreme values:
// 0X47000000 : for slow curve
// 0x7FFFFFFF : for hard curve
// default is 0x7FFFFFFF
#define ADSR_Goal_value 0x4FFFFFFF
uint32_t old_gate, gate_diviseur;
inline void CLK_ADSR_init_() {
ADSR1_status = 2;
ADSR1_goal = 0;
LFO1_phase = 0;
gate = false;
old_gate = false;
gate_diviseur = 0;
}
inline void CLK_ADSR_loop_() {
uint32_t tmp, tmp2, toggle, sustain, seuil;
bool GATE1_local;
uint32_t ADSR1_status_local, ADSR1_goal_local;
int32_t tmpS, freq;
filter16_nozori_84
test_connect_loop_84();
toggle = get_toggle();
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// CLOCK
freq = CV_filter16_out[index_filter_pot1] << 11;
freq += 0x4000000;
if ( (IN1_connect < 60) && (toggle == 0) ) {
tmp = audio_inL>>18;
tmp -= IN1_0V>>18;
tmpS = tmp;
tmpS *= CV_filter16_out[index_filter_pot7];
//tmpS = min(max(tmpS, -0x3FFFFFFF), 0x3FFFFFFF);
tmpS >>= 4;
freq += tmpS;
}
macro_fq2increment
LFO1_increment = increment1;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// RANDOM
if ( (IN1_connect < 60) && (toggle == 2) ) {
tmp = audio_inL > 0xA0000000;
} else {
tmp = (LFO1_phase < (CV_filter16_out[index_filter_pot3]<<16) ); // clock ON
}
if (toggle == 2) { // mod comme diviseur
if (IN1_connect < 60) { // une prise branché
if (hold == 1) { // on est en mode gate
tmp2 = audio_inL > 0xA0000000;
} else { // on n'avait pas de gate
tmp2 = audio_inL > 0xB0000000;
}
}
else { // pas de prise branché
tmp2 = false;
}
if (old_gate != tmp2) {
old_gate = tmp2;
if (tmp2) {
gate_diviseur++;
}
}
if (gate_diviseur >= (CV_filter16_out[index_filter_pot7] >> 13)+1) gate_diviseur = 0;
if ((gate_diviseur == 0) && (tmp2) ){
tmp2 = true;
} else {
tmp2 = false;
}
tmp = tmp2;
}
else {
tmp = (LFO1_phase < (CV_filter16_out[index_filter_pot3]<<16) ); // clock ON
}
if ( (hold == 0) && tmp ){ // New gate
hold = 1;
if (toggle == 1) { // modulation sur le seuil
tmpS = audio_inL >> 17;
tmpS -= IN1_0V >> 17;
tmpS *= CV_filter16_out[index_filter_pot7];
tmpS >>= 14;
tmpS += CV_filter16_out[index_filter_pot5];
tmpS = min(max(tmpS, 0), 0xFFFF);
seuil = tmpS;
seuil <<= 16;
} else {
seuil = CV_filter16_out[index_filter_pot5]<<16;
}
if ( random32() >= seuil ) { // new Gate
//audio_outL = OUT1_0V + (OUT1_1V * 5);
gate = true;
//set_led2(255);
} else {
//set_led2(0);
//audio_outL = OUT1_0V;
gate = false;
}
audio_outL = OUT1_0V + (OUT1_1V * 5);
set_led2(255);
}
if (!tmp) {
set_led2(0);
audio_outL = OUT1_0V;
gate = false;
hold = 0;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// ADSR
GATE1_local= gate;
ADSR1_status_local = ADSR1_status;
sustain = CV_filter16_out[index_filter_pot6] << 14; // 0x3FFFFFFF max
// did we change state?
if (!GATE1_local) { // no gate -> release
ADSR1_status_local = 2; // release status
}
else { // We have a gate
if ((ADSR1_status_local == 0) & (ADSR1_out >= 0x3FFFFFFF)) { // attack and signal is high, so we start a decay
ADSR1_status_local = 1; // decay status
}
else if (ADSR1_status_local == 2) { // we got a gate, but use to be in release mode, so we start an attack
ADSR1_status_local=0; // attack
}
/*
if ( (toggle == 1) && (ADSR1_out < sustain + 0x00A00000) ) { // en mode loop1, on retrig une attack qd le decay s'approche du sustain)
ADSR1_status_local = 0;
}
if ( (toggle == 2) && (ADSR1_status_local == 1) && (ADSR1_out < sustain + 0x00A00000) ) { // en mode loop1, on retrig une attack qd le decay s'approche du sustain)
ADSR1_status_local = 3; // pseudo release mode
}
if ( (ADSR1_status_local == 3) && (ADSR1_out < 0x00A00000) ) { // a la fin du release en mode loop2 : on recommence l'attack
ADSR1_status_local = 0;
}*/
}
switch (ADSR1_status_local) {
case 0 : // attack
tmp = CV_filter16_out[index_filter_pot2];
ADSR1_goal_local = ADSR_Goal_value;
break;
case 1 : // decay -> sustain
tmp = CV_filter16_out[index_filter_pot4];
ADSR1_goal_local = sustain;
break;
case 2 : // release
tmp = CV_filter16_out[index_filter_pot8];
ADSR1_goal_local = 0;
break;
/*
case 3 : // release en mode loop2
tmp = CV_filter16_out[index_filter_pot8];
ADSR1_goal_local = 0;
break;
*/
}
// curve fader -> filter coef
tmp = (0xFFFF-tmp) / 80;
tmp += 0xB0;
tmp = table_CV2increment[tmp];
noInterrupts();
ADSR1_status = ADSR1_status_local;
ADSR1_filter = tmp;
ADSR1_goal = ADSR1_goal_local;
interrupts();
}
inline void CLK_ADSR_audio_() {
uint32_t ADSR1_out_tmp, ADSR2_out_tmp;
int32_t tmpS;
LFO1_phase += LFO1_increment;
ADSR1_out_tmp = ADSR1_out;
ADSR1_out_tmp += m_s32xs32_s32H(((int32_t)ADSR1_goal - (int32_t)(ADSR1_out_tmp)), ADSR1_filter);
ADSR1_out_tmp = min(ADSR1_out_tmp, 0x3FFFFFFF);
ADSR1_out = ADSR1_out_tmp;
led4(ADSR1_out_tmp >> 21);
if (IN2_connect < 60) { // audio input of the VCA
tmpS = audio_inR^0x80000000;
tmpS >>=16;
tmpS *= ADSR1_out_tmp >> 14;
audio_outR = tmpS ^0x80000000;
}
else { // no audio in, we output only the ADSR signal
ADSR1_out_tmp += (ADSR1_out_tmp>>1);
audio_outR = ADSR1_out_tmp + OUT1_0V;
}
}