forked from GekFreeman/CDA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
421 lines (371 loc) · 18.7 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
from torchvision import datasets, transforms
import torch
import numpy as np
from torch.utils.data.sampler import SubsetRandomSampler
import pdb
import random
from collections import defaultdict
import os
from PIL import Image
"""def load_training_source1(root_path, dir, batch_size, kwargs):
transform = transforms.Compose(
[transforms.Resize([256, 256]),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
data = datasets.ImageFolder(root=root_path + dir, transform=transform);
cls1_num = len(data.classes)
data_cls1=list(np.random.choice(cls1_num,size=cls1_num // 2,replace=False))
data_cls1set=list(data.classes[i] for i in data_cls1)
data_cls2=[]
for i in range(cls1_num):
if i not in data_cls1:
data_cls2.append(i)
# data_cls1=set(list(range(cls1_num // 2))) # 以类别中位数分割,1为前N/2个类别,2为后N/2个类别
# data_cls2=set(list(range(cls1_num // 2, cls1_num)))
# 按类别重新提取索引
data_cls2set=list(data.classes[i] for i in data_cls2)
index1 = []
index2 = []
classes=[]
for i in range(len(data)):
if data.imgs[i][1] in data_cls1:
index1.append(i)
else:
index2.append(i)
# shuffle, 但这里的shuffle仅执行一次, 而不是每个epoch执行一次, 可优化
random.shuffle(index1)
random.shuffle(index2)
#sampler1 = torch.utils.data.sampler.SubsetRandomSampler(index1)
#sampler2 = torch.utils.data.sampler.SubsetRandomSampler(index2)
train_loader1 = torch.utils.data.DataLoader(myImageFloder(root=root_path + dir, label=data_cls1set,index=data_cls1, transform=transform),batch_size=batch_size, shuffle=True, **kwargs)
train_loader2 = torch.utils.data.DataLoader(myImageFloder(root=root_path + dir, label=data_cls2set,index=data_cls2, transform=transform),batch_size=batch_size, shuffle=True, **kwargs)
#torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler1, **kwargs)
# train_loader2 = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler2, **kwargs)
# print(index)
return train_loader1,train_loader2#,index"""
def load_training_source1(root_path, dir, batch_size, kwargs):
transform = transforms.Compose(
[transforms.Resize([256, 256]),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
data = datasets.ImageFolder(root=root_path + dir, transform=transform);
cls1_num = len(data.classes) # 类别总数
data_cls1=list(np.random.choice(cls1_num,size=cls1_num // 2,replace=False))
data_cls2=[]
for i in range(cls1_num):
if i not in data_cls1:
data_cls2.append(i)
# data_cls1=set(list(range(cls1_num // 2))) # 以类别中位数分割,1为前N/2个类别,2为后N/2个类别
# data_cls2=set(list(range(cls1_num // 2, cls1_num)))
# 按类别重新提取索引
index1 = []
index2 = []
for i in range(len(data)):
if data.imgs[i][1] in data_cls1:
index1.append(i)
else:
index2.append(i)
# pdb.set_trace()
# shuffle, 但这里的shuffle仅执行一次, 而不是每个epoch执行一次, 可优化
random.shuffle(index1)
random.shuffle(index2)
sampler1 = torch.utils.data.sampler.SubsetRandomSampler(index1)
sampler2 = torch.utils.data.sampler.SubsetRandomSampler(index2)
train_loader1 = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler1, **kwargs)
train_loader2 = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler2, **kwargs)
return train_loader1,train_loader2
def load_training_source2(root_path, dir, batch_size, kwargs):
transform = transforms.Compose(
[transforms.Resize([256, 256]),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
data = datasets.ImageFolder(root=root_path + dir, transform=transform);
cls1_num = len(data.classes) # 类别总数
data_cls1=list(np.random.choice(cls1_num,size=cls1_num // 2,replace=False))
