-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_fv3lam_co2his.py
executable file
·232 lines (179 loc) · 7.05 KB
/
plot_fv3lam_co2his.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
###################################################################### CHJ #####
## Name : plot_fv3lam_co2his.py
## Language : Python 3.7
## Usage : Plot historical co2 data files for fv3 regional modeling
## Input files : co2historicaldata_20XX.txt
## NOAA/NWS/NCEP/EMC
## History ===============================
## V000: 2020/07/14: Chan-Hoo Jeon : Preliminary version
## V001: 2021/03/05: Chan-Hoo Jeon : Simplify the script
###################################################################### CHJ #####
import os, sys
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import numpy as np
import pandas as pd
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import cartopy
from mpl_toolkits.axes_grid1 import make_axes_locatable
# HPC machine ('hera','orion')
machine='hera'
print(' You are on', machine)
#### Machine-specific input data ==================================== CHJ =====
# cartopy.config: Natural Earth data for background
# out_fig_dir: directory where the output files are created
# mfdt_kwargs: mfdataset argument
if machine=='hera':
cartopy.config['data_dir']='/scratch2/NCEPDEV/fv3-cam/Chan-hoo.Jeon/tools/NaturalEarth'
out_fig_dir="/scratch2/NCEPDEV/fv3-cam/Chan-hoo.Jeon/tools/fv3sar_pre_plot/Fig/"
elif machine=='orion':
cartopy.config['data_dir']='/home/chjeon/tools/NaturalEarth'
out_fig_dir="/work/noaa/fv3-cam/chjeon/tools/Fig/"
else:
sys.exit('ERROR: Required input data are NOT set !!!')
plt.switch_backend('agg')
# Case-dependent input =============================================== CHJ =====
# Path to the directory where the input file is located.
dnm_data="/scratch2/NCEPDEV/stmp1/Chan-hoo.Jeon/run_C96/"
# input file name
fnm_in='co2historicaldata_2020.txt'
year=fnm_in[-8:-4]
print(' year=',year)
# basic forms of title and file name
out_title_base='FV3LAM::Monthly CO2 in '+year+'::'
out_fname_base='fv3lam_co2his_'
# Resolution of background natural earth data ('50m' or '110m')
back_res='110m'
# Main part (will be called at the end) ==================== CHJ =====
def main():
# ========================================================== CHJ =====
global lon,lat,extent,c_lon,tmax,tmin
# open the data file
fname=os.path.join(dnm_data,fnm_in)
try: co2h=pd.read_csv(fname,sep='\s+',header=None,skiprows=1,na_values=[-99.99])
except: raise Exception('Could NOT find the file',fname)
print(' ===== CO2 history data =======================')
print(co2h)
co2h.shape
tmax=np.max(np.max(co2h))
tmin=np.min(np.min(co2h))
print(' Total max=',tmax)
print(' Total min=',tmin)
# lon1d=np.linspace(7.5,352.5,24)
lon1d=np.linspace(0,345,24)
lat1d=np.linspace(82.5,-82.5,12)
print(' lon=',lon1d)
print(' lat=',lat1d)
lon,lat=np.meshgrid(lon1d,lat1d,sparse=False)
#print(lon)
#print(lat)
# Highest and lowest longitudes and latitudes for plot extent
lon_min=np.min(lon1d)
lon_max=np.max(lon1d)
lat_min=np.min(lat1d)
lat_max=np.max(lat1d)
# extent=[lon_min-5,lon_max+5,lat_min-5,lat_max+3]
extent=[lon_min,lon_max,lat_min,lat_max]
c_lon=np.mean(extent[:2])
# c_lat=np.mean(extent[2:])
for im in range(0,12):
imp1=im+1
print(' month=',imp1)
im_s=12*im
