-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_apex.py
234 lines (186 loc) · 8.42 KB
/
train_apex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from agent import apex
import tensorflow as tf
import numpy as np
import wrappers
import random
import utils
import json
import gym
from tensorboardX import SummaryWriter
from distributed_queue import buffer_queue
flags = tf.app.flags
FLAGS = tf.app.flags.FLAGS
flags.DEFINE_integer('task', -1, "Task id. Use -1 for local training")
flags.DEFINE_enum('job_name',
'learner',
['learner', 'actor'],
'Job name. Ignore when task is set to -1')
def main(_):
data = json.load(open('config.json'))
data = data['apex']
print(data)
local_job_device = f'/job:{FLAGS.job_name}/task:{FLAGS.task}'
shared_job_device = '/job:learner/task:0'
is_learner = FLAGS.job_name == 'learner'
cluster = tf.train.ClusterSpec({
'actor': ['localhost:{}'.format(data['server_port']+1+i) for i in range(data['num_actors'])],
'learner': ['{}:{}'.format(data['server_ip'], data['server_port'])]})
server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task)
with tf.device(shared_job_device):
with tf.device('/cpu'):
apex_queue = buffer_queue.ApexFIFOQueue(
trajectory=data['trajectory'],
input_shape=data['model_input'],
output_size=data['model_output'],
queue_size=data['queue_size'],
batch_size=data['batch_size'],
num_actors=data['num_actors'])
learner = apex.Agent(
input_shape=data['model_input'],
num_action=data['model_output'],
discount_factor=data['discount_factor'],
gradient_clip_norm=data['gradient_clip_norm'],
reward_clipping=data['reward_clipping'],
start_learning_rate=data['start_learning_rate'],
end_learning_rate=data['end_learning_rate'],
learning_frame=data['learning_frame'],
model_name='learner',
learner_name='learner')
with tf.device(local_job_device):
actor = apex.Agent(
input_shape=data['model_input'],
num_action=data['model_output'],
discount_factor=data['discount_factor'],
gradient_clip_norm=data['gradient_clip_norm'],
reward_clipping=data['reward_clipping'],
start_learning_rate=data['start_learning_rate'],
end_learning_rate=data['end_learning_rate'],
learning_frame=data['learning_frame'],
model_name=f'actor_{FLAGS.task}',
learner_name='learner')
sess = tf.Session(server.target)
apex_queue.set_session(sess)
learner.set_session(sess)
if not is_learner:
actor.set_session(sess)
if is_learner:
import time
learner.target_to_main()
replay_buffer = buffer_queue.Memory(capacity=int(1e5))
buffer_step = 0
train_step = 0
writer = SummaryWriter('runs/learner')
while True:
print(f'train step : {train_step} | buffer step : {buffer_step}')
if apex_queue.get_size():
buffer_step += 1
from_actor = apex_queue.sample_batch(1)
from_actor_state = from_actor.state[0]
from_actor_next_state = from_actor.next_state[0]
from_actor_previous_action = from_actor.previous_action[0]
from_actor_action = from_actor.action[0]
from_actor_reward = from_actor.reward[0]
from_actor_done = from_actor.done[0]
td_error = learner.get_td_error(
state=from_actor_state,
next_state=from_actor_next_state,
previous_action=from_actor_previous_action,
action=from_actor_action,
reward=from_actor_reward,
done=from_actor_done)
for i in range(len(td_error)):
replay_buffer.add(
td_error[i],
[from_actor_state[i],
from_actor_next_state[i],
from_actor_previous_action[i],
from_actor_action[i],
from_actor_reward[i],
from_actor_done[i]])
if buffer_step > 10:
train_step += 1
s = time.time()
minibatch, idxs, is_weight = replay_buffer.sample(data['batch_size'])
minibatch = np.array(minibatch)
state = np.stack(minibatch[:, 0])
next_state = np.stack(minibatch[:, 1])
previous_action = np.stack(minibatch[:, 2])
action = np.stack(minibatch[:, 3])
reward = np.stack(minibatch[:, 4])
done = np.stack(minibatch[:, 5])
loss, td_error = learner.distributed_train(
state=state,
next_state=next_state,
previous_action=previous_action,
action=action,
reward=reward,
done=done,
is_weight=is_weight)
writer.add_scalar('data/loss', loss, train_step)
writer.add_scalar('data/time', time.time() - s, train_step)
if train_step % 100 == 0:
learner.target_to_main()
for i in range(len(idxs)):
replay_buffer.update(idxs[i], td_error[i])
else:
env = wrappers.make_uint8_env(data['env'][FLAGS.task])
local_buffer = buffer_queue.LocalBuffer(
capacity=int(1e4))
epsilon = 1.0
train_step = 0
episode = 0
episode_step = 0
total_max_prob = 0
state = env.reset()
previous_action = 0
score = 0
lives = 5
writer = SummaryWriter('runs/{}/actor_{}'.format(data['env'][FLAGS.task], FLAGS.task))
while True:
actor.parameter_sync()
for _ in range(data['trajectory']):
action, q_value, max_q_value = actor.get_policy_and_action(
state=state, previous_action=previous_action, epsilon=epsilon)
episode_step += 1
total_max_prob += max_q_value
next_state, reward, done, info = env.step(action % data['available_action'][FLAGS.task])
score += reward
if lives != info['ale.lives']:
r = -1
d = True
else:
r = reward
d = False
local_buffer.append(
state=state, done=d,
reward=r, next_state=next_state,
previous_action=previous_action, action=action)
state = next_state
previous_action = action
lives = info['ale.lives']
if len(local_buffer) > 3 * data['trajectory']:
train_step += 1
sampled_data = local_buffer.sample(data['trajectory'])
apex_queue.append_to_queue(
task=FLAGS.task,
unrolled_state=sampled_data['state'],
unrolled_next_state=sampled_data['next_state'],
unrolled_previous_action=sampled_data['previous_action'],
unrolled_action=sampled_data['action'],
unrolled_reward=sampled_data['reward'],
unrolled_done=sampled_data['done'])
if done:
print(episode, score, epsilon)
writer.add_scalar('data/epsilon', epsilon, episode)
writer.add_scalar('data/episode_step', episode_step, episode)
writer.add_scalar('data/score', score, episode)
writer.add_scalar('data/total_max_prob', total_max_prob / episode_step, episode)
episode_step = 0
episode += 1
score = 0
lives = 5
epsilon = 1 / (episode * 0.05 + 1)
state = env.reset()
previous_action = 0
if __name__ == '__main__':
tf.app.run()