data_cls2=[]
for i in range(cls1_num):
if i not in data_cls1:
data_cls2.append(i)
# data_cls1=set(list(range(cls1_num // 2))) # 以类别中位数分割,1为前N/2个类别,2为后N/2个类别
# data_cls2=set(list(range(cls1_num // 2, cls1_num)))
# 按类别重新提取索引
index1 = []
index2 = []
for i in range(len(data)):
if data.imgs[i][1] in data_cls1:
index1.append(i)
else:
index2.append(i)
# pdb.set_trace()
# shuffle, 但这里的shuffle仅执行一次, 而不是每个epoch执行一次, 可优化
random.shuffle(index1)
random.shuffle(index2)
sampler1 = torch.utils.data.sampler.SubsetRandomSampler(index1)
sampler2 = torch.utils.data.sampler.SubsetRandomSampler(index2)
train_loader1 = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler1, **kwargs)
train_loader2 = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler2, **kwargs)
return train_loader1,train_loader2
def load_training_source3(root_path, dir, batch_size, kwargs):
transform = transforms.Compose(
[transforms.Resize([256, 256]),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
data = datasets.ImageFolder(root=root_path + dir, transform=transform);
cls1_num = len(data.classes) # 类别总数
data_cls1=list(np.random.choice(cls1_num,size=cls1_num // 2,replace=False))
data_cls2=[]
for i in range(cls1_num):
if i not in data_cls1:
data_cls2.append(i)
# data_cls1=set(list(range(cls1_num // 2))) # 以类别中位数分割,1为前N/2个类别,2为后N/2个类别
# data_cls2=set(list(range(cls1_num // 2, cls1_num)))
# 按类别重新提取索引
index1 = []
index2 = []
for i in range(len(data)):
if data.imgs[i][1] in data_cls1:
index1.append(i)
else:
index2.append(i)
# pdb.set_trace()
# shuffle, 但这里的shuffle仅执行一次, 而不是每个epoch执行一次, 可优化
random.shuffle(index1)
random.shuffle(index2)
sampler1 = torch.utils.data.sampler.SubsetRandomSampler(index1)
sampler2 = torch.utils.data.sampler.SubsetRandomSampler(index2)
train_loader1 = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler1, **kwargs)
train_loader2 = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler2, **kwargs)
return train_loader1,train_loader2
###########44444444444444444444444444444444444
def load_training_source4(root_path, dir, batch_size, kwargs):
transform = transforms.Compose(
[transforms.Resize([256, 256]),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
data = datasets.ImageFolder(root=root_path + dir, transform=transform);
cls1_num = len(data.classes) # 类别总数
data_cls1=list(np.random.choice(cls1_num,size=cls1_num // 2,replace=False))
data_cls2=[]
for i in range(cls1_num):
if i not in data_cls1:
data_cls2.append(i)
# data_cls1=set(list(range(cls1_num // 2))) # 以类别中位数分割,1为前N/2个类别,2为后N/2个类别
# data_cls2=set(list(range(cls1_num // 2, cls1_num)))
# 按类别重新提取索引
index1 = []
index2 = []
for i in range(len(data)):
if data.imgs[i][1] in data_cls1:
index1.append(i)
else:
index2.append(i)
# pdb.set_trace()
# shuffle, 但这里的shuffle仅执行一次, 而不是每个epoch执行一次, 可优化
random.shuffle(index1)
random.shuffle(index2)
sampler1 = torch.utils.data.sampler.SubsetRandomSampler(index1)
sampler2 = torch.utils.data.sampler.SubsetRandomSampler(index2)
train_loader1 = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler1, **kwargs)
train_loader2 = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler2, **kwargs)
return train_loader1,train_loader2
##############################################
###########5555555555555555555555555555555555
def load_training_source5(root_path, dir, batch_size, kwargs):
transform = transforms.Compose(
[transforms.Resize([256, 256]),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
data = datasets.ImageFolder(root=root_path + dir, transform=transform);