co2h_mn=co2h.loc[im_s:im_s+11,:]
print(co2h_mn.shape)
data_plot(co2h_mn,imp1)
# Plot data ================================================ CHJ =====
def data_plot(co2h_mn,imp1):
# ========================================================== CHJ =====
cs_cmap='YlOrBr'
lb_ext='both'
n_rnd=2
tick_ln=1.5
tick_wd=0.45
tlb_sz=3
mon_nm=format(imp1,'02d')
out_title_fld=out_title_base+'M'+mon_nm
out_fld_fname=out_fname_base+'m'+mon_nm
cs_label='Monthly averaged CO2'
cmap_range='fixed'
# Max and Min of the field
fmax=np.max(np.max(co2h_mn))
fmin=np.min(np.min(co2h_mn))
print(' fld_max=',fmax)
print(' flx_min=',fmin)
# Make the colormap range symmetry
print(' cmap range=',cmap_range)
if cmap_range=='symmetry':
tmp_cmp=max(abs(fmax),abs(fmin))
cs_min=round(-tmp_cmp,n_rnd)
cs_max=round(tmp_cmp,n_rnd)
elif cmap_range=='round':
cs_min=round(fmin,n_rnd)
cs_max=round(fmax,n_rnd)
elif cmap_range=='real':
cs_min=fmin
cs_max=fmax
elif cmap_range=='fixed':
cs_min=tmin
cs_max=tmax
else:
sys.exit('ERROR: wrong colormap-range flag !!!')
print(' cs_max=',cs_max)
print(' cs_min=',cs_min)
# Plot field
fig,ax1=plt.subplots(1,1,subplot_kw=dict(projection=ccrs.Robinson(c_lon)))
ax1.set_extent(extent, ccrs.PlateCarree())
# Call background plot
back_plot(ax1)
ax1.set_title(out_title_fld,fontsize=9)
cs=ax1.pcolormesh(lon,lat,co2h_mn,cmap=cs_cmap,rasterized=True,
vmin=cs_min,vmax=cs_max,transform=ccrs.PlateCarree())
# cs=ax1.contourf(lon,lat,co2h_mn,cmap=cs_cmap,vmin=cs_min,vmax=cs_max,transform=ccrs.PlateCarree())
# extend(pointed end): 'neither'|'both'|'min'|'max'
divider=make_axes_locatable(ax1)
ax_cb=divider.new_horizontal(size="3%",pad=0.1,axes_class=plt.Axes)
fig.add_axes(ax_cb)
cbar=plt.colorbar(cs,cax=ax_cb,extend=lb_ext)
cbar.ax.tick_params(labelsize=8)
cbar.set_label(cs_label,fontsize=8)
# Output figure
out_file(out_fld_fname)
# Background plot ========================================== CHJ =====
def back_plot(ax):
# ========================================================== CHJ =====
fline_wd=0.5 # line width
falpha=0.3 # transparency
# natural_earth
# land=cfeature.NaturalEarthFeature('physical','land',back_res,
# edgecolor='face',facecolor=cfeature.COLORS['land'],
# alpha=falpha)
lakes=cfeature.NaturalEarthFeature('physical','lakes',back_res,
edgecolor='blue',facecolor='none',
linewidth=fline_wd,alpha=falpha)
coastline=cfeature.NaturalEarthFeature('physical','coastline',
back_res,edgecolor='blue',facecolor='none',
linewidth=fline_wd,alpha=falpha)
# states=cfeature.NaturalEarthFeature('cultural','admin_1_states_provinces',
# back_res,edgecolor='black',facecolor='none',
# linewidth=fline_wd,linestyle=':',alpha=falpha)
borders=cfeature.NaturalEarthFeature('cultural','admin_0_countries',
back_res,edgecolor='red',facecolor='none',
linewidth=fline_wd,alpha=falpha)
# ax.add_feature(land)
ax.add_feature(lakes)
# ax.add_feature(states)
ax.add_feature(borders)
ax.add_feature(coastline)
# Output file ============================================= CHJ =====
def out_file(out_file):
# ========================================================= CHJ =====
# Output figure
plt.savefig(out_fig_dir+out_file+'.png',dpi=300,bbox_inches='tight')
plt.close('all')
# Main call ================================================ CHJ =====
if __name__=='__main__':
main()