Skip to content

Latest commit

 

History

History

2d_examples

Two-Dimensional Examples

This folder contains the code implementation of the two-dimensional experiments in Section 3.2 of the paper On Investigating the Conservative Property of Score-Based Generative Models.

training

Usage

Train and evaluate models using the command with the following format.

python main.py --mode {$(1)} --workdir {$(2)} --config {$(3)}
  • (1) mode: is set as train or eval for training or evaluation.
  • (2) workdir: the directory created for saving the experimental results such as visualized examples and checkpoints.
  • (3) config: the configuration file that specifies the hyper-parameters.

Examples of Training Commands

  • Train a constrained score-based model (CSBM)
python3 main.py --workdir checkerboard_csbm --mode train --config configs/csbm/checkerboard_config.py
  • Train an unconstrained score-based model (USBM)
python3 main.py --workdir checkerboard_usbm --mode train --config configs/usbm/checkerboard_config.py
  • Train a quasi-conservative score-based model (QCSBM)
python3 main.py --workdir checkerboard_qcsbm --mode train --config configs/qcsbm/checkerboard_config.py

Examples of Evaluation Commands

  • Evaluate the negative log likelihood (NLL)
python3 main.py --workdir checkerboard_qcsbm --mode eval --type nll --config configs/qcsbm/checkerboard_config.py --restore results/checkerboard_qcsbm/checkpoints/checkpoint_4000.pth
  • Evaluate the score errors
python3 main.py --workdir checkerboard_qcsbm --mode eval --type score_err --config configs/qcsbm/checkerboard_config.py --restore results/checkerboard_qcsbm/checkpoints/checkpoint_4000.pth
  • Evaluate the sampling performance
python3 main.py --workdir checkerboard_qcsbm --mode eval --type sampling --config configs/qcsbm/checkerboard_config.py --restore results/checkerboard_qcsbm/checkpoints/checkpoint_4000.pth