cls1_num = len(data.classes) # 类别总数
data_cls1=list(np.random.choice(cls1_num,size=cls1_num // 2,replace=False))
data_cls2=[]
for i in range(cls1_num):
if i not in data_cls1:
data_cls2.append(i)
# data_cls1=set(list(range(cls1_num // 2))) # 以类别中位数分割,1为前N/2个类别,2为后N/2个类别
# data_cls2=set(list(range(cls1_num // 2, cls1_num)))
# 按类别重新提取索引
index1 = []
index2 = []
for i in range(len(data)):
if data.imgs[i][1] in data_cls1:
index1.append(i)
else:
index2.append(i)
# pdb.set_trace()
# shuffle, 但这里的shuffle仅执行一次, 而不是每个epoch执行一次, 可优化
random.shuffle(index1)
random.shuffle(index2)
sampler1 = torch.utils.data.sampler.SubsetRandomSampler(index1)
sampler2 = torch.utils.data.sampler.SubsetRandomSampler(index2)
train_loader1 = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler1, **kwargs)
train_loader2 = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=True, sampler=sampler2, **kwargs)
return train_loader1,train_loader2
#############################################
def load_training_target(root_path, dir, batch_size, kwargs):
transform = transforms.Compose(
[transforms.Resize([256, 256]),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
data = datasets.ImageFolder(root=root_path + dir, transform=transform)
cls_num = len(data.classes)
data_cls=list(i for i in range(cls_num))
data_clsset=list(data.classes[i] for i in data_cls)
train_loader1 = torch.utils.data.DataLoader(myImageFloder(root=root_path + dir, label=data_clsset,index=data_cls, transform=transform),batch_size=batch_size, shuffle=True,drop_last=True, **kwargs)
train_loader2 = torch.utils.data.DataLoader(myImageFloder(root=root_path + dir, label=data_clsset,index=data_cls, transform=transform),batch_size=batch_size, shuffle=True,drop_last=True, **kwargs)
# train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs)
return train_loader1,train_loader2
def load_sameclass_target(dic,source_data1, source_label1, source_data2,source_label2,batch_size):
num_s1,num_s2=source_label1.shape[0],source_label2.shape[0]
c,h,w=source_data1.shape[1],source_data1.shape[2],source_data1.shape[3]
transform = transforms.Compose(
[transforms.Resize([256, 256]),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
#data = datasets.ImageFolder(root=root_path + dir, transform=transform)
cls_num1 = num_s1
cls_num2 = num_s2
data_cls1=list(i for i in source_label1)
data_cls2=list(i for i in source_label2)
# print(source_label1,source_label2)
train_loader1,loader1label,loader1path =myImageTargetFloder(dic=dic, index=data_cls1, transform=transform)
train_loader2,loader2label,loader2path =myImageTargetFloder(dic=dic, index=data_cls2, transform=transform)
#torch.utils.data.DataLoader(myImageTargetFloder(dic=dic, index=data_cls1, transform=transform),batch_size=batch_size, shuffle=True)
# train_loader2 =torch.utils.data.DataLoader(myImageTargetFloder(dic=dic, index=data_cls2, transform=transform),batch_size=batch_size, shuffle=True)
# train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs)
#import pdb
# pdb.set_trace()
return train_loader1,loader1label,loader1path,train_loader2,loader2label,loader2path
def load_testing(root_path, dir, batch_size, kwargs):
transform = transforms.Compose(
[transforms.Resize([224, 224]),transforms.ToTensor()])
data = datasets.ImageFolder(root=root_path + dir, transform=transform)
test_loader = torch.utils.data.DataLoader(data, batch_size=batch_size,shuffle=True, drop_last=True, **kwargs)#drop_last=True,
## pdb.set_trace()
return test_loader
def sample_sameclass(source_data,source_label,tgt_data,tgt_label):
