-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathcnn_lstm.py
149 lines (116 loc) · 5.44 KB
/
cnn_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from keras.callbacks import ModelCheckpoint
from keras.layers import Embedding, SpatialDropout1D, Conv1D, MaxPooling1D, LSTM, Dense
from keras.models import model_from_json, Sequential
import numpy as np
from keras.preprocessing.sequence import pad_sequences
from keras_en_parser_and_analyzer.library.utility.tokenizer_utils import word_tokenize
from keras.utils import np_utils
from sklearn.model_selection import train_test_split
class WordVecCnnLstm(object):
model_name = 'wordvec_cnn_lstm'
def __init__(self):
self.model = None
self.word2idx = None
self.idx2word = None
self.max_len = None
self.config = None
self.vocab_size = None
self.labels = None
@staticmethod
def get_architecture_file_path(model_dir_path):
return model_dir_path + '/' + WordVecCnnLstm.model_name + '_architecture.json'
@staticmethod
def get_weight_file_path(model_dir_path):
return model_dir_path + '/' + WordVecCnnLstm.model_name + '_weights.h5'
@staticmethod
def get_config_file_path(model_dir_path):
return model_dir_path + '/' + WordVecCnnLstm.model_name + '_config.npy'
def load_model(self, model_dir_path):
json = open(self.get_architecture_file_path(model_dir_path), 'r').read()
self.model = model_from_json(json)
self.model.load_weights(self.get_weight_file_path(model_dir_path))
self.model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
config_file_path = self.get_config_file_path(model_dir_path)
self.config = np.load(config_file_path).item()
self.idx2word = self.config['idx2word']
self.word2idx = self.config['word2idx']
self.max_len = self.config['max_len']
self.vocab_size = self.config['vocab_size']
self.labels = self.config['labels']
def create_model(self):
lstm_output_size = 70
embedding_size = 100
self.model = Sequential()
self.model.add(Embedding(input_dim=self.vocab_size, input_length=self.max_len, output_dim=embedding_size))
self.model.add(SpatialDropout1D(0.2))
self.model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu'))
self.model.add(MaxPooling1D(pool_size=4))
self.model.add(LSTM(lstm_output_size))
self.model.add(Dense(units=len(self.labels), activation='softmax'))
self.model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
def fit(self, text_data_model, text_label_pairs, model_dir_path, batch_size=None, epochs=None,
test_size=None, random_state=None):
if batch_size is None:
batch_size = 64
if epochs is None:
epochs = 20
if test_size is None:
test_size = 0.3
if random_state is None:
random_state = 42
self.config = text_data_model
self.idx2word = self.config['idx2word']
self.word2idx = self.config['word2idx']
self.max_len = self.config['max_len']
self.vocab_size = self.config['vocab_size']
self.labels = self.config['labels']
np.save(self.get_config_file_path(model_dir_path), self.config)
self.create_model()
json = self.model.to_json()
open(self.get_architecture_file_path(model_dir_path), 'w').write(json)
xs = []
ys = []
for text, label in text_label_pairs:
tokens = [x.lower() for x in word_tokenize(text)]
wid_list = list()
for w in tokens:
wid = 0
if w in self.word2idx:
wid = self.word2idx[w]
wid_list.append(wid)
xs.append(wid_list)
ys.append(self.labels[label])
X = pad_sequences(xs, maxlen=self.max_len)
Y = np_utils.to_categorical(ys, len(self.labels))
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=random_state)
print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)
weight_file_path = self.get_weight_file_path(model_dir_path)
checkpoint = ModelCheckpoint(weight_file_path)
history = self.model.fit(x=x_train, y=y_train, batch_size=batch_size, epochs=epochs,
validation_data=[x_test, y_test], callbacks=[checkpoint],
verbose=1)
self.model.save_weights(weight_file_path)
np.save(model_dir_path + '/' + WordVecCnnLstm.model_name + '-history.npy', history.history)
score = self.model.evaluate(x=x_test, y=y_test, batch_size=batch_size, verbose=1)
print('score: ', score[0])
print('accuracy: ', score[1])
return history
def predict(self, sentence):
xs = []
tokens = [w.lower() for w in word_tokenize(sentence)]
wid = [self.word2idx[token] if token in self.word2idx else len(self.word2idx) for token in tokens]
xs.append(wid)
x = pad_sequences(xs, self.max_len)
output = self.model.predict(x)
return output[0]
def predict_class(self, sentence):
predicted = self.predict(sentence)
idx2label = dict([(idx, label) for label, idx in self.labels.items()])
return idx2label[np.argmax(predicted)]
def test_run(self, sentence):
print(self.predict(sentence))
def main():
app = WordVecCnnLstm()
app.test_run('i liked the Da Vinci Code a lot.')
if __name__ == '__main__':
main()