index_s=[]
index_t=[]
b=source_data.shape[0]
c,h,w=source_data.shape[1],source_data.shape[2],source_data.shape[3]
tgt_index=[i for i in range(tgt_data.shape[0])]
dic=defaultdict(list)
for dat,lab in zip(tgt_index,tgt_label):
#if lab==dic.keys():
key=lab.detach().cpu().numpy()
key=str(key)
dic[key].append(dat)
#t=0
for s in range(len(source_label)):
s_idx=str(source_label[s].detach().cpu().numpy())
if s_idx in dic.keys():#在源域中找到与目标域一样的类,记录编号
t=random.choice(dic[s_idx])
index_s.append(s)
index_t.append(t)
# visited.add(t)
# break
# # dt = {0: [0, 1, 2], 1: [3, 4, 5]}
# index_t = []
# for i in s:
# index_t.append(np.random.choice(dt[source_label[i]], size=1))
num=len(index_s)
s_data=torch.zeros((num,c,h,w),dtype=torch.float).cuda()
s_label=torch.zeros(num,dtype=torch.long).cuda()
t_data=torch.zeros((num,c,h,w),dtype=torch.float).cuda()
t_label=torch.zeros(num,dtype=torch.long).cuda()
# print(s_data.dtype)
for i in range(num):#按照编号去处数据替换原来值
index=index_s[i]
s_data[i,:]=source_data[index,:]
s_label[i]=source_label[index]
for j in range(num):
index=index_t[j]
t_data[j,:]=tgt_data[index,:]
t_label[j]=tgt_label[index]
return s_data, s_label ,t_data,t_label
###################
def random_choose_data(label_path):
random.seed(1)
file = open(label_path)
lines = file.readlines()
slice_initial = random.sample(lines, 200000) # if don't change this ,it will be all the same
slice = list(set(lines)-set(slice_initial))
random.shuffle(slice)
train_label = slice[:150000]
test_label = slice[150000:200000]
return train_label, test_label # output the list and delvery it into ImageFolder
# def my data loader, return the data and corresponding label
def default_loader(path):
return Image.open(path).convert('RGB')
class myImageFloder(torch.utils.data.Dataset): # Class inheritance,继承Dataset类
def __init__(self, root, label,index, transform=None, target_transform=None, loader=default_loader):
# fh = open(label)
c = 0
imgs = []
class_names = []
for i in range(len(index)): # label is a list
# print(line)
# cls is a list
fn = label[i]
path1=os.path.join(root, fn)
for ims in os.listdir(path1):
# print(ims)
path=os.path.join(path1, ims)
imgs.append((index[i],path))
# access the last label
# images is the list,and the content is the tuple, every image corresponds to a label
# despite the label's dimension
# we can use the append way to append the element for list
c = c + 1
# print('the total image is',c)
#print(class_names)
self.root = root
self.imgs = imgs
self.classes = class_names
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
label,path = self.imgs[index] # even though the imgs is just a list, it can return the elements of it
# in a proper way
# path2=os.path.join(self.root, label)
img = self.loader(path)
if self.transform is not None:
img = self.transform(img)
return img, label,path
# 在这里返回图像数据以及对应的label以及对应的名称
def __len__(self):##
return len(self.imgs)
def getName(self):
return self.classes
def myImageTargetFloder(dic, index, transform=None, loader=default_loader):
path = []
label=[]
imgs = []
for i in range(len(index)): # label is a list
key=str(index[i].item())
#print(index[i])
# print(key)
# print(dic[key])
if len(dic[key])!=0:
idx=np.random.choice(len(dic[key]))
# idx=np.random.choice(len(dic[key]),size=1,replace=False)
# print(idx)
path_now=dic[key][idx][1]
path.append(path_now)
label.append(index[i].item())
img = loader(path_now)
if transform is not None:
img = transform(img)
img=np.array(img)
imgs.append(img)
image=torch.Tensor(imgs)
return image,